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Augmented Paths and Reodesics for Topologically-Stable Matching

YUSUF SAHILLIOĞLU, Middle East Technical University, Turkey

DEVIN HORSMAN, Arcturus Studios, Canada

Fig. 1. Overview of our approach. Brute-force map between shape extremities (left) helps us augment the paths in comparison (middle). Sparse map
obtained by casting fuzzy votes over augmented paths guides the dense matching (right). Mismatches in the brute-force map (head-foot) can be tolerated.
Heat sent from a given path vertex (red) to path endpoints (blue-green) and robust matches (black-gray-white) are visualized via charts where bars are
colored according to the heat color. Note that that although path lengths are similar, augmented path information is not, which would prevent voting for
this incompatible pair.

We propose a fully-automatic method that computes from scratch point-

to-point dense correspondences between isometric shapes under topolog-

ical noise. While relying on pairwise distance preservation constraints is

common and generally sufficient to handle isometric deformations, pres-

ence of topological noise needs further actions that we present as our

main contributions. First, instead of comparing distances over two paths

on two input surfaces, we cast fuzzy votes at the path endpoints based on

topologically-robust heat diffusion from path vertices. Second, we make

the matching even more stable to topological noise by introducing the so-

called reodesics, which are locally shortest geodesics that go through ro-

bust matches. In addition to the five standard datasets for isometric shape

correspondence with and without topological noise, we employ and release

a sixth one geared specifically towards topological noise evaluation with

ground-truth information. We demonstrate our qualitative and quantita-

tive advantages over seven recent state-of-the-art methods on these six

datasets.
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1 INTRODUCTION

Correspondence information between shapes is very important in

computer graphics and geometry processing in order to enable

useful applications. Solution to the shape correspondence problem

gives the desired answer in the form of point-to-point maps. Being

well studied for noise-free shapes that differ by rigid and non-rigid

transformations, the problem is yet at its infancy for handling the

topological noise which is a frequent occurrence while capturing

3D data. We address this challenging scenario to provide point-to-

point dense maps between non-rigid isometric shapes under topo-

logical noise.

The task of non-rigid shape correspondence is difficult as it re-

quires a search over the entire target shape to match a given point

in the source shape. The target shape exhibits rigid motions, iso-

metric deformations such as bending, mild stretching, and in our

case extra topological noise. In order to deal with this large non-

linear search space we propose a coarse-to-fine matching strategy

(Figure 1) where we first obtain a brute-force map between shape

extremities. We then use a subset of this map to match sparsely

and uniformly distributed samples via voting. We finally obtain

our smooth dense map between every vertex in the guidance of
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the sparse map. This roadmap involves several novel contributions

for the matching process:

• Augmented paths: sparse matching compares two paths aug-

mented by heat vectors defined on uniformly distributed path

vertices.

• Reodesics: geodesic distances are made robust to topological

noise by making them go through special samples.

• Consistency-based filtering: dense matching ensures that

symmetric maps are consistent.

• Symmetric flip alleviation: sparse matching alleviates the

symmetric flip problem by adjusting [Sahillioğlu and Yemez

2013a] conveniently.

• Speed: full dense map is computed for a 12.5K-vertex pair in

12 seconds from scratch without any initial information and

highly parallelizable.

• Scalability: Execution time grows linearly, e.g., 23 seconds

to match a 28K-vertex pair from scratch.

• Versatility: partial matching scenario, in addition to the main

topic of matching under topological noise, is handled under

certain conditions without any modification to the algorithm.

2 RELATED WORK

The shape correspondence problem is related to many other ge-

ometry processing problems such as registration [Sahillioğlu and

Kavan 2021], morphing [Aydınlılar and Sahillioğlu 2021], explo-

ration [Kim et al. 2012], and information transfer. It consequently

comes in different settings depending on the application. All these

settings are detailed in surveys [Sahillioğlu 2020; van Kaick et al.

2011], yet we here address the recent work concerning our method,

namely isometric dense correspondence with and without topolog-

ical noise.

One can investigate isometric dense correspondence methods

under deformation-based and similarity-based categories. The for-

mer deforms one shape directly towards the other [Eisenberger

et al. 2020; Ezuz et al. 2019; Maron et al. 2016; Schmidt et al. 2019]

or deforms both towards a common intermediate domain such as

sphere [Aigerman et al. 2017; Baden et al. 2018], plane [Aigerman

and Lipman 2015; Kim et al. 2011; Weber and Zorin 2014], and

hyperbolic surface with cone singularities [Aigerman and Lipman

2016]. The naïve closest point matches in the deformed configura-

tions then reveal the desired correspondences. One can remove the

non-rigid bending transformation from consideration and match

rigidly different shapes, a case that would still be isometric but

easier to deal with Choy et al. [2020] and Wang and Solomon

[2019]. Even if both intermediate maps locally minimize the intrin-

sic distortion, there is potentially high distortion in the composed

map, which would make the direct deformation approach more

preferable. Regardless of whether direct or indirect deformation is

chosen, this category tends to be less efficient than the similarity-

based approaches like ours due to the cost of a high-quality non-

linear deformation energy evaluation.

The recent literature in the latter category is dominated by

the introduction of the revolutionary functional maps framework

in 2012 [Ovsjanikov et al. 2012], which replaces the traditional

point-to-point correspondences by matching real-valued functions

over surfaces. Their particular choice of low-frequency Laplace-

Beltrami eigenfunctions for real-valued functions puts emphasis

on smoothness whereas [Azencot and Lai 2021] aims for a spec-

trum that allows for better feature matching. Although functional

maps are conveniently available for fast linear-algebraic analysis

and manipulation, they are prone to conversion errors when re-

covering the point-to-point correspondence from the optimal func-

tional mapping. Significant work has already been carried out in

order to improve this conversion step using isometric alignment

[Rodola et al. 2017], smoothness-based deblurring [Ezuz and Ben-

Chen 2017], linear assignment [Vestner et al. 2017b], quadratic as-

signment [Vestner et al. 2017a], vector field flow [Azencot et al.

2016; Corman et al. 2015], and fast Sinkhorn filters [Pai et al. 2021].

A different branch of follow-up work improves functional map esti-

mation by formulating the descriptor preservation constraints via

commutativity with an underlying map [Nogneng et al. 2018; Nog-

neng and Ovsjanikov 2017; Wang et al. 2018], and by using deep

neural networks [Donati et al. 2020; Litany et al. 2017; Sharma

and Ovsjanikov 2020] or iterative spectral up-sampling techniques

[Huang et al. 2020; Melzi et al. 2019a]. Ren et al. [2021] proposes a

discrete solver to obtain a stronger link between optimized prop-

erties of functional and point-to-point maps.

Other map representations can also be used to seek similarity-

based correspondences, e.g., probabilistic soft maps [Solomon

et al. 2012], transport plans [Mandad et al. 2017], genetic chro-

mosomes [Edelstein et al. 2019; Sahillioğlu 2018], local reference

frames [Melzi et al. 2019b], and point-to-point [Ovsjanikov et al.

2010]. Our choice in this paper is the intuitive point-to-point map

representation.

For the challenging and less-studied topological noise case, we

see most papers in the similarity-based category. Due to the am-

biguities involved in this setting, e.g., a small tunnel may be a

shortcut noise or a model feature, these methods and our own only

provide robustness up to a certain extent. Solomon et al. [2016] em-

ploys entropy-regularized version of the Gromov–Wasserstein ob-

jective function, whereas [Rodolà et al. 2014] and [Wei et al. 2016]

prefer learning-based approaches that use decision trees and clas-

sical extrinsic convolutional neural networks, respectively. Func-

tional maps are made more resilient to this type of noise by the

introduction of topological constraints [Poulenard et al. 2018] and

geometric matrix completion formulation [Kovnatsky et al. 2015].

Replacing geodesics with spectral diffusion distances provides a

minor improvement for this noisy setting [Bronstein et al. 2010;

Lahner et al. 2016; Sahillioğlu and Yemez 2012; Sharma et al. 2011].

Our principled solution based on path augmentation with heat dif-

fusion and robust geodesics through robust matches provides a

more stable solution than these alternatives do.

3 PROBLEM STATEMENT AND OVERVIEW

We aim to establish the optimal dense map ϕ∗ between two iso-

metric (or nearly isometric) shapes under topological noise. To this

end, we first obtain the map ϕ∗
brute

between M farthest point sam-

ples on each mesh [Eldar et al. 1997] via brute-force search based

on our reodesic metric. A subset of ϕ∗
brute

leads to the sparse map

ϕ∗sparse between N > M farthest point samples according to the

proposed heat vectors. Reodesics are also active in this stage while

voting, filtering and during map evaluation. A refined subset of

ACM Transactions on Graphics, Vol. 42, No. 2, Article 17. Publication date: October 2022.



Augmented Paths and Reodesics for Topologically-Stable Matching • 17:3

ALGORITHM 1: Our matching algorithm for isometric shape cor-

respondence under topological noise.

Input: S and T s.t. |S | = |T | = N , samples on two meshes

Output: ϕ∗
brute

, ϕ∗sparse: S → T , and ϕ∗ between all vertices

Let SM and TM be the set of first M samples in S and T , respectively

for i ← 1 to M ! do

ϕtest : SM → T
′
M

where T
′
M

is the ith permutation of TM

if Diso (ϕtest) < minIso then

minIso = Diso (ϕtest) and ϕ∗
brute

= ϕtest � ϕ∗
brute

ready

end if

end for

for each triplet of matches {(ak , bk ) } ∈ ϕ∗
brute

do

for each path pil = si ↔ sl ∈ S do

overallDissim = 0 � Select the most similar path for pil

for each path qjm = tj ↔ tm ∈ T do

if not filtered out then � Section 4.8

for each path vertex pu ∈ pil and qu ∈ qjm do

overallDissim + = | |hpu − hqu | |L∞ � Section 4.6

end for each

if overallDissim < minOvDissim then

minOvDissim = overallDissim

tд = tj and th = tm

end if

end if

end for each

δ = minOvDissim/U � U is # path vertices

si .votes[tд ]+ = 1 − δ and sl .votes[th ]+ = 1 − δ � Voting

end for each

Get ϕsparse using the highest votes � Section 4.6.1

if Diso (ϕsparse) < minIso2 then

minIso2 = Diso (ϕsparse)
ϕ∗

brute3
= {(ak , bk ) } and ϕ∗sparse = ϕsparse � ϕ∗sparse ready

end if

end for each

for each source vertex v do

for each target vertex w do

if not filtered out then � Section 4.8

if | |hv − hw | |L∞ < minOvDiss then � ϕ∗sparse in use

minOvDiss = | |hv − hw | |L∞
w∗ = w � most similar vertex for v

end if

end if

Match v to w∗

end for each

ϕ∗ = ϕ∗ ∪ (v, w∗) � ϕ∗ ready

end for each

ϕ∗sparse is then used to produce the desired ϕ∗ between all V ver-

tices, guided by reodesics and heat vectors. The entire algorithm

is outlined as a pseudocode in Algorithm 1.

4 THE METHOD

4.1 Reodesics

We introduce robust geodesics, reodesics in short, that are more

stable than the regular minimal geodesics under topological noise.

Reodesics are locally shortest but not necessarily globally shortest,

which is a nice property when dealing with topological noise be-

cause noisy shortcut tunnels always shorten the paths so we need

elongated paths.

4.2 Reodesics for a Single Shape

In order to define the reodesic distance between two vertices si and

sl , we need a through-vertex a on the surface. Once we compute

the minimal geodesics д(., .) from a via Dijkstra’s shortest paths

algorithm, we compute the reodesic distance d (., .) as:

d (si , sl ) = д(si ,a) + д(a, sl ) (1)

While the minimal geodesics are computed from source si to

all other vertices inO (VloдV ) time, reodesics require merelyO (V )
time. This is because the through-vertex is selected from the sam-

ple set for which geodesic distances are already computed [Eldar

et al. 1997]. Using the precomputed geodesics in Equation (1) in

O (1)-time leads to the O (V ) complexity while setting reodesic dis-

tances from si to all other V vertices, i.e., reodesic computation

brings no extra cost.

4.3 Reodesics for a Shape Pair

A trivial extension of reodesics to a shape pair to be matched re-

quires a robust map ϕrobust = {(ak ,bk )} between the two shapes:

d (si , sl ) = max
k
{д(si ,ak ) + д(ak , sl )}

d (tj , tm ) = max
k
{д(tj ,bk ) + д(bk , tm )} (2)

Taking the maximum of k distance candidates elongates the

paths consistently on two shapes and the consistent pairwise dis-

tances can now be compared for shape matching purposes (Equa-

tion (7)). For ϕrobust, we use the first three matches of the current

permutation during the brute-force map computation (Section 4.5)

and the current triplet ϕbrute3 ⊂ ϕ∗
brute

during the sparse map com-

putation (Section 4.6). ϕrobust is the winner triplet ϕ∗
brute3

during

the dense map computation (Section 4.7).

In Figure 2, we visualize the computation of reodesics on two

shapes that include shortcut tunnels (also on two noise-free shapes

at the bottom right corner). We can see its advantage over minimal

geodesics as well as spectral distances that are advertised to be

topology-aware.

We, however, may still experience problems with this trivial re-

odesic extension for the topologically noisy configurations since

one of the two reodesic paths may involve a shortcut tunnel, as

depicted in Figure 3. Since it is impossible to solve this problem

with pre-computed reodesics, we switch to the so-called on-the-fly

reodesics which are computed right before they are needed, e.g.,

d (si , sl ) in Equation (8) is computed using the optimal through-

vertex ak∗ whose correspondence bk∗ makes d (tj , tm ) as close as

possible to the former. In other words, we set:

k∗ = argmin
k

{|д(si ,ak ) + д(ak , sl ) − д(tj ,bk ) − д(bk , tm ) |} (3)

d (si , sl ) = д(si ,ak∗ ) + д(ak∗ , sl ) (4)

Note that this new on-the-fly definition of reodesics is insensi-

tive to the robust map choice. For example, in Figure 3, close dis-

tances d (si , sl ) = д(si ,a3) + д(a3, sl ) and d (tj , tm ) = д(tj ,b3) +
д(b3, tm ) would be selected for the left pair and right pair even

though their robust maps are different. Note that if a3 and b3 were

on the left knee for the right pair, then the closest distances would
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Fig. 2. Right toe (si ) to left toe (sl ) reodesic uses the longest path through
a1 (union of red and yellow paths). Similarly it goes through b1 on the
other shape from tj to tm . Reodesic and competitor spectral distances
from right toe to all other vertices are colored from blue (min) to red (max).
For the bottom row, reodesic source is left hand (left) and head (right).
Robust map for the new pair at right is highlighted via spheres. Note that
reodesic is also symmetry-aware (left and right legs are colored differently
when head is the source).

use a2 and b2 on the head, which would still give a fairly compati-

bled (si , sl ) andd (tj , tm ) pair. Reodesics here, however, would have

been even closer without the extra head-elbow tunnel. We, there-

fore, conclude that although on-the-fly reodesics are quite power-

Fig. 3. RGB spheres are 3 robust matches {(ak , bk ) } in use. In the left pair,
reodesics from si to sl and from tj to tm have the max distances with
green through-vertices. The shortcut feet tunnel in the left mesh, however,
makes the corresponding reodesic distances inconsistent (blueish vs. red-
dish) as д (si , a2) + д (a2, sl ) < д (tj , b2) + д (b2, tm ). This problem disap-
pears with a different robust map (right pair) where д (si , a2)+д (a2, sl ) ∼
д (tj , b2) + д (b2, tm ). A more principled solution is to use on-the-fly
reodesics.

ful to deal with the topological noise, they may still fail especially

while using a small robust map on challenging cases with multiple

tunnels. This observation leads us to investigate the topologically-

robust heat diffusion process while augmenting our paths (Sec-

tion 4.6), which empirically gave slightly better performance

(Figure 5). Besides, during augmentation, for each path vertex, on-

the-fly reodesic computation has to go through the entire robust

map again to find the most compatible through-vertex, a complex-

ity we avoid by using heat vector that needs to traverse the robust

map only once for the whole path. We note that reodesics are still

essential to our system (Section 3).

4.4 Background for Heat Diffusion

For the sake of completeness and reproducibility, we provide the

well-known Laplacian spectrum that made the heat kernel in Sec-

tions 4.6 and 4.7 available: kτ (p, r ) =
∑E

l=1
e−τ λlφl (p)φl (r ), where

we use E = 15 smallest non-zero eigenvalues {λl } and eigenfunc-

tions {φl } of the cotangent discretization L of the Laplace-Beltrami

operator:

Li j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

∑
j wi j if i = j

−wi j if (i, j ) is an edge

0 otherwise

(5)

wherewi j = (cotαi j + cot βi j )/2 with αi j and βi j being the angles

facing the edge (i, j ) [Meyer et al. 2003]. We switch to the gener-

alized eigenvalue problem in order to be able to compute eigen-

functions that are orthonormal with respect to the diagonal area

matrix A:

Lφl = λl Aφl → A−1Lφl = λlφl (6)

where Aii stores the Voronoi area of the ith vertex, i.e., one third of

the sum of the areas of the adjacent triangles. The problem is then

solved entirely within the C++ framework using the fast shift-and-

invert mode of the Spectra library. Note that biharmonic distance

[Lipman et al. 2010] can also be incorporated into our system seam-

lessly using the same spectrum: d (p, r ) =
∑E

l=1
(φl (p) −φl (r ))2/λ2

l
.

We indeed replaced our reodesics with biharmonics (Figure 2) in

the entire system but obtained poorer results.
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Fig. 4. Low-resolution brute-force map ϕ∗
brute

fails with minimal geodesic
and biharmonic distance (left) but not with our on-the-fly reodesic (right).

4.5 Brute-Force Map

The firstM samples of the N farthest point samples are matched by

checking M! permutations of target samples {tj } with the source

samples {si } under the following isometric distortion measure

Diso. Note that sampling starts from a vertex that is farthest from

an arbitrary initial vertex. Typically, M = 5 and N = 50.

Diso (ϕ) =
1

|ϕ |
∑

(si ,tj )∈ϕ
diso (si , tj ) (7)

where ϕ denotes the set of correspondence pairs between source

and target samples, and diso (si , tj ) is the contribution of the con-

stituent match (si , tj ) to the overall isometric distortion:

diso (si , tj ) =
1

|ϕ ′|
∑

(sl ,tm )∈ϕ′
(d (si , sl ) − d (tj , tm ))2 (8)

where ϕ ′ = ϕ − {(si , tj )} and d (., .) is our novel on-the-fly robust

geodesic distance between two vertices on a given surface that we

refer to as reodesic for short (Section 4.1). Diso is a variant of the

measure used in Sahillioğlu and Yemez [2011]. ϕ∗
brute

is the one-

to-one correspondence (bijection) minimizing Equation (7). Note

that Equation (7) utilizing on-the-fly reodesics will be used during

the upcoming sparse map computation stage as well. A typical im-

provement due to our on-the-fly reodesics at this stage is shown

in Figure 4.

4.6 Sparse Map

In order to be insensitive to the potential sampling inconsistencies

due to small M (Figure 7(left)), we compute ϕ∗sparse based on each

triplet of matches ϕbrute3 ⊂ ϕ∗
brute

. Each pair (si , sl ) looks for the

most similar pair (tj , tm ) by sampling along the the shortest paths

pil (from si to sl ) and qjm (from tj to tm ), respectively. We then

check the similarities of the heat-based, hence topologically-stable,

vectors over the augmented paths pil and qjm .

Let Pil be the set of uniformly sampledU vertices on pil includ-

ing si and sl . Qjm is defined similarly. We use U = 10 and define

the heat vector hpu for each vertex pu ∈ Pil as follows:

hpu = {kτ1 (pu , si ),kτ2 (pu , si ), . . . ,kτ5 (pu , si ),

kτ1 (pu , sl ),kτ2 (pu , sl ), . . . ,kτ5 (pu , sl ),

kτ1 (pu ,a1),kτ2 (pu ,a1), . . . ,kτ5 (pu ,a1),

kτ1 (pu ,a2),kτ2 (pu ,a2), . . . ,kτ5 (pu ,a2),

kτ1 (pu ,a3),kτ2 (pu ,a3), . . . ,kτ5 (pu ,a3)} (9)

where ϕbrute3 = {(a1,b1), (a2,b2), (a3,b3)}. Each component of

this vector is the heat kernel kτ (pu , r ) that measures the amount

of heat diffused from pu to r ∈ R at five different times τ1..5, where

R consists of the path endpoints as well as the current triplet re-

trieved from ϕbrute3. We select small time values as they capture

local properties of the shape around pu . Larger time values, on

the other hand, reflect the global structure of the shape from the

point of view of pu , which may confuse the system in the presence

of topological noise. Similarly, connecting pu to r through single

shortest paths would not be the proper choice under topological

noise. Heat kernel, instead, gives a weighted average over all paths

possible in time τ , i.e., it is inversely related to the connectivity of

points pu and r by paths of length τ .

Once hqu is defined similarly for each qu ∈ Qjm , and hpu and

hqu are normalized to have unit lengths, we evaluate the similar-

ity of pil and qjm by adding | |hpu − hqu | |L∞ for 1 ≤ u ≤ U to the

overall dissimilarity amount. Let qдh be the least dissimilar aug-

mented path for pil with the dissimilarity amount of δ . We then

add two fuzzy votes to the corresponding endpoints (si , tд ) and

(sl , th ) of these two matching augmented paths via 1 − δ (Algo-

rithm 1). While there are many alternatives for the selection of

fuzzy votes, e.g., 1 minus pointwise descriptor difference or uni-

form votes, we choose the overall dissimilarity amount that has

been carefully maintained thus far using heat vector differences.

We observe the powers of the heat vector and the reodesic vec-

tor rpu = {d (si ,pu ),d (sl ,pu ),d (a1,pu ),d (a2,pu ),d (a3,pu )} in Fig-

ure 5. Here, the normalized values in [0, 1] that correspond to the

most different vector entries (L∞) provide the colors of each of the

U = 10 path vertices. Such vertices are also colored as blocks of 10

consecutive cells in the grid-based visualization of Figure 6. With

this visualization scheme, we are able to demonstrate the situation

of many matching and non-matching path pairs compactly.

4.6.1 Vote to Map Conversion. We convert the votes into a

sparse map by matching each source sample to the target sam-

ple with the highest vote. To ensure bijectivity, we maintain only

one match for each target sample by deleting the ones with lower

votes. The sparse map obtained after this conversion is evaluated

via Diso (Equation (7)). The whole procedure is repeated for each

of the
(
M
3

)
triplets {ϕbrute3} and the minimum-distortion (Equa-

tion (7)) map ϕ∗sparse based on ϕ∗
brute3

(Figure 7(middle)) proceeds

to the next stage.

4.6.2 Trim Recover Refine. Trimming the sparse map ϕ∗sparse re-

moves the matches whose votes are below the average vote. As

noted by Lipman and Funkhouser [2009], some low-vote matches

may still be good. We, therefore, then launch a recovery procedure

that takes a low-vote match (si , tj ) and compares vectors of geo-

desic distances д(., .) from si and target vertices {t } to ϕrobust, sim-

ilar to Equation (10). These comparisons give us the optimal target

vertex t∗ that is best for si . We then recover (si , tj ) if д(tj , t
∗) < ζ

where ζ is 0.1 of the maximum distance over the entire surface.

We finally refine the current ϕ∗sparse by moving the matched tar-

get samples within their neighborhoods, as shown in the inset

where the bottom row is the refined map. This refinement algo-

rithm can also be seen as a novel matching-aware sampling strat-

egy and it can quickly improve maps computed by any isometric

correspondence method.
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Fig. 5. Visualization of the heat vector (left) and reodesic vector (right)
w.r.t. different triplets of matches {(ak , bk ) }. Two different paths are used
above the dashed line (foot-hand and heel-groin). Paths of similar lengths
can be distinguished thanks to the augmentation (below the dashed
line).

Fig. 6. Visualization of the heat vectors computed using a good triplet of
matches. Columns are for source shape, target shape, and difference. For-
mat of each grid: non-matching path pairs, blank padding, matching path
pairs.

For each match (si , tj ) ∈ ϕ∗sparse, we

find the optimal vertexw∗ in the patch

{w } centered at tj by checking the com-

patibility of distances from si and w
to each vertex in a given robust map

ϕrobust = {(ak ,bk )}, i.e.,

w∗ = argmin
w
| |д(si , {ak }) − д(w, {bk }) | |L2

(10)

We initially use ϕ∗
brute3

as ϕrobust and then append (si ,w
∗) to

ϕrobust if displacement from tj to w∗ is minimal, e.g., less than 3

average edge lengths. This minimal movement implies that this

match is already confident and therefore deserves to be in ϕrobust.

Note that w∗ may be tj itself, in which case confident (si , tj ) will

definitely be in ϕrobust. We repeat this refinement process multiple

times with robust maps improved based on the results of previous

iterations. During repetitions, in addition to ϕ∗
brute3

, we use 10 far-

thest matches of the current sparse map while initializing ϕrobust.

The improved robust map is important to increase the accuracy of

the refinement as well as the dense map to be computed.

A typical improvement after refinement is shown in Fig-

ure 7(right) for two different executions. Note that the bad head-

back match in ϕ∗
brute

at the top row is discarded naturally as we

search through
(
M
3

)
triplets. Using more extremities, e.g, M = 6,

would bring the missing farthest samples, e.g., head and back,

which would lead to a better ϕ∗
brute

, still very quickly (since eval-

uation time of Equation (7) is negligible). This strategy, however,

would result in many more triplets to process for sparse matching

whose computation time is not negligible (Section 4.10).

Note that our sparse maps (Figure 7(middle) and (right)) are

guaranteed to be one-to-one functions, i.e., every matched target

sample is the image of exactly one source sample. Some target sam-

ples, however, may remain unmatched after converting votes into

maps, e.g., no source sample selects target tj as its highest-vote

partner (Section 4.6.1).

4.7 Dense Map

The same heat diffusion idea that has guided the computation

of ϕ∗sparse lays the foundation of our dense map computation. In

the absence of paths to be augmented, we must, however, rely

on more anchor points that attract heat. To this effect, we use

the final ϕrobust made available in the end of Section 4.6.2. We

also supplement it further by appending (i) 10 farthest matches
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Fig. 7. Brute-force map (left) leads to the sparse map (middle) that is
trimmed, recovered, and refined to yield the final ϕ∗sparse (right). Optimal
triplets shown in middle with bigger spheres. Map qualities (Equation (14))
and resolutions are also given, e.g., 33/50 means 33 out of 50 samples are
matched.

of ϕ∗sparse, (ii) matches of ϕ∗sparse whose individual diso is less than

the overall Diso (Equations (7) and (8)), and (iii) the winner triplet

ϕ∗
brute3

. Some matches in this supplemented map ϕ ′
robust

are natu-

rally repeated which would effectively give more weights to those

matches in the decision making process. ϕ ′
robust

typically has 25

and 70 distinct matches when N = 50 and 100, respectively (Fig-

ure 8). Note that we highlight ϕ ′
robust

with bigger spheres and

matching lines in the upcoming dense map figures.

For a given source vertex v , we first define its heat vector via

Equation (9) by using ϕ ′
robust

instead of ϕbrute3. We then decide to

match it with the vertex on the target shape whose heat vector

is closest under L∞ norm. Repeating this process for each source

vertex reveals the desired many-to-one dense map ϕ∗.

4.8 Filtering

In order to make our shape correspondence method work well and

fast, we filter out paths pil and qjm immediately if reodesic dis-

tances from their corresponding endpoints to the current triplet

ϕbrute3 = {(a1,b1), (a2,b2), (a3,b3)} are inconsistent. To this end,

we set

ρ = min
k ∈{1,2,3}

min

(
d (si ,ak )

d (tj ,bk )
,
d (tj ,bk )

d (si ,ak )

)
(11)

where reodesic distances d (., .) are computed using ϕbrute3. Path

pair (pil , qjm ) is filtered out, i.e., skipped, if ρ < 0.95.

Similarly, we skip further processing if the pointwise descrip-

tors f at the endpoints are inconsistent (more than 0.1 difference),

where f is the heat kernel signature kτ (si , si ) (Section 4.4) aver-

aged over small time parameter values [Sun et al. 2009] and di-

vided by the maximum value to be normalized in [0, 1]. The same

skips take place during the dense matching using f and using the

winner triplet ϕ∗
brute3

instead of the current triplet ϕbrute3 above.

We find an additional filtering strategy during dense matching

very effective, especially in the presence of topological noise (or

partial matching) where noisy (or extra) regions need to remain

Fig. 8. (Row 1) Robust sparse maps at two different resolutions are shown
via spheres and matching lines. (Row 2) Texture in the source surface is
transferred to the target surface (indicated by a square as we do in all
the upcoming figures) via our smooth dense map ϕ∗. Two different robust
maps are used, the ones based on N = 50 and 100. (Row 3) Another texture
transfer where the target surface is scaled up for visual convenience.

unmatched. It also improves general accuracy. In this strategy, we

filter out the match (v,z) if д(v,v ′) > ζ even though v and z
have the closest heat vectors (Section 4.7). Here, v ′ is the best

match for z with the closest heat vector. Intuitively, we go from

source shape (v) to target (z) and then come back to the source

again, hoping to arrive at a consistent location (identity map in

the best case). To perform this filtering test efficiently, we compute

the geodesic between two arbitrary vertices v and v ′ using the

pre-computed geodesics д(., .) for the sample vertices. To this end,

we, in the beginning, associate each vertex v with its closest three
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representative samples r {1,2,3} using the surface-based barycentric

coordinates:

v .α = e−д (r1,v )/σ v .β = e−д (r2,v )/σ v .γ = e−д (r3,v )/σ (12)

where σ is the sampling radius computed by averaging the dis-

tances between the closest samples and barycentric coordinates

α , β,γ are divided by their sum to map into the [0, 1] interval. We

are now able to find the desired distance in constant time:

д(v,v ′) = v .α × д(r1,v ′) +v .β × д(r2,v ′) +v .γ × д(r3,v ′) (13)

We demonstrate this filtering in Figure 9, where v is black and

v ′ is green. Note that, in addition to leaving the noisy (or extra)

regions unmatched, this skipping also has a potential to increase

the overall accuracy as it allows v to match with a more consis-

tent match even if it fails to possess the closest heat vector. Setting

д(v,v ′) = | |v − v ′| |L2
instead of barycentric-based geodesic dis-

tance led to inferior results.

4.9 Symmetric Flip Handling

We also alleviate the symmetric flip problem by checking the iso-

metric distortionDiso (Equation (7)) of the sparse maps created by

the first triplet ϕbrute3 ⊂ ϕ∗
brute

and its flipped versions, namely bi-

lateral flip (e.g., both hands and feet flipped) and two different one-

way flips (e.g., only hands flipped). If the flipped triplet from the

lowest-resolution ϕ∗
brute

leads to a lower distortion at the current

higher-resolution sparse map, then we proceed with the flipped

version of the superset ϕ∗
brute

. Since sparse map of size N is sig-

nificantly denser than the brute-force map of size M ,Diso is more

likely to catch symmetry clues, if they exist [Sahillioğlu and Yemez

2013a]. The flipped version is obtained by clustering the symmet-

ric points via the symmetry-invariant average geodesic distance

(AGD) descriptor [Hilaga et al. 2001] and swapping the matches

within the clusters. Namely, for each of the M extremities, we find

the extremity with the closest AGD value and create the cluster if

it is close enough, e.g., finding the left hand for the right hand.

A similar multi-initialization takes place to improve the accu-

racy of the sparse map computation. Namely, we repeat Section 4.6

c times with c different brute-force maps to be used as ϕ∗
brute

. We

use the first c brute-force maps after sorting them w.r.t. their Diso

values. Out of c candidates, the sparse map with minimum Diso

value is selected as the final ϕ∗sparse. This heuristic is effective espe-

cially for the topologically noisy inputs where the min-distortion

brute-force map ϕc0brute may fail to possess at least three good

matches we require. Even if ϕc0brute has three good matches, an-

other valid brute-force map, e.g., ϕc4brute, may provide an even

better triplet that eventually leads to a better sparse map. We use

c = 12.

4.10 Timing

We break down the execution time of each step of our algorithm as

measured for an average SCAPE pair with 12.5K vertices on a 16GB

3.20GHz PC: 0.05, 0.17, 0.4, 0, 4.5, 6.8 seconds for Laplacian Con-

struction, Eigendecomposition (E = 15), Sampling (N = 50), ϕ∗
brute

,

ϕ∗sparse (M = 5), ϕ∗, respectively. In total, it takes 11.92 seconds

to fully match a SCAPE pair. This time measure is from a sequen-

tial execution of the algorithm, but the structure of the solution

is highly parallel. Note that for shapes with many extremities, we

Fig. 9. Barycentric coordinates for the black vertex are written near the
corresponding representative samples (left). Consistency-based filtering is
turned off (middle) and on (right), the latter leading to a lower distortion.
Matching vertices have the same color and unmatched ones are in gray.
Guiding robust sparse map is highlighted via spheres and matching lines.

prefer M = 7 (Figure 10(first three rows)), which in turn leads to(
7
3

)
triplets instead of

(
5
3

)
, tripling the computation time of ϕ∗sparse.

Please refer to Table 2 for our timing on all of the datasets in our

test suite.

5 EXPERIMENTS

5.1 Datasets

We tested our method on six different datasets. The first one

is a reconstructed pose sequence of a human actor from the

SCAPE benchmark [Anguelov et al. 2005], which contains 71 non-

uniformly triangulated models. We add shortcut tunnels to the

SCAPE models, obtaining our own SCAPET dataset. SHREC’19

[Dyke et al. 2019] comes with non-uniformly sampled human and

hand models. This third dataset comes with two classes, SHRiso for

the clean models and SHRtopo for the topologically noisy models.

The fourth TOPKIDS dataset [Lahner et al. 2016] enables match-

ing the uniform reference kid model to its articulated and topo-

logically noisy versions. All these four datasets have meshes with

about 10K vertices. The fifth one TOSCA [Bronstein et al. 2008]

represents, with about 20K uniformly sampled vertices, the mo-

tion of an articulated object, which we refer to as Cat, Centaur,

Dog, Gorilla, Horse, and Wolf. Other objects are 52K-vertex meshes

of humans called David, Michael, and Victoria. All of the datasets

have ground-truth matching information for an automatic quanti-

tative evaluation. The sixth and last dataset is the 170K-vertex raw

scan meshes of FAUST [Bogo et al. 2014] which involves topolog-

ical noise and holes. We used, in order, 142, 142, 41 (SHRiso) + 17

(SHRtopo), 25, 81, and 40 pairs in total from these six datasets.

5.2 Evaluation Metrics

In addition to the qualitative evaluation through the visuals in

Figures 7–17, we provide a quantitative evaluation that quantifies

the quality of a given map ϕ via

Dgrd (ϕ) =
1

|ϕ |
∑

(si ,tj )∈ϕ
д(ϱ (si ), tj ) / ρ (14)

where ϱ (si ) is the ground-truth correspondence of si on the target

mesh and ρ is the average edge length on the target mesh (for the

interpretation of the map distortion in terms of edge counts). In
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order to simplify comparison to the most of the methods in litera-

ture, we use the error-fraction metric in Figure 16 with the units

of the plots identical to the ones used in Kim et al. [2011].

5.3 Results

Two sets of isometric pair matchings are shown in Figures 8 and 10

where the former also displays the robust maps that guide the

dense matching. Both figures demonstrate cases free of topolog-

ical noise.

For the more challenging case of matching under topological

noise, we still establish stable robust maps (Figure 11) that enable

us to produce promising smooth dense maps with possibly un-

matched regions around the noisy areas (Figures 12–15, and 17).

We perform further qualitative analysis with the topological

noise case using real scan data, specifically using meshes with

topological noise and holes caused by bad acquisition (Figure 13(c)

and (d)). For quantitative evaluation of this scan set, we use the

online server that reports in cm the average ground-truth error

per pair using the Euclidean distance between the estimated

projections and the ground-truth projections. By obtaining a

score of 12.849cm over 40 test pairs, we outperform only 3 of

the 35 public methods. We improve to 4.385cm after excluding

our 13 symmetrically flipped results, e.g., first two pairs in

Figure 13(d), making us outperform six more methods. Note that

we had to match our unmatched vertices (Section 4.8) in order

to comply with the server. Note also that most of the methods

in this benchmark are learning-based and trained on the same

dataset, hence lack in generality. The other ones rely on a pose

prior where the shapes are brought to a potentially manual

initial alignment for good convergence. Our method is general,

training-free, fully-automatic, and did not use even one landmark

correspondence initialization in order to produce its results.

Quantitative analysis over all other datasets with ground-truth

information are given in the sequel in comparison with the state-

of-the-art methods (Table 1 and Figure 16), where we also conduct

an ablation study concerning different components of our algo-

rithm (Section 5.3.2).

5.3.1 Comparisons. We compare our performance with seven

different methods which have been the state of the art when they

were first released, namely the learning-based Deep Functional

Maps [Litany et al. 2017] (DeepFM), and other rule-based [Ezuz

et al. 2019] (Elastic), [Pai et al. 2021] (FastSink), [Nogneng and

Ovsjanikov 2017] (Commute), [Ren et al. 2018] (BCICP), [Melzi

et al. 2019a] (ZoomOut), and [Eisenberger et al. 2020] (Shells). As

shown in Figures 14–16 and Table 1, we mostly outperform these

methods for the topological noise case and are only slightly worse

than FastSink, ZoomOut, and Shells for the noise-free isometric

mappings. FastSink, ZoomOut, and Shells perform well on isomet-

ric input such as SCAPE and TOSCA, as they are refinement al-

gorithms over the well-studied isometric functional maps frame-

work. Specifically, we initialize FastSink, Elastic, and ZoomOut

with Ovsjanikov et al. [2012], landmark-based [Aigerman and Lip-

man 2016], and BCICP, respectively. Similarly, Shells fuses regis-

tration with the same functional map framework. They are also al-

most on a par with our method on the topological noise input such

as SCAPET and TOPKIDS since they represent the shapes as point

Fig. 10. (Row 1) Our robust sparse maps (spheres and lines) shown along
with color transfer through our dense maps. (Rows 2–3) Same dense maps
depicted via texture transfer. (Row 4) Another non-human texture transfer.

clouds in high dimensional space and then compute a pointwise

registration, which in these dataset naturally removed topologi-

cally wrong connections in most of the cases. On the other topol-

ogy datasets SHRtopo (and TOPKIDS for FastSink and ZoomOut),
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Fig. 11. SCAPET brute-force and sparse maps in the same format as
Figure 7.

however, these methods are outperformed by our method. We also

note that unlike these methods, our method does not require any

initialization, i.e., computes the dense maps from scratch, and any

costly extrinsic deformation. We also avoid the cheese pull effect

problem of Shells that may occur depending on the source shape

selection. Our method, on the other hand, is insensitive to the selec-

tion of source and target shapes. We finally show the comparative

matching results of the same shape pair with and without topo-

logical noise in Figure 15 in order to verify the robustness of our

method.

We also compare our execution times with the competitors

based on the 12.5K vertex SCAPE pair. While we require merely

11.92 seconds (Section 4.10), Elastic, Commute, BCICP, and Shells

run in the order of minutes. FastSink and ZoomOut achieve our

fast execution time, whereas DeepFM handles queries almost in-

stantly. Note that DeepFM requires a significant training work and

also is not as flexible as the other methods, including ours, since it

needs to be trained separately for each shape class (we used their

public pre-trained model for humans). To show our scalability, we

report 5.1 secs (sparse) + 17.8 secs (dense) = 22.9 secs as the execu-

tion time for 28K-vertex Cat pair. We observe no significant over-

head in this higher resolution pair as most of the computations

are based on pre-computed geodesics on N samples. Although we

have O (V 2) dense matching time, most of the pairs are not pro-

cessed due to filtering (Section 4.8), leading to an almost linear in-

crease for the dense map computation.

5.3.2 Ablation Study. We finally compare our method to itself

by disabling and enabling the refinement (Section 4.6.2) and

symmetric flip alleviation (Section 4.9) modules to emphasize

their improvements (Table 2). Note that, these are independent

improvement steps that can be seamlessly incorporated into any

isometric correspondence method. The same table also provides

other comparisons as well as our results w.r.t. different choices of

M and N values. We can summarize the findings of this ablation

study as follows:

• Turning off the filtering degrades the results for the topolog-

ically noisy datasets (SCAPET, SHRtopo, TOPKIDS) as the

votes collected from bad path pairs around wrong geodesic

paths are large enough to confuse the system.

Fig. 12. SHRtopo topological noise cases. Unmatched vertices are in black.

• Regardless of the dataset, turning off the filtering significantly

slows down the system as paths are augmented (sparse part)

and heat vectors are compared (sparse and dense parts) un-

necessarily, e.g., SCAPE execution time quadruples.

• Changing M = 5 to M = 7 triples the sparse matching tim-

ing due to the processing of
(
7
3

)
triplets instead of

(
5
3

)
. Over-

all timing does not triple though, as the dense matching part

is not affected by the choice of M , e.g., 4.5 + 6.8 vs. 13.7 +

6.2 for SCAPE (plus additional minor operations such as sam-

pling). Accuracy is likely to increase slightly as new triplet

options are available with M = 7. These options turn out to
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Fig. 13. Our dense matching of the topological noise cases from SCAPET
(a) and (b) and FAUST scans (c). Note that in addition to the noise, our
algorithm handles a certain amount of non-isometry as the source shape
(glued model at top) is matched to not only itself but also to a different
person. Further FAUST scan evaluation with their quantitative error metric
is provided (d).

Table 1. Quantitative Evaluation of the Maps using Dgrd

in Equation (14)

DFM Elast FSink BCICP ZOut Shells Ours

SCAPE 14.22 12.80 0.10 1.41 0.10 0.09 1.13

SCAPET 21.49 24.61 3.79 6.00 3.82 3.19 2.03

SHRiso 11.75 10.28 6.17 7.00 6.65 4.33 4.02

SHRtopo 29.04 27.03 15.93 16.97 13.32 7.92 4.99

TOPKIDS 39.25 39.28 16.09 16.36 6.94 3.10 3.50

TOSCA5 7.61 11.79 1.56 1.86 1.57 1.47 1.77

TOSCA7 n/a 12.07 1.91 2.74 1.96 1.96 1.92

The best-performing method for each dataset is written in bold. DFM and ZOut
are shorts for DeepFM and ZoomOut, respectively. TOSCA5 = {David, Michael,
Victoria, Gorilla} and TOSCA7 is for the rest (M = 7). Values for Commute from
top to bottom: 1.46, 6.63, 7.15, 19.03, 16.62, 5.11, 6.86.

be more critical when handling shapes with many extremities

(TOSCA7).

• Changing N = 50 to N = 100 makes sparse matching six and

nine times slower for M = 5 and M = 7 cases, respectively,

due to the increase in the number of paths to be processed.

This change does not significantly affect the dense matching

timing.

• Results slightly improve with larger N as there are more

options for the sparse matching part. Improvement is, how-

ever, only marginal because our refinement already moves

samples around to obtain a similar effect with smaller N .

Please also see the visual comparison of different N values in

the first row of Figure 8.

• Results are not affected on the clean datasets when redoesics

and heat vectors are replaced by geodesic counterparts. They,

however, get worse on the noisy datasets, verifying the

importance of our contributions under topological noise.

One last ablation study that is not present in Table 2 is the re-

placement of our sparse map module with well-known alterna-

tives from literature [Sahillioğlu 2020]. While such a replacement

works for clean isometric datasets (mostly at the expense of execu-

tion time), it is highly likely to fail on topologically noisy datasets

(SCAPET, SHRtopo, TOPKIDS). Lipman and Funkhouser [2009],

for instance, requires genus zero surfaces (sphere topology), a prop-

erty that is always violated with the introduction of shortcut han-

dles. Geodesic-based solutions [Solomon et al. 2016] will fail as

topological noise greatly affects the geodesic paths. Deformation-

based solutions are also likely to fail as the regularization term

would prevent proper unfolding around noisy regions [Zhang et al.

2008]. Our procedure is free of deformation and genus restriction.

It is also robust to the changes in geodesic paths thanks to the re-

odesics and heat vectors.

5.3.3 Unmatched Regions. We finish our evaluation by show-

ing how our competitors behave on the regions that are left un-

matched by our method (Table 3). Note that such regions arise only

in the topological cases due to filtering with the following statistics:

The number of shape pairs that have unmatched regions are 119,

15, and 22 for SCAPET, SHRtopo, and TOPKIDS, respectively. The

average ratios of areas of the unmatched regions w.r.t. the shape

areas are 6.3%, 5.1%, and 5.5%.

We naturally do not consider those vertices while evaluating

Equation (14) or plotting. Similarly, for our competitors we do not

consider the vertices labeled as unmatched by our method. While

this strategy achieves fairness on comparisons, it hides the per-

formance of our competitors on regions we are unable to match.

It turns out that these restricted maps are consistently worse than

the global maps used in the previous evaluations (Table 3). FastSink

and ZoomOut are again relatively stable in these datasets, while

the latter being especially successful for the TOPKIDS, providing

acceptable maps on the regions that we could not match.

6 LIMITATIONS

Failure cases arise under significant deviation from isometry, e.g.,

giraffe vs. cat where neck stretches significantly. Note that we can

easily replace the geodesic distance д(., .) in reodesic computation

(Equation (2)) with spectral diffusion and biharmonic distances.

Even so, we have not seen any improvement due to the nature

of these distances.

Despite our symmetric flip alleviation scheme that improves the

flipping situation by about %70 (Table 2), the analysis with N = 50

samples remains insufficient to resolve all intrinsic symmetries.

Our augmented path is a special case of the region of interest

based analysis in Sahillioğlu and Yemez [2013b] and van Kaick et al.
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Fig. 14. Comparisons of the maps produced by our method (source and target pair at left) and the competitors (only the target model is shown).

[2013] which report successful partial matching results. We there-

fore run our method without any modification on the partially iso-

metric dataset of Rodolà et al. [2017] and observe success up to

a certain level of partiality. In particular, our brute-force map in-

volves at least three good matches (required by a healthy sparse

map computation) only if the partial model runs through the

whole surface, with missing parts whose symmetric counterparts

are present, e.g., cut by yz-plane but not xy-plane (Figure 17(a)

and (b)).

While our algorithm is quite stable to the topological noise in

the form of shortcut tunnels (Table 2(SCAPET)), it may be unsat-

isfactory when one part is glued to the other over a continuous
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Fig. 15. Our method and all of the competitors are compared for the same pair with (bottom) and without (top) topological noise (hand-head and foot-knee).

Fig. 16. Error-fraction plots of our method and competitors on topologically clean (SCAPE) and noisy (others) isometric datasets.

Table 2. Ablation Study Concerning Refinement (Section 4.6.2), Symmetric Flip Handling, Reodesic-based Filtering, Consistency-based
Filtering (Section 4.8), M and N Parameters (Section 3), Reodesics and Heat Vectors (Section 4.1)

(Diso, Dgrd) % flips Dgrd (Dgrd, secs) N = 50 (Dgrd, secs) N = 100 Dgrd

Ref. off Ref. on Allev. off Allev. on Filts. off M = 5 M = 7 M = 5 M = 7 Pure geo.

SCAPE (3.4e-05, 3.101) (1e-05, 1.131) 61.7 15.9 1.160 (1.13, 11.9) (1.07, 21.2) (1.10, 34.8) (1.01, 47.9) 1.15

SCAPET (7.5e-03, 4.413) (6e-03, 2.028) 67.1 30.9 11.145 (2.03, 12.2) (1.99, 22.7) (2.00, 35.4) (1.97, 49.2) 13.6

SHRiso (7.7e-04, 7.001) (1.3e-04, 4.019) 60.6 21.8 4.12 (4.02, 10.9) (4.01, 19.1) (3.95, 33.2) (3.94, 44.6) 4.03

SHRtopo (8.1e-04, 8.113) (1.4e-04, 4.993) 56.7 24.1 16.113 (4.99, 11.1) (4.94, 19.8) (4.59, 33.6) (4.50, 46.1) 18.9

TOPKIDS (9.5e-03, 7.173) (8e-03, 3.498) 76.7 39.3 19.501 (3.50, 11.5) (3.34, 22.3) (3.21, 35.1) (3.16, 48.7) 29.4

TOSCA5 (4.1e-05, 3.908) (1.9e-05, 1.772) 68.5 21.1 1.829 (1.77, 49.3) (1.71, 80.3) (1.65, 168.7) (1.64, 192.7) 1.71

TOSCA7 (1.2e-04, 3.979) (2.1e-05, 1.921) 64.3 20.1 7.451 (2.58, 21.7) (1.92, 33.1) (2.30, 57.9) (1.87, 63.8) 1.89

Reodesics and heat vectors are replaced with regular geodesics and geodesic vectors for the last one (please see Figure 17(d) as well). Bold configuration (M = 5
and N = 50) is the promoted one that provides a good compromise between accuracy and time.

long path (Table 2(TOPKIDS) and (SHRtopo) and Figure 17(c)). The

main reason of this limitation is the lack of consistent through-

vertices for the reodesic computation. We, however, still observe

smooth dense maps when the glue is sufficiently small (Fig-

ure 17(e), Figure 14(row 4), and Figure 13(c)). We perform better

on SCAPET (tunnels) compared to TOPKIDS and SHRtopo (glu-

ing). For the latter, we still find reodesics and heat vectors valuable

as it leads to much worse results when they are replaced with pure

regular geodesics (Figure 17(d) and Table 2).

7 CONCLUSION

We presented augmented paths and reodesics as two main contri-

butions in order to address the isometric shape correspondence

problem under topological noise, a relatively challenging scenario

that has attracted less attention in the literature. Our algorithm is

fully automatic, fast, and accurate. It can be applied to shapes with

arbitrary genus and resolution, requires no initial input matches,

and can even support partial matching under certain conditions. It

is also insensitive to the source selection. Evaluation on different

ACM Transactions on Graphics, Vol. 42, No. 2, Article 17. Publication date: October 2022.
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Table 3. Dgrd Values of the Maps Corresponding to the Regions
Left Unmatched by Our Algorithm

DeepFM Elast. FSink BCICP ZoomOut Shells

SCAPET 50.657 48.129 7.904 12.547 8.133 6.931

SHRtopo 63.776 55.821 21.497 25.470 19.301 16.701

TOPKIDS 91.331 76.057 25.789 25.418 13.049 5.551

Commute from top to bottom: 19.02, 33.41, 27.11.

Fig. 17. Different cutting schemes that make our algorithm fail (a) and
work (b) for the partial matching scenario ((e) works too). Different gluing
schemes that make our algorithm fail (c) and work (e). Our map in (c) still
outperforms (d) that is purely geodesic based.

types of topological noises reveals that our algorithm is more suit-

able for the shortcut tunnel noise which can potentially hurt the

geodesic paths.

Topological noise scenario can be addressed in a dynamic set-

ting in order to maintain or track the correspondence within the

animation sequence, which would be very helpful for the transfer

of captured motion in volumetric videos. We plan to address this

issue as well as the limitations mentioned in Section 6 as future

works.
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