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Abstract
Important new developments have appeared since the most recent direct survey on shape correspondence published almost a
decade ago. Our survey covers the period from 2011, their stopping point, to 2019, inclusive. The goal is to present the recent
updates on correspondence computation between surfaces or point clouds embedded in 3D. Two tables summarizing and
classifying the prominent, to our knowledge, papers of this period, and a large section devoted to their discussion lay down
the foundation of our survey. The discussion is carried out in chronological order to reveal the distribution of various types
of correspondence methods per year. We also explain our classification criteria along with the most basic solution examples.
We finish with conclusions and future research directions.

Keywords Shape correspondence · Shape matching · Survey

1 Introduction

Shape correspondence problem is stated as finding a set of
corresponding points between given shapes. In our scope, the
shapes are deformable and they are discretizations embedded
in 3D in the form of (i) surface mesh structures consisting
of vertices, edges, and polygonal faces, or (ii) point clouds.
While the common scenario dictates operation on two shapes
in isolation, it is also possible to process multiple shapes at
once.

This problem is interesting because finding correspon-
dences between shapes is a fundamental operation in many
computer graphics and digital geometry processing algo-
rithms such as shape interpolation, shape reconstruction,
shape retrieval, texture transfer, segmentation transfer, defor-
mation transfer, symmetry detection, change detection, and
statistical shape modeling.

This problem is difficult because it involves understand-
ing the structure of the shapes at both the local and global
levels. The understanding requires a search in a huge solu-
tion space for the deformable scenario that we address in
this survey. Unlike the rigid shape correspondence scenario
which deals with a space with low degree-of-freedom con-
sisting only of rotation and translation, the deformable, aka
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non-rigid, scenario searches over the entire second shape to
match a given point in the first shape. The second shape
exhibits bending and possible stretching. The space is there-
fore huge and nonlinear in that we have O(N !) possibilities
of matching N points spread on both shapes. As in the case
of all difficult problems, one needs to learn from experience
by being aware of the existing solutions before developing
his own, hence this survey.

Motivation The main motivation of this survey is to wrap
up all the interesting and brand new correspondence meth-
ods since 2011, which is the endpoint of the closest work
[104]. It is exciting to list all these new techniques based on
well-established frameworks as well as fundamentally dif-
ferent approaches such as functional maps and deep neural
networks. Collectionwise correspondence problem has also
been introduced and extensively studied within the 2011–
2019 scope of our survey.

2 Comparison with other surveys

Almost a decade later after the most recent shape correspon-
dence survey by van Kaick et al. [104,105], we now present a
survey that compactly lists and discusses the new work. We
indeed pay special attention to cite shape correspondence
works published on or after 2011, and refer the reader to
STAR—State of The Art Report [104], or its journal version
[105], for the older ones.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01760-0&domain=pdf


1706 Y. Sahillioğlu

We also note a survey on mapping from 2014 [53]
that deals mostly with parameterization and registration
techniques, which constitute a subset of correspondence
computation methods. Moreover, 87% of their references
are published before 2011. The remaining ones also have
no overlap with our references at all.

There is also a 2013 survey [98] that is devoted entirely
to 3D surface registration, which is one of the many pos-
sible ways to compute correspondences as we will see in
Sect. 3.5.1.

Surveys on shape retrieval [54,61] also relate to our survey
as the evaluation of shape similarity, a requirement for the
retrieval problem, can also be performed through correspon-
dences. In fact, retrieval and correspondence problems are
so related that the term shape matching is used interchange-
ably in the literature for these tasks. STAR [12], or its journal
version [11], explores shape similarity assessment problem
by analyzing and describing shapes using geometrical and
topological properties of real functions.

In summary, our survey, similar to the closest work [105],
overviews shape correspondence methods directly. In addi-
tion to presenting newdiscoveries since 2011,we also discuss
more on parameterization-based and learning-basedmethods
which are lacking in [105].

3 Classification criteria

In the sequel, we categorize shape correspondence methods
based on several criteria. Tables 1 and 2 summarize the entire
survey by positioning the methods of interest with respect to
these criteria. We then elaborate on the criteria in the follow-
ing subsections. Methods are discussed thoroughly in the
guidance of these criteria in Sect. 4.

3.1 Similarity level

Two shapes between which correspondence is sought may
be either fully similar or partially similar. For the former,
although additional deformations may be (and are likely to
be) admitted, it is certainly forbidden for one shape to possess
a part that has no semantically meaningful counterpart on the
other shape. If such a possession occurs, then we have the
latter case to deal with, which is more challenging (Fig. 1).

The level of challenge increases further for the latter under
arbitrary scaling of shapes. The former is not affected from
this issue since scale can always be normalized prior to the
matching process by using a global intrinsic property, such
as maximum geodesic distance, that is certainly compatible
between fully similar shapes.

3.2 Deformation type

Two shapes to be matched may differ by deformations
most common of which is isometry. Under isometric defor-
mations pairwise geodesic distances over the surface are
preserved (Fig. 1a), a constraint simplifies the correspon-
dence searching process. Isometry is an important clue for
shape correspondence; not only since most real-world defor-
mations are isometric, but also because semantically similar
shapes have similar metric structures. Articulation/bending
and rigid transformations are isometries.

As soon as we have stretching and/or squeezing involved,
we have a non-isometric deformation, a mild example of
which is depicted in Fig. 1b. Some severely non-isometric
pairs are human versus gorilla and cat versus giraffe, where
semantic similarity is preserved but pairwise geodesics are
not.

3.3 Shape processing

The default setting in shape correspondence is matching two
shapes in isolation, whichwe call pairwise processing.When
shapes come as part of a collection, one may want to process
all shapes at the same time, which is likely to bringmore con-
sistency and accuracy to the results (Fig. 2). We refer to this
setting as collectionwise processing and list the alias terms
as groupwise correspondence and multiple shape correspon-
dence.

3.4 Output density

Shape correspondence methods aim to produce a mapping
between some or all of the surface points of the two given
shapes. Points can be continuous or discretized to mesh
vertices. Continuous case, also referred to as sub-vertex reso-
lution, uses barycentric coordinates of the enclosing triangle
to define the match. If the output involves only some fea-
tured surface points, then we have a sparse correspondence,
otherwise we have a dense one (Fig. 3). While sparse corre-
spondence is quick and useful for initializing dense pipelines
such as real-world scan registrations, dense correspondence
is required for globally smooth attribute transfer and shape
morphing applications.

3.5 Solution approach

Shape correspondence solutions can be investigated under
three groups as follows.

3.5.1 Registration-based solution

Given two shapes, the registration-based scheme aligns them
by either registering one shape to the other or registering both
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Table 1 Shape correspondence methods classified according to the criteria of our work

Method Criteria

Similarity level Deformation type Shape processing Output density

Full Partial Isometric Non-isometric Pairwise Collectionwise Sparse Dense

[46,60] � � � �
[70,87] � � � �
[23] � � � �
[101] � � � �
[75] � � � �
[102] � � � �
[67] � � � �
[66,96] � � � �
[79,88] � � � �
[89,103] � � � �
[41,45] � � � �
[43,90] � � � �
[99,112] � � � �
[72] � � � �
[57,74] � � � �
[27,73] � � � �
[39] � � � �
[48] � � � �
[59] � � � �
[18,80] � � � �
[4,5] � � � �
[91,100] � � � �
[15,58] � � � �
[7,114] � � � �
[92] � � � �
[40] � � � �
[93] � � � �
[47] � � � �
[2,3] � � � �
[6] � � � �
[17,26] � � � �
[86,113] � � � �
[49,82] � � � �
[10,19] � � � �
[16,56] � � � �
[95] � � � �
[8,116] � � � �
[97] � � � �
[13] � � � �
[31] � � � �
[22,32] � � � �
[1,110] � � � �
[36,50] � � � �
[63] � � � �
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Table 1 continued

Method Criteria

Similarity level Deformation type Shape processing Output density

Full Partial Isometric Non-isometric Pairwise Collectionwise Sparse Dense

[55,109] � � � �
[28,107] � � � �
[81] � � � �
[69,76] � � � �
[106] � � � �
[33,62] � � � �
[64] � � � �
[30,111] � � � �
[21] � � � �
[84] � � � �
[34,35] � � � �
[77,78] � � � �
[68,108] � � � �
[9,65] � � � �
[29] � � � �
[20,24] � � � �
[52] � � � �
[94] � � � �
[42] � � � �
[37] � � � �

� in the Sparse column means that the method produces a sparse correspondence from parts to parts instead of points to points. Please see Table 2
for continuation

shapes to a common intermediate domain. One can see the
former operation as deformation and the latter as parameter-
ization. Once registered, correspondence is derived from the
proximity of the aligned shape elements.

The alternative approach is to keep each shape as is and
derive the correspondence directly from the pointwise and/or
pairwise similarity of elements (Sect. 3.5.2). One can argue
that this approach is more popular than the registration-based
one because it avoids extra deformation and parameterization
processing power and errors. The argument is verified by the
higher number of checkmarks in the corresponding column
of Table 2.

Deformation We give a generic framework to deform one
shape toward a data set, which would be the other shape in
our case, while preserving its original geometric features.
This demand is achieved by minimizing a combination of
data and regularization energy terms:

Edef(v) = Edata(v) + γ Eregularization(v) (1)

where v ∈ R
n×3 stores 3 elements per row for each of the n

vertices, namely the x-, y-, and z-coordinates. In the most
basic Laplacian deformation model, Laplacian coordinate

δi for vertex vi encapsulates local geometric information
around vi by approximating mean curvature times the nor-
mal direction (Fig. 4a). This model tries the preserve original
geometric features by minimizing the difference between the
original and the deformed Laplacian coordinates as the shape
is pulled toward the data points (Fig. 4b):

Edata(v) = ||v − c||2 (2)

where c ∈ R
n×3 stores the data points to get close to, and

Eregularization(v) = ||Lv − Lv0||2 (3)

where v0 ∈ R
n×3 stores the original cooridantes and L ∈

R
n×n is the cotangent Laplacian matrix filled using

Li j =

⎧
⎪⎪⎨

⎪⎪⎩

−wi j∑
j∈N (i) wi j

vi and v j are neighbors,

1 i = j,

0 otherwise.

(4)

Discussing the shortcomings of this basicmodel is beyond
the scope of this survey.We refer the reader to [85] for deriva-
tion and usage of more sophisticated deformation models,
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Table 2 Complementing Table 1 with the remaining criteria for the same methods

Method Criteria Cont’D

Solution approach Speed Surf topology

Based on Learning-based Automatic Fast Med Slow Arbitrary Sphere

Registration Similarity Yes No Fully Semi

[46,60] � � � � �
[70,87] � � � � �
[23] � � � � �
[101] � � � � �
[75] � � � � �
[102] � � � � �
[67] � � � � �
[66,96] � � � � �
[79,88] � � � � �
[89,103] � � � � �
[41,45] � � � � �
[43,90] � � � � �
[99,112] � � � � �
[72] � � � � �
[57,74] � � � � �
[27,73] � � � � �
[39] � � � � �
[48] � � � � �
[59] � � � � �
[18,80] � � � � �
[4,5] � � � � �
[91,100] � � � � �
[15,58] � � � � �
[7,114] � � � � �
[92] � � � � �
[40] � � � � �
[93] � � � � �
[47] � � � � �
[2,3] � � � � �
[6] � � � � �
[17,26] � � � � �
[86,113] � � � � �
[49,82] � � � � �
[10,19] � � � � �
[16,56] � � � � �
[95] � � � � �
[8,116] � � � � �
[97] � � � � �
[13] � � � � �
[31] � � � � �
[22,32] � � � � �
[1,110] � � � � �
[36,50] � � � � �
[63] � � � � �
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Table 2 continued

Method Criteria Cont’D

Solution approach Speed Surf topology

Based on Learning-based Automatic Fast Med Slow Arbitrary Sphere

Registration Similarity Yes No Fully Semi

[55,109] � � � � �
[28,107] � � � � �
[81] � � � � �
[69,76] � � � � �
[106] � � � � �
[33,62] � � � � �
[64] � � � � �
[30,111] � � � � �
[21] � � � � �
[84] � � � � �
[34,35] � � � � �
[77,78] � � � � �
[68,108] � � � � �
[9,65] � � � � �
[29] � � � � �
[20,24] � � � � �
[52] � � � � �
[94] � � � � �
[42] � � � � �
[37] � � � � �

In order to save space, two methods are merged into one row if they share the same answers to both question here and in Table 1

Fig. 1 Fully (a, b) and partially (c, d) similar shape pairs. b, d Involve
mild non-isometric deformations between the shapes due to some
stretching, whereas the others have purely isometric deformations

Fig. 2 Applying independent pairwise processings (a) lead to a worse
total distortion than collectionwise processing does (b). If the distortions
of the black and red maps are .061 and .063, respectively, then the
implied green map at bottom becomes .069, hence a total distortion
of .193 (a). If all shapes are considered at once, the red map slightly
increases to .65, but the saving on the green map is larger, .060, hence
a better total of .186 is achieved (b)

and to the survey [44] for a thorough overview on the sub-
ject.

Parameterization We give a generic framework to parame-
terize a shape embedded in 3D to a flat domain in 2D. Note
that a shape correspondence method performs this process
for two shapes and use a common intermediate domain that
is not necessarily flat (Sect. 4.5).
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Fig. 3 Sparse (a, b) and dense (c) correspondences computed by
Sahillioğlu and Yemez [87]

Fig. 4 Deformation in its most basic form using Laplacian coordinates
(a). Data terms on two points at fingers under the Laplacian regulariza-
tion perform the deformation (b)

Fig. 5 Parameterization in its most basic form using uniform (b) and
cotangent (c) weights to flatten the 3D surface (a) to a disk. In d, the
toy 2D example at left is parameterized using the solution to the linear
system at right

In the most basic disk parameterization scheme, boundary
vertices of the surface (green ones in Fig. 5a) are first mapped
to the boundary of a disk. Then, the remaining interior ver-
tices are positioned in such a way that each one lands in the
center (uniform—Fig. 5b) or weighted average (harmonic—
Fig. 5c) of its immediate neighbors, the latter being more
respectful to the input geometry. We can solve two linear
systems for two coordinates separately to achieve this place-
ment:

Wx = bx and Wy = by (5)

where bx ∈ R
n×1 stores the x-coordinates of the boundary

positions at its top k rows when there are k boundary ver-
tices. Remaining n − k rows, which are set to 0, move the
interior vertices accordingly based on the multiplication of
the bottom n − k rows of W ∈ R

n×n with x (Fig. 5d). The
y-coordinates are computed similarly.

Wi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wi j vi , v j neighbs, vi interior,

−∑
k �=i wik i = j, vi interior,

1 i = j, vi boundary,

0 otherwise.

(6)

Discussing the shortcomings of this basic model and
extending it to non-disk topologies are beyond the scope of
this survey. We refer to [53] for a comprehensive reading on
the subject.

3.5.2 Similarity-based solution

Wenow investigate the alternative scheme to the registration-
based solution, which we call the similarity-based solution.
Here, the geometry of the input shapes is not altered in
any manner. Instead, we compute geometric invariants, or
descriptors, under the appropriate deformation model. Such
descriptors can be defined on vertices or between a pair of
vertices, the latter being more distinctive and effective. A
combination of both pointwise and pairwise terms leads to
an energy function whose minimum gives the desired corre-
spondence, or map, φ∗ : S → T :

E(φ) = w1

∑

vi

||dS(vi ) − dT (φ(vi ))||

+ w2

∑

vi ,v j

|eS(vi , v j ) − eT (φ(vi ), φ(v j ))|
(7)

where dS(.) and eS(., .) denote the descriptor values on a
vertex and between two vertices of the shape S, respectively.
Descriptor choice depends on the deformation type, e.g., for
isometric deformations a commonchoice for e is the geodesic
distance (Fig. 6a). Once Eq. 7 or a similar energy function
is ready, similarity-based solutions strive to minimize it via
efficient optimization tools. Similarity of real-valued func-
tions over surfaces (Fig. 6b) has also been a trending topic
since 2012 (Sect. 4.2).

3.5.3 Learning-based solution

Recent popularization of deep learning techniques has
affected the shape correspondence field significantly. We
report a work as learning-based if it learns some sort of prior
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Fig. 6 Abad correspondence composedof three bluematches generates
a high energy in Eq. 7 due to incompatible geodesics drawn as black
paths (a). Matrix representationC of a functional map φF (middle) with
colors proportional to matrix values. Colors on surfaces are based on
function values (b)

knowledge from a training set. The speed of such methods is
decided based on training and testing times. The correspond-
ing value in Table 2 for a learning-based method is either
medium or slow as the training time is naturally longer than
the processing time of a non-learning-based method.

3.6 Automatic

A method requiring user interaction, such as manual land-
mark matches, is labeled as semi-automatic, whereas all
others are considered as fully automatic.

3.7 Speed

We tag the methods as fast, medium, or slow according to
their reported worst-case time complexities. If this infor-
mation is missing, then we approximately normalize their
reported execution times with a tagged method to make our
decision. We also note that dense and sparse methods are
treated within their classes, i.e., a densemethod is considered
fast even if it executes much slower than a sparse method.

3.8 Surface topology

Sometimes correspondence methods require the input sur-
faces to be at particular topologies, most common of which
is genus-zero sphere topology. All other surfaces as well as
point cloud inputs fall into the arbitrary topology category in
Table 2.

4 Themethods

We overview the methods in Tables 1 and 2 in the follow-
ing subsections that go in chronological order from 2011 to
2019. The prominent papers of each year, in our opinion, are
discussed with our criteria (Sect. 3) in mind.

4.1 Year 2011

Kim et al. [46] blend maps obtained by registering shapes
to the extended complex plane by means of conformal
Möbius transformations. Other than the topology restriction
and geodesic centroid approximations that degrade their per-
formance for particular cases, the method produces reliable
non-isometric dense maps that are not necessarily onto, i.e.,
some vertices are left unmatched. Other methods address the
isometric correspondence problem by minimizing different
variants of Eq. 7 in coarse-to-fine fashion [87] (Fig. 3) or
with an integer quadratic programming solver [23]. A coarse
correspondence based on entropy-driven planned samples is
made dense in one shot using a propagation strategy that
respects a geodesic consistency criterion [101]. It is, how-
ever, unclear how to connect the decrease in entropy with the
stability of shape correspondence. Ovsjanikov et al. [71], on
the other hand, identify the samples that make the isometric
shape correspondence problem easiest if their matches are
known.

In the partial similarity setting, the correspondence-less
approach in [75] optimizes the segment-wise similarity
over the integration domains by relying on diffusion-based
local shape descriptors. It produces part correspondences
instead of point correspondences. Knowledge-driven [102]
also computes part correspondences where, unlike [75], the
input to their system is pre-segmented.

Given a collection of shapes and maps between all pairs,
Nguyen et al. [67] compare the composite maps along 3-
cycles to identitymaps in order to enforce consistency, which
in turn improves the input maps. The optimization takes
plenty of time but works fine as long as the input maps are
sufficiently accurate.

4.2 Year 2012

Ovsjanikov et al. [70] introduce the revolutionary functional
map framework which replaces the traditional point-to-point
correspondences bymatching real-valued functions over sur-
faces. A point-to-pointmapφ : S → T can also be expressed
as a functional map φF : f → g that associates values of
functions f : S → R and g : T → R. This alternative map-
ping can be concisely represented as a matrix C ∈ R

kS×kT

(Fig. 6b) using kS and kT bases {φS} and {φT } for functions
on shapes S and T , respectively. Namely, Ca ≈ b where a
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and b are the vectors of coefficients of f and g in the chosen
bases, i.e., f = ∑kS

i=1 aiφ
S
i and g = ∑kT

i=1 biφ
T
i .

By providing enough number of a, b pairs, one can con-
strain C to have a unique solution which can be obtained
through a linear solve. This framework is flexible in the sense
that it gives user the freedom to choose the basis functions.
A common choice for isometric matching is the first hundred
Laplace–Beltrami eigenfunctions.

Soft maps [96], as another new map representation, pro-
vide a probabilistic relaxation of point-to-point correspon-
dences. In fact, soft maps can be considered as special cases
of functional maps, by using the hat function basis defined
at each vertex. They basically map probability distributions,
instead of functions, between surfaces. Unlike point-to-point
maps, functional and soft map matrices are conveniently
available for linear-algebraic analysis and manipulation.
These frameworks are, however, prone to conversion errors
when recovering the point-to-point correspondence from the
optimal functional or soft mapping.

Alternative isometric matching frameworks proposed in
this year minimize variants of Eq. 7 in probabilistic [88],
game-theoretic [79], and combinatorial [89] settings. A
non-isometric framework extrapolates the correspondence
computed on the automatically extracted symmetry axis
curves [60].

Based on initial pairwise maps between some shape pairs,
Huang et al. [41] consider consistency of composite maps
along 2- and 3-cycles of shapes in order to create soft maps
[96] from a set of automatically extracted base shapes to all
the shapes in the collection. These maps are also constrained
to map neighboring points to neighboring points. Kim et al.
[45] produce fuzzy correspondences in the spectral domain
that are less accuratemainly because of themissing neighbor-
preservation constraint in their system. Both approaches,
however, yield much better results than [67] does, especially
on datasets where initial maps have moderate or low quality.
The main reason of this success is their flexibility to benefit
from good parts of various maps, without being forced to use
a particular map in its entirety during composition, a feature
lacking in [67].

4.3 Year 2013

Huang and Guibas [39] present a theoretically sound collec-
tionwise correspondence method by formulating the cycle-
consistency constraint as the solution to a semidefinite pro-
gram. They cast the problem of estimating cycle-consistent
maps to finding the closest positive semidefinite matrix to
an input matrix that stores all the initial maps. By jointly
solving for segmentation, correspondence, and deformation,
Kim et al. [48] achieves higher accuracy for each individual
task using user-assisted template initialization.

Fig. 7 The orange map after the first significant jump in the map distor-
tion plot (dashed) is not tracked further in denser levels (a). The regions
captured by two red feature points are compatible (top and bottom),
hinting their correspondence. a and b are taken from [90] and [103],
respectively

Symmetric flip problem, i.e., confusion of intrinsically
symmetric features, that is inherent to isometric shapematch-
ing algorithms is addressed by tracking optimal coarse
solutions through denser levels [90] (Fig. 7a) or using a har-
monic symmetry-robust descriptor [112]. Ovsjanikov et al.
[72] address this symmetric ambiguity problem by perform-
ing shape matching in an appropriate quotient space, where
the symmetry has been identified and factored out.

The first non-trivial use of sparse models in shape corre-
spondence is seen in [74] while matching partially isometric
shapes at dense levels. vanKaick et al. [103] expand isotropic
neighborhood around a feature point in an anisotropic way
by defining regions of interest with two feature points.
This definition facilitates partial matching since potentially
extraneous regions of the models are selectively ignored
(Fig. 7b). Weighted averages on surfaces [73] enable dense
non-isometric correspondence. In particular, they first find
the weights of the query point with respect to the anchors
and then use these weights at the corresponding anchors on
the other shape to complete the matching of the query.

4.4 Year 2014

Litman and Bronstein [59] present a learning scheme for
the construction of optimized spectral descriptors for sparse
isometric shape correspondence. Another learning-based
approach [80] uses the output of their random forest classifier
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Fig. 8 Spherical surfaces are cut open (c) through the cuts designated
by landmarks (a). Vertices and edges along the cut are duplicated to
obtain disk topology (b). Flattenings are aligned using landmark corre-
spondences with potential self-overlaps (red rectangle), an issue solved
via lifting (c). a, c, d, and b are taken from [5] and [2], respectively

as a new descriptor that is tuned to the shapes and deforma-
tions appearing in their training set. Corman et al. [18], on
the other hand, learn the most informative descriptors for
isometric matching with a costly training that involves many
reference shape pairs with known mappings between them.
Non-isometric matching is achieved in [5] by jointly flatten-
ing the two surfaces after cutting them to disk topologies
consistently (Fig. 8).

Partially isometric shapes are matched with minimum
weight perfectmatchingon similar parts [92]. The sameprob-
lem is handled in [100] by computing reliable small clusters
of locally isometric point correspondences through diffusion
pruning [99]. The latter proceeds in a more restricted set-
ting as it requires a query part as input, whereas the former
extracts similar parts from global shapes automatically. Both
approaches iteratively propagate the computed sparse corre-
spondences to dense ones.Brunton et al. [15] represent partial
isometric maps based on equivalence classes of correspon-
dences between pairs of points and their tangent-spaces. The
idea is to recover a partial map by an iterative isometric grow-
ing procedure starting from sparse pre-matched features over
the surfaces. Semi-automatic approaches establish part corre-
spondences between structurally different models based on
spatio-structural graphs [7] and relation graphs [114] built
per shape.

All collectionwise correspondence efforts before [91]
heavily rely on a given initial set of maps between all or some
pairs of shapes, and instead of optimizing overall distortion,

they rather enforce consistency. Sahillioğlu and Yemez [91]
do not require any initial set of maps and explicitly minimize
the isometric distortion over all possible pairs of collection
shapes via dynamic programming efficiently. Huang et al.
[40], on the other hand, construct consistent functional map
networks that capture structural similarities within heteroge-
neous shape collections. Shapira and Ben-Chen [93] differ
from other collectionwise methods by their assumption of
having two homogeneous shape collections, with good maps
within the collection, instead of having a single heteroge-
neous collection. This allows [93] to assume there exists
common structure and use it to align the collections as a
whole. To this end, they treat each shape collection as a
point sampling from a low-dimensional shape space and use
dimensionality reduction techniques based on the intrinsic
shape difference distances [83] to embed this point cloud in
Euclidean space where they can be aligned via registration.
Affordance-based [47] fits a human agent to the models in
the extremely diverse collections to establish consistent cor-
respondences.

4.5 Year 2015

Aigerman et al. [2–4] compute harmonic parameterizations
of the spherical surfaces into orbifolds, i.e., non-flat/curved
surfaces, by minimizing general non-convex energies with
L-BFGS optimization. This is in contrast with the flat case
(Fig. 5) in which one tries to minimize an energy of a flatten-
ing of the surface into the Euclidean plane, where the energy
being minimized is convex and quadratic, and hence a lin-
ear solve is sufficient. Flat parameterization-based method
from the same group [6] improves their previous flat work [5]
by bringing invariance to cut placement. This line of works
generally requires a few manual landmark correspondences
(Fig. 8a) to be able to align the resulting embeddings (Fig. 8c)
for full correspondences (Fig. 8d). Instead of common inter-
mediate parameterization domains, Chen and Koltun [17]
and Sahillioğlu and Kavan [86] embed one shape to the
curved shape of the other directly via convex optimization.

Kovnatsky et al. [49] make the functional maps resilient,
to some extent, to missing parts and non-isometries by for-
mulating the computation as a geometric matrix completion.
Thanks to completion, this work is advantageous in settings
when only scarce corresponding functions is available. Sym-
metric flip issue arising while converting functional maps to
point maps is handled in [19] by computing optimal vector
fields entirely within the functional map framework. Car-
rière et al. [16] map its provable stable multiscale topological
signature to a vector, which in turn enables application of
learning techniques for matching. A novel spectral embed-
ding that exploits gradient fields provides robust isometric
correspondence [95]. The deformation model in [8] allowing
both geometric and topological operations, such as part split,
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Fig. 9 Point-based (a) and part-based (b) non-isometric correspon-
dences. Results on the first and second giraffe are obtained via [46] and
[97], respectively. a and b are taken from [97] and [32], respectively

duplication, andmerging, leads to part-based correspondence
results via a pruned beam search, under the assumptions that
input shapes are upright-oriented and pre-segmented.

4.6 Year 2016

Solomon et al. [97] optimize an entropy regularized version
of the Gromov–Wasserstein objective function to produce a
reasonable correspondence even when the surfaces undergo
moderate geometric and topological changes that deviate
from isometry. By minimizing a measure of stretch in its
objective, Solomon et al. [97] handle non-isometries better
than non-isometric methods that are restricted to confor-
mal maps (Fig. 9a). Similar challenging cases are also
handled by anisotropic convolutional neural networks [13],
orbifold embeddings [4] (Sect. 4.5), and projective analysis
[31]. Based on the key observation that points in match-
ing parts often have similar ranks in the sorting of the
corresponding feature values, Ganapathi-Subramanian et al.
[32] match pairs of parts between two non-isometric shapes
(Fig. 9b). Litany et al. [58] solve a non-rigid puzzle which is
defined as find a segmentation of the model shape into parts
corresponding to (subsets of) the query shapes. This segmen-
tation, realizedwithin the functionalmap framework, implies
dense correspondence over partially similar shapes. Another
natural extension to the functional map framework is to addi-
tionally compute a smooth interpolation between the given
functions, which in turn leads to continuous isometric corre-
spondence [10].

A low-dimensional embedding of shapes symmetrized
with respect to the global reflectional symmetry plane pro-
duce dense correspondence that alleviates the symmetric flip
problem [110]. Another embedding-based effort for dense
correspondence treats geodesic distance matching problem
in the dual intrinsic spectral domains of the given shapes
[1]. Guo et al. [36] establishes isometric correspondence by
discovering the articulated rigid parts of the point clouds.
Maron et al. [63], on the other hand, use convex semidefinite
programming relaxation for isometric matching. Although
significantly faster than the standard relaxation, this method
is able to deal with the registration of around one hundred
points.

Fig. 10 Cycle of 4 edges (blue and reds) for consistent matches (a).
Applying the filter to a deforming surface extrinsically (left) and intrin-
sically (right) gives different results, the latter being invariant to the
deformation (b). a and b are taken from [115] and [14], respectively

Learning-based [109] provides impressive dense human
body correspondences under large geometric and topological
changes. Using a classical extrinsic convolutional neural net-
work architecture to learn invariance to intrinsic pose changes
is, however, very costly. In particular, they train on 50M
examples in twoweeks to create this huge networkmodel that
has about 200M parameters. Zhou et al. [115] first retrieve
an appropriate 3D model to establish a correspondence 4-
cycle and then train the network to minimize the discrepancy
between the 3D ground-truth map (Fig. 10a, bottom) and the
3D composed map along the path (Fig. 10a, top) in order to
estimate a pixel-wise map.

4.7 Year 2017

Rodolá et al. [82] improve the point-wise map recovery issue
of functionalmaps via isometric alignment between the spec-
tral embeddings of the two shapes to be matched. It is shown
and exploited in [81] that the functional map matrix still has
a meaningful structure when one of the two shapes has holes
or missing parts (Fig. 11a). Consequently, Rodolá et al. [82]
additionally improves partial correspondence and also mild
non-isometric correspondence (Fig. 11b) as long as the ini-
tial functional map is sufficiently good. Alternative recovery
methods treat input maps as corrupted versions of the latent
correspondence and increase their quality by filtering [107],
employ adjoint operators for coupled optimization over the
forward and inversemaps [43], or deblur inputmaps based on
a smoothness assumption [27]. The last one is able to produce
matchings at sub-vertex resolution, which is more suitable
for applications that transport high-frequency data between
the shapes, e.g., texture mapping. Improving on [81], partial
dense correspondence method [57] presents a purely spec-
tral approach that allows to perform all calculations (except
for the initial calculation of the first k Laplacian eigenfunc-
tions) with constant complexity independent of the shape
size. Yet another improvement to the functional map frame-
work manages to inject descriptor preservation constraints
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Fig. 11 A partial functional map from N to M has a slanted diagonal
structurewith an angle depending on the area ratio of two surfaces (a). A
non-isometric functional map yields a point-wise map with the original
(middle) and refined (right) recovery methods. Color encodes distance
to the ground-truth, increasing from white to red (b). a and b are taken
from [81] and [82], respectively

in addition to the original function preservation constraints
[69]. To this end, geometric descriptors are represented as
linear operators acting on functions through multiplication,
rather than as simple scalar-valued signals. Acceleration and
partiality improvements to [107] are brought by Vestner et
al. [106] through a quadratic assignment problem matching
pointwise and pairwise descriptors (Eq. 7) within the func-
tional map framework. Given landmark correspondences or
an extrinsic alignment, semi-automatic [62] uses softmaps to
minimize the variance of a distribution obtained bymatching
each source point to a target point with a certain probability.
A novel probabilistic biclustering formulation [22] reliably
puts similar parts of non-isometric 3D shapes in correspon-
dence.

Sequels to the existing partial correspondence [7,8]
(Sects. 4.4 and 4.5) and non-isometric correspondence [3–6]
(Sects. 4.4–4.6) methods are proposed by the same research
groups. In particular, partial matching method [116] relaxes
their previous requirement that asks the input segmenta-
tions to be perfect. Non-isometric method [2], on the other
hand, complements their previous generalizations of Tutte’s
algorithm to orbifolds in different geometries. Another non-
isometric registration pipeline is based on foliation [113].

Although it is not exceptional by computer vision stan-
dards, the size of training set and network in [109] (Sect. 4.6)
is complex for computer graphics. Litany et al. [56] produces
similar successful results but trains on merely 100 examples
andmodels the networkwith orders ofmagnitude less param-
eters. The main idea is, as depicted in Fig. 10b, to define the
convolution filter on the surface intrinsically so that its result
does not change when the surface is deformed isometrically.
To this effect, functional maps are integrated as differen-
tiable layers into the intrinsic deep learning architecture.

Another intrinsic convolutional neural network [64] pro-
vides a non-isometric correspondence as long as the shapes
come in sphere topology. Using the differentiability feature
of the Gromov–Wasserstein objective function utilized in the
entropic matching framework of [30,97] models a deep neu-
ral network thatmapsunstructuredgeometric data to a regular
domain. Although it is designed originally formatching local
geometric features on real-world depth images, the descrip-
tor learned from millions of correspondence labels found in
existing RGB-D reconstructions turns out to be applicable to
surface mesh correspondence problem without any modifi-
cation [111].

Collections with a large presence of outliers are matched
consistently by formulating the problem as a series of
quadratic programs with sparsity-inducing constraints [21].

4.8 Year 2018

Sahillioğlu [84] observes that genetic algorithm fits well
to the sparse isometric correspondence problem where one
essentially tries to come upwith the best permutation of sam-
ple indices in a discrete setting. His method explores the
space of permutations wisely without visiting every possibil-
ity via specially designed genetic operators. Learning-based
[55] establishes dense isometric correspondence by serial-
izing the local neighborhood of vertices. In other words, it
avoids commonly used resampling operations that encode
neighborhood information in a structured and regularmanner
while processing unstructured surface meshes. Encoder–
decoder deep network architecture in [35], on the other hand,
predicts isometric shape correspondence by learning a con-
sistent surface parameterization with a shared template.

Topological [76] and orientation [78] constraints are
incorporated into the functional maps framework to promote
continuousmaps. In addition to continuity, resilience to topo-
logical noise and non-isometry is brought as a by-product of
the former and latter, respectively. Based on the insight that
functional map optimization depends only on inner products
between descriptors rather than descriptor values themselves,
Wang et al. [108] use kernel functions to efficiently eval-
uate and preserve such products [68]. Interactivity is also
brought to the functional map framework by allowing the
user to specify corresponding feature curves on two non-
isometric shapes. Feature curve preservation constraints are
then incorporated to the framework along with an efficient
numerical method to optimize the map with immediate feed-
back [33], resulting in accurate maps between semantically
similar but geometrically different shapes such as horse and
elephant. Melzi et al. [65] inject an evolution process scheme
into the functional map framework by introducing a multi-
scale descriptor per vertex for the functional constraint. By
encoding the structure of geodesic neighborhoods of a point
across multiple scales, this descriptor enables robust maps
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in the presence of mild non-isometric deformations, includ-
ing missing parts, and topological noise. Another localized
spectral analysis, namely the localized manifold harmonics
[66], enables faster map computation in the same setting.

4.9 Year 2019

Ezuz et al. [29] formulate a non-isometric correspondence
optimization problem which aims to minimize an energy
that tries to preserve a given landmark correspondence or
functional correspondence while penalizing the Dirichlet
energies of both the forward and backward maps. The sim-
ilar reversibility energy using forward and backward maps
is combined with a membrane energy that penalizes area
distortion and a bending energy that penalizes misalign-
ment of curvature features in order to obtain more accurate
non-isometric maps [28]. The membrane and elastic ener-
gies, however, lead to a slower method than [29]. Another
non-isometric method [20] deforms one shape with the goal
of aligning its Laplacian eigenvalues with the other one’s
since these values provide a powerful characterization of the
shape’s geometry. The alignment of the spectra of two shapes
makes them more intrinsically isometric and thus facilitates
finding an accurate correspondence using an existing isomet-
ric technique [25,26,50]. This correspondence then implies
the non-isometric map using the identity map between the
original and the deformed shapes. Deformation is also used
in [52] in order to conformally map each genus-zero shape
to the sphere, where the rigid alignment and optical flow
produce the correspondence. Dyke et al. [24], on the other
hand, deform one shape to the surface of the other under
moderate stretching by incorporating an anisotropic defor-
mation estimation into their iterative registration pipeline.
Non-isometric correspondence is also obtained by Azencot
et al. [9] which iteratively improves the given imperfect ini-
tial map by leveraging information from the inverse map.
Non-isometric correspondence is finally considered within
the functional maps framework by regularizing functional
maps based on the resolvent Laplacian commutativity term
[77], or by developing a hierarchical pipeline for inference
[94].

Learning-based [42]merges twoheterogeneous shape col-
lections, where the maps within collection are known, to
generate non-isometric functional correspondences for all
cross-collection shape pairs. One can argue that the super-
vised training regime is prohibitive in terms of the amount
of the manually annotated data required. Halimi et al. [37]
address this issue by proposing the first completely unsuper-
vised learning for dense shape correspondence. The solution
is based on a purely geometric criterion that drives the
learning process toward distortion-minimizing predictions.
Groueix et al. [34] utilize 3-cycle-consistency to define a
notion of good correspondences in triplets of objects and

uses it as a supervisory signal to train its deformation net-
work in the absence of point correspondence supervision.
The deformation network then takes a 3D surface point from
one shape and outputs the associated deformed point, which
is projected onto the nearest point on the surface of the other
shape in order to establish correspondence.

5 Conclusions and future research directions

Wecan draw the following conclusions based onTables 1 and
2, and the discussions in Sect. 4. Future research directions
are also given along with the items below.

– New compact map representations, namely functional
maps [70] and soft maps [96], have proved successful
in this decade. In addition to pursuing improvements
on each representation separately, it is also a promising
direction to combine these functional and probabilistic
approaches for alternative representations.

– Learning-based correspondence solutions have proved
successful in the time span of our survey. While pure
unsupervised approaches, such as [37], can replace mas-
sive labeling burden of supervised methods, it is also
worth considering combined semi-supervised learning
schemes for better accuracy.

– Our chronological ordering in Sect. 4 reveals the uniform
distribution of various types of correspondence methods
per year except the collectionwise type, which seems to
get less attention recently (9 methods in 2011–2014 vs.
3 methods in 2015–2019). Given the increasing avail-
ability of digitized 3D models, attention should return to
the collectionwise correspondence methods. In particu-
lar, novel methods can be developed to avoid repetition
of the entire optimization when new models are added to
the collection. Automatic augmentation of the shapes in
collection to compensate for the missing parts is another
direction for future research.

– Building on [47], interaction-based functionality analy-
sis [38] can be investigated further, e.g., with non-human
agents, to obtain consistent correspondences through
very diverse collections.

– The link between the stability of shape matching and
shape symmetries is exploited by only a fewmethods [19,
60,72,90,110,112], and further investigation is necessary.

– Despite the efforts in [15,49,51,57,65,66,75,76,80,97,
103,109], finding a meaningful correspondence between
shapes under topological noise remains a challenge and
should be considered carefully since this type of noise is
mostly inevitable while capturing 3D data.

– Lastly, it would be interesting to study the guarantees
and the behaviors of correspondence optimization algo-
rithms.
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86. Sahillioğlu, Y., Kavan, L.: Skuller: a volumetric shape registra-
tion algorithm for modeling skull deformities. Med. Image Anal.
23(1), 15–27 (2015)
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89. Sahillioğlu, Y., Yemez, Y.: Scale normalization for isometric
shape matching. Comput. Graph. Forum (Proc. Pac. Graph.)
31(7), 2233–2240 (2012)
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