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Obtaining new poses of an articulated character is a critical task in computer graphics. We address
this issue with a new shape deformation approach consisting of two phases enabling the user to
express the new pose as a simple stick figure, also called skeleton consisting of few bones. We
interchangeably refer to this problem as shape transfer because the template shape is transferred
to the independent stick figure that may be obtained from any source such as motion capture and

g%‘;ﬁ'abstramon 3D sketching. In the first phase, the stick figure is embedded into the template shape, resembling the
Stick figure rigging process of character skinning. Then, instead of computing blend weights as in skinning, the
Skeleton shape, discretized as a mesh, is augmented by adding extra edges between a subset of mesh vertices
Rigging and the embedded stick figure. The second phase deforms the augmented mesh towards the new
i;i&e deformation pose under the guidance of the embedded stick figure by minimizing an As-Rigid-As-Possible (ARAP)

energy. The overall deformation is intuitive as skinning, preserves surface details as it is based on
ARAP deformation yet has better volume preservation capability owing to the augmented mesh. Our
results are validated both in terms of timing and accuracy in a comprehensive test suite that includes

state-of-the-art deformation techniques.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

3D content creation is an important computer graphics task
as many applications depend on it. To this end, one can repose
an existing character or generate it from scratch based on a basic
input. Our method can be seen as a mean to serve both these
two purposes: We have a fixed template shape which is reposed
by deformation based on an arbitrary 3D stick figure input. Since
the stick figure input is independent from the template shape,
one can also see our method as a from-scratch shape generator
as we manage to surface this independent stick figure, a task we
refer to as shape transfer. As the stick figures we use are similar
to simple skeletons consisting of a few bones, stick figure and
skeleton are interchangeably used throughout the article. Please
note that this task corresponds to the inverse problem of skele-
ton extraction [1]. Countless approaches can be used to deform
a mesh. Skinning (i.e., skeletal subspace deformation) methods
are prominent for skeleton based deformations. In skinning, the
character is rigged by a simple skeleton, called Inverse Kinematic
(IK) skeleton composed of bones, and the movement of this
skeleton is transferred to the surface mesh. Bone transformations
are blended according to blend weights computed in rigging and
then applied to each vertex of the mesh. Due to their GPU paral-
lelism capabilities, skinning methods are widely used in real-time

* Corresponding author.
E-mail address: caglarseylan@gmail.com (C. Seylan).

https://doi.org/10.1016/j.cad.2022.103352
0010-4485/© 2022 Elsevier Ltd. All rights reserved.

interactive animations like video games. Despite their fast nature,
new poses in skinning are usually not accurate. Especially the
skin near skeleton joints collapses towards inside of the mesh
near bending regions (referred to as elbow collapse), and also an
undesired artifact called candy-wrapper effect occurs near joints
in bone-twist cases. Several different skinning techniques have
been proposed after the introduction of LBS which is the first
one of these methods [2] in order to eliminate those artifacts.
Nevertheless, the accuracy of most of those techniques depends
on careful adjustment of blend weights which are best done by
rig artists or the selection of some shape-specific parameters.
Unlike skinning, our method does not require adjustment of blend
weights or any parameter.

ARAP shape deformation is another popular method for gen-
eral mesh editing keeping surface details as much as possible
while editing mesh surface. It is formulated for meshes embedded
in 3D by Sorkine and Alexa [3]. Basically, the mesh is considered
to be composed of overlapping cells. A subset of the mesh ver-
tices are defined as control points (aka handles) and the user is
allowed to move only these points. The positions of other vertices
(aka free vertices) are iteratively and automatically updated such
that the transformation of each cell will be composed of only
rotation and translation as much as possible. ARAP deformation
technique is promising for mesh reposing because the surface
details are sufficiently preserved as the deformation is quite
nonrigid globally, it is locally almost rigid. Another important
requirement in mesh reposing is volume preservation yet original
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ARAP deformation formulation does not take this into account.
Several variants of ARAP deformation has been developed, which
are discussed thoroughly in the supplementary document. Nev-
ertheless, they are still not successful at volume preservation as
those formulations also do not directly consider this issue.

We propose a new shape deformation approach for mesh
reposing and transfer, such that, it is intuitive like skinning,
that is, the deformation is driven by skeleton, and it preserves
surface details as in ARAP deformations. While doing these, it
produces fairly accurate results alleviating elbow collapse and
candy-wrapper effects near joints, and also prevents from volume
loss around articulation regions. It first embeds the target skele-
ton into the source mesh (referred to as the embedded skeleton)
and then establishes a correspondence between the source mesh
and the embedded skeleton. Finally, the source mesh is iteratively
deformed towards target pose in the guidance of the embedded
skeleton by using a new ARAP deformation formulation.

Potential applications of the method includes (but not limited
to) the following:

e Character reposing by simple stick figures consisting of a
few edges and joints. For example, it is concurrent to Ges-
ture3D [4] for this application area. While Gesture3D re-
poses a character based on gesture drawings, ours does this
by using 3D stick figures.

e Skin attachment to kinematic skeletons obtained by motion
capture devices.

e Skin attachment to 3D skeletons which are outputs of other
methods. For example, transferring a template shape to the
skeletons obtained by 3D pose estimation methods from 2D
images.

Results and discussions for usage of our method on the men-
tioned applications above are given in Section 6. Our contribu-
tions in this study are as follows:

e A user-friendly framework to create new poses of an articu-
lated human or non-human character with two basic inputs:
a stick figure as target (from any source such as motion
capture, sketching, [5]) and the source template shape (to
be referred as the source mesh from now on).

e A skeleton embedding approach which can also be used as
an automatic rigging method.

e A method to augment the source mesh for a novel volume-
preserving ARAP deformation.

A brief literature review about automatic rigging, ARAP de-
formation and deformation transfer is given in Section 2. In
Section 3, we provide an explanation of the overall framework.
In Sections 4 and 5, we explain the skeleton embedding and our
deformation framework, respectively. In Section 6, we provide
both qualitative and quantitative results of our approach and
the discussion about them. The conclusion and future work is
provided in Section 7.

2. Related work
2.1. Skeleton embedding

Target skeleton is embedded into the source mesh in the first
phase of our approach. Most of the previous work about skeleton
embedding is related to automatic rigging methods which include
both embedding IK skeleton into source mesh and determining
blend weight of each mesh vertex.

We have to emphasize that computing an IK skeleton from
scratch and embedding an IK skeleton inside of the mesh are dif-
ferent and only the latter one serves our purpose. A well-known
example to the former one was proposed by Aujay et al. [6]
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which constructs the Reeb graph of a mesh by using a Reeb
graph computation method [7], and then embeds this graph into
the 3D mesh. Machine learning can also be used other than
analytical methods for this purpose, a recent approach uses deep
neural networks to predict animation skeletons for 3D articulated
models [8]. Even though these methods produce appealing IK
skeletons, they are not suitable for our purpose. We need the
embedded version of the target skeleton defined by the user, i.e.,
the embedded skeleton should have the same number of joints
and edges, and the connection of these primitives should exactly
be same with the target skeleton.

A related approach proposed by Baran and Popovi¢ [9] con-
structs a connected graph using medial surface of the input mesh
such that each node represents center of a maximal ball. The
input skeleton is embedded onto the graph by minimizing a
penalty function composed of basis functions. Learning procedure
is required to identify the optimum coefficients of the basis
functions. The identification process was intervened manually.
As a requirement, the input skeleton and mesh should be in a
similar orientation, otherwise the embedding result is wrong. On
the contrary, our embedding method is completely orientation
agnostic, and no coefficient learning procedure is required.

Instead of trying to fit the input skeleton onto a complex
graph, matching it with the curve-skeleton of the input mesh is
more promising, which is also what we do in this study. Pourier
et al. [10] adopted a similar strategy. They first extract the curve-
skeleton using Reeb graph which combines the methods in [6,11].
Then the input skeleton is matched with the curve skeleton using
a sub-tree based shape descriptor. The approach can potentially
produce good embeddings yet some parameters called length
variation threshold, and weight balancing parameter should be
tuned by the user, and apparently they seem to be different for
each different mesh.

Another IK skeleton embedding approach based on matching
with curve-skeleton is proposed by Pantuwong et al. [12]. As
their matching method is based on distance field, their extraction
algorithm is based on voxel mesh [13] forcing the user to make
a choice between quality and timing. Also the predefined IK
skeleton should be attached with semantic information which
increases user labor.

A recent IK skeleton embedding approach [14] also matches
the input skeleton with the curve skeleton of the input mesh ex-
tracted by mesh contraction [15]. Although the method does not
require user involvement, it is only specific for human body mod-
els which seriously limits its usage. Stick figures in the form of
skeletons are used to repose non-human shapes like chairs [16].
Deep learning techniques also enable reposing of 3D human
bodies via 2D stick figures [17].

2.2. Skinning

The second stage of our approach resembles skinning methods
in the sense that skin deformation of a character is computed
from the movement of bones to which the skin is attached. LBS [2]
deforms vertex positions by linearly blending bone transforma-
tions according to the bone influence weights. However, linearly
combining rigid transformations violates orthogonality princi-
ple [18] which causes volume-loss artifacts near joints known as
elbow-collapse in bending and candy-wrapper effect in twisting.
To remedy this issue, spherical blending of transformations [19]
and usage of dual-quaternions [20] were proposed yet these
approaches introduced bulging artifacts near joints.

Several interesting skinning methods have been developed to
alleviate those artifacts over time. For example, Rohmer et al. [21]
proposed a method that exactly preserves volume of the shape.
However, this method requires additional inputs like amount of
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corrections and profile curves to control the volume preservation
which does not fit our requirements. Realistic results can be
obtained with physically-based skinning methods like [22] but
those methods also need some parameters like Young’s modulus
and Lamé parameters which differ from shape to shape. It is
also possible to learn optimum blend weights by using results
of accurate physically-based methods [23]. By introducing new
deformers at joints in addition to bones, accurate results can be
obtained but still the parameters of physically-based methods
should be tuned carefully for the blend weight learning stage.

Jacobson and his colleagues [24] proposed a fast skinning
method that integrates hierarchical bone structure and ARAP
framework. The method reduces to standard LBS when adapted to
our framework without abstract handles. Using abstract handles
according to the provided algorithm improves the result but still
some previously mentioned artifacts remain (comparisons with
this method are provided in Section 6).

Le et al. [25] proposed to pre-compute optimum rotation
centers of the mesh vertices before deformation. However, this
method requires careful setting of blend weights which also con-
tradicts with our design requirements. Moreover, the method also
causes some volume loss artifacts around places where multiple
bones meet like chest.

Other than direct skinning methods, implicit surface based
methods may produce high quality results but the quality of the
deformation depends on the accuracy of the initial skinning solu-
tion [26]. Also, the final pose depends both on the skeleton pose
and on the whole animation history, which causes the final pose
to be affected by chosen time step [27]. Moreover, those methods
require setting of many parameters, adjustment of which may
require a few experiments.

In fact, all the methods using blend weights and/or requiring
setting of several parameters are not suitable for our framework
because performance of those methods highly depends on the
blend weights and those parameters. For example, manual ad-
justment of blend weights by rig artists gives better results than
computing them with automatic methods like [9]. Nonetheless,
we do not provide any other input to our framework other than
the source mesh and target skeleton. There are some recent
skinning methods like [28] not requiring any blend weight to
compute the deformed shape. Although appealing results can be
obtained with this method, some artifacts still remain especially
in highly deformed cases (comparisons with this method are
provided in Section 6).

With the advents and great progress in deep learning methods
in recent years, neural network based shape deformation [29,
30] and skinning methods [31,32] are also becoming popular. Li
and his colleagues [32] introduced Neural Blend Shapes (NBS)
recently, which solves a problem similar to ours, i.e., deforming
a shape in the guidance of a simple skeleton. Although it is
possible to obtain high quality and natural deformations with
such methods, they adopt the drawback of supervised learning
methods: Their performance is highly dependent on the train
set, which should include a rich set of example mesh-skeleton
pairs covering the set of common deformations in articulated
characters. This fact makes the training especially difficult for
non-human characters. On the other hand, owing to being based
on well-known ARAP framework, our method does not require
any example mesh-skeleton pair or training process but still able
to obtain deformations with comparable quality. Comparisons
of our method with NBS and more discussions are provided in
Section 6.
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2.3. Deformation transfer

When we have more than one target skeleton, our problem
can be seen as a special case of deformation transfer: We need
to obtain new poses of a shape by using the deformation of
skeletons. Key point selection and establishing correspondence
is one of critical tasks in deformation transfer. Sumner et al.
gave this task to the user in their pioneering work [33]. In [34],
Yang et al. proposed an automatic algorithm to select key points
automatically but defining corresponding points was still the
responsibility of the user. Baran et al. showed it is also possible
to capture the deformation semantically by extracting the corre-
lation between several source-target shape pairs [35]. Gao et al.
proposed a Generative Adversarial Network (GAN) based defor-
mation transfer method which requires no user intervention for
key point selection and correspondence establishment [29]. We
do not transfer a deformation from mesh to mesh in our problem,
instead we guide deformation by using skeletons. For this reason,
there is no concept of key point selection and correspondence
computation in our problem as in deformation transfer. To read
more on deformation transfer, we redirect our readers to the
comprehensive survey [36].

3. Method overview

The method takes two inputs: a closed 2-manifold triangular
source mesh, and a target skeleton which is a 1D connected graph
embedded in 3D representing the pose to which the source mesh
will be deformed. Its output is a closed 2-manifold triangular
mesh representing the new pose of the source mesh dictated by
the target skeleton such that the target skeleton is embedded
inside of the output mesh. Overall approach consists of two
consecutive phases and summarized in Fig. 1.

The target skeleton is embedded into the source mesh in the
first phase. To do this, we first extract curve-skeleton of the
source mesh by using Mean Curvature Flow (MCF) approach [15].
Our genetic algorithm based graph matching method matches the
target skeleton with the curve-skeleton, embedding the target
skeleton onto the curve-skeleton in essence. The output of the
first phase is the source mesh with this embedded skeleton in it.
Details of the skeleton embedding are given in Section 4.

At the beginning of the second stage before deformation,
the source mesh is augmented. More specifically, the embedded
skeleton is sampled and additional edges are added between
these sample points and a subset of mesh vertices, which we
call support edges. Then the shape is deformed both by using the
point-by-point registration between the embedded skeleton and
the target skeleton and by minimizing the ARAP energy defined
for the augmented mesh. While ARAP deformation scheme pre-
serves the surface details during deformation, the support edges
prevent volume loss and undesired artifacts near bending joints.
Details of the second phase are briefly explained in Section 5.

4. Target skeleton embedding
4.1. Dissimilarity of two skeletons

We define a measure indicating dissimilarity between two
curve-skeletons to match the target skeleton with the extracted
skeleton. Let ds(x) be the distance between a point x and the
closest point on curve-skeleton S to X. ds(x) defines a scalar
field such that dg : R®> — R. Let S; and S, be two curve-
skeletons. As ds(X) is a scalar field, curve integral of ds, (X) over S;
gives us a measure of how dissimilar is S; from S,. If we denote
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Fig. 1. The overall method consists of two stages. The first phase takes a source mesh and a target skeleton, and outputs the source mesh with the embedded
version of the target skeleton inside of it. The second phase takes the source mesh with embedded skeleton and the target skeleton as inputs. It augments the source
mesh by adding additional edges and deforms the shape towards the target skeleton by using ARAP deformation.

dissimilarity of S; from S, as Ds,(S1), it can be computed with
the formula,

Ds,(S1) = / ds,()ds (1)
S1

where r is a bijective parametrization of S; and ds is infinites-
imally small curve element. If we uniformly choose N sample
points on curve-skeleton Sy, then Eq. (1) can also be written as

1 N
Ds,(§1) = lim [ " ds,(s:)] (2)
i=0

where s; is the ith sample point. Our approximation to Eq. (1) is
based on Eq. (2).

Notice that D, (S1) is non-commutative. This can lead to non-
intuitive results. For example in case S, C Sy, Ds,(S1) = 0 and
Ds,(S;) > 0 yet it is clear that S; and S, are not similar and
the latter one is correct. We define commutative dissimilarity
function D as

D(Slv‘SZ) = D52(81)+D51(82)’ (3)

on which our skeleton matching algorithm is based.

4.2. Skeleton matching

A skeleton is represented in our discrete setting as S = (V, E)
where V is the set of vertices and E is the set of edges connecting
these vertices. Syg = (Virg, Errg) denotes the target skeleton, S =
(Ves, Ecs) denotes the extracted curve-skeleton of the source mesh,
and Semp = (Vemp, Eemp) denotes the embedded version of the
target skeleton. There are three types of vertices: terminal, joint,
and regular. A vertex with only one neighbor is called a terminal
vertex, with exactly two neighbors is called a regular vertex, and
with more than two neighbors is called a joint vertex. A sequence
of line segments connected with only regular vertices between
joint or terminal vertices is called a skeleton segment.

The definitions above are valid for both S¢; and Sy,. To embed
Sirg into the source mesh we match terminal vertices of Sy with
terminal vertices of S, and joint vertices of Sy, with joint vertices
of Sc;. We place a regular vertex of Syg on S5 by keeping the ratio
of geodesic distances from it to the endpoints of the segment
it lies on. More specifically, let us consider the setup in Fig. 2,
suppose v; matches with v; and v matches with vi. We know v,
and want to compute v,. Let g(vy, v2) be the geodesic distance

between v; and v, let r;eg( ) be the parametric representation of

Vi

Ve

Target skeleton Embedded skeleton

Fig. 2. A skeleton segment in a target skeleton and its embedded version. v;
and v; are the end points of the segment and vjf and v; are their corresponding

points in the embedded version. The position of v, is determined according to
the parametric position of v;.

the skeleton segment belonging to the embedded skeleton such

that rg,,(0) = v}, r,,,(1) = v;. Then, v, is computed as
g(vj, vr)
V. =T, 4
' seg(g(vj,vf) @

The mentioned matching rules are necessary but not sufficient
to obtain a valid embedding. Fig. 3 depicts one valid and one
invalid embedding both satisfying the rules above.

The embedded skeleton should be similar to the extracted
skeleton as much as possible, that is, no other matching should
give smaller value than D(Semp, S¢s) according to Eq. (3). We state
the optimization problem as follows:

Semp = arg min D(Sa Scs) (5)
S

such that,

o F = Etrgv

e Joint vertices of S match with only joint vertices of S,

e Terminal vertices of S match with only terminal vertices of
SCS!

e Regular vertices of S are placed according to Eq. (4).

This is a constrained non-linear discrete optimization problem
with no concept of gradient. Moreover, some parts of an embed-
ding may belong to the optimal solution. These observations as
well as the recent success of the evolutionary methods on shape
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(2K}

Source mesh and
extracted skeleton

Target skeleton  Valid embedding  Invalid embedding

Fig. 3. First column shows the extracted curve-skeleton of a human mesh to be
used as the source. Second column shows a target skeleton. Third column shows
a correct matching between the extracted skeleton and the target skeleton.
Fourth column is an example to an invalid matching.

Target skeleton indices. ;| 1 2 || Vgl

Extracted Skeleton indices |}

' }»Chromosome

Genes

Fig. 4. Chromosomes and genes in the skeleton matching problem.

matching [37] suggest us to use genetic algorithm optimization
framework for skeleton matching.

Let indices of target skeleton vertices be (1,2, ..., |Vyg|) and
indices of the extracted curve-skeleton vertices to which they are
matched be (my, my, ..., My, 1)- 1N this representation, ith vertex
of the target skeleton matches with m;th vertex of the extracted
skeleton. Regular vertices are not matched and represented by
—1, they instead placed according to Eq. (4) after joint and termi-
nal vertices are matched. Chromosome and gene definitions are
shown in Fig. 4.

We choose the fitness function f of chromosome x to be

1
f)= D(chrom2Skel(x), Ses) (6)
where chrom2Skel(x ) is a procedure converting chromosome x
to the skeleton represented by y.

We chose initial population size to be 40 where chromosomes
are initialized randomly obeying terminal-terminal and joint-
joint matching rule. The Partially-Mapped Crossover (PMX) [38]
strategy is used for crossover operation. During crossover, termi-
nal vertices are matched only with terminal vertices and joint
vertices are matched with only joint vertices. Two parents are
selected with fitness proportionate selection strategy and two
offsprings are produced in each crossover. The population is
same during the optimization process, i.e., if a crossover happens,
two victims are selected by using inverse fitness proportionate
selection. Only one randomly selected gene is swapped in the
mutation operation which may follow crossover operation. A ter-
minal vertex is swapped with a terminal vertex, and a joint vertex
is swapped with a joint vertex in the mutation. Probabilities
of crossover and mutation operations to be applied in a single
iteration are 0.8 and 0.4, respectively.

A sample run of skeleton matching is summarized in Fig. 5.
Here, a target skeleton for a wolf mesh consisting of 19 vertices
is matched with the curve-skeleton of the source mesh consisting
of 508 vertices. Fitness function value of the fittest chromosome
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for each iteration is also provided as a graph in the same figure.
The algorithm converged to the optimum solution in around 200
iterations.

Both per iteration and total running time of the skeleton
embedding algorithm (using double-precision floating-point vari-
ables) for 500 iterations are given in Table 1. The running time
can well be improved by using a parallel algorithm in multi core
setting, and by using single-precision floating-point variables. It
should also be noted that run time of genetic algorithms are
highly dependent on the parameters such as population size.

4.3. Limitations and discussion

One limitation of our skeleton matching method is that it
is not guaranteed that the genetic optimization will result in
the embedding exactly the user desires. For example, imagine
a source mesh with two legs and a tail whose lengths are all
equal and the configurations of the regular vertices are same.
The optimization may end up an embedding in which one of the
legs and the tail may be swapped. We allow the user to correct
such embeddings by manually swapping some of the skeleton
segments in a drag-and-drop manner after the optimization pro-
cess ends. Also, vertex positions of a rigged skeleton often depend
on the user’s or artist’s decision and it is rather subjective [8].
Thus, we also allow the user to change the positions of the
vertices of the embedded skeleton after the optimization ends.
However, please not that we did not alter the vertex positions
of the embedded skeletons manually in all of the experiments in
this study.

One question arising in this context is how would the skele-
ton matching method behave if there is a topological difference
between the target and extracted skeleton. If the number of
terminal vertices of the target and extracted skeletons are differ-
ent, the genetic algorithm still does the matching by minimizing
Eq. (3) and leaves some terminal vertices unmatched. An example
to this case is depicted in Fig. 6. However, if the number of loops
in the target and extracted skeleton are different, the algorithm
fails to match the skeletons. So we require the genera of the target
and extracted skeletons be the same.

5. Mesh transfer

The second phase of our approach is mesh transfer. Like the
first one, this phase can also be used on its own. Before deforming
the shape to obtain new poses, the mesh should be augmented
by adding extra edges between its free vertices and the skeleton.
Herein, one may be curious about why we add extra edges instead
of defining an ARAP energy like,

Vi

E(M, M) = > wyll(p; — p)) — Rilpi — p)I

i1 jeN(i) 7)
+Wis 1A, (P) — sy (P)II?

where ds, . (p;) is the closest distance of p; to the embedded
skeleton, ds"g(P;) is the closest distance of p; to the target skele-
ton and wjs is an appropriate weight. Nevertheless, such an en-
ergy equation cannot be solved for p’s as in the original ARAP.
However, inserting such pointwise correspondences between the
mesh and its skeleton as in-between edges into the energy equa-
tion results in a much simpler optimization problem.
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Result of skeleton
embedding

Fitness vs. Iteration

—

Max. Fitness

Iteration

Fig. 5. A sample run of skeleton matching method based on genetic algorithm framework. While the target skeleton consists of 19 vertices, the curve-skeleton
consists of 508 vertices. The algorithm converges to the optimum solution in around 200 iterations, as can be seen from the fitness vs. iteration graph.

Extracted skeleton Target skeleton ~ Embedded skeleton

Fig. 6. A case in which the number of terminal vertices between the extracted
and target skeletons are different. The genetic algorithm matches right finger of
the target skeleton with the rightmost finger of the extracted skeleton in this
case. In a similar fashion, left finger is matched with the leftmost finger, and
middle finger is matched with again the middle finger.

5.1. Selection and movement of handle vertices

In ARAP deformation, a subset of the mesh vertices are se-
lected as handle vertices. The user is only allowed to move
those handle vertices freely. Positions of non-handle, also called
free vertices, are updated automatically by minimizing the ARAP
energy. It is suitable to choose the parts of the mesh faraway
to joints as handles as they are almost rigid during the defor-
mation. The movement of those handle vertices are dictated by
the skeleton. Thus, we first establish a correspondence between
the skeleton and mesh to decide which bones will move which
handles.

Each mesh vertex is corresponded with the closest point to it
on the skeleton. We assign a parametrization rpone(t), t € [0, 1]
to each bone, such that, ryo.(0) = u and rpee(1) = v where u
and v are coordinates of two end points of the bone which makes
each corresponding point of a mesh vertex has a parametric
coordinate. If the length of a bone with joint vertices in both ends
is less than the average bone length in the skeleton, we choose
all mesh vertices corresponding to that bone as free vertices.
For other bones, handle selection procedure is controlled with a
parameter p € [0, 1]. Let t; be the parametric coordinate of the

corresponding point of mesh vertex p; on a bone. We have three
possibilities for the bone:

1. If neither u nor v is terminal, and if t; € [0.5 — p/2,0.5 +
p/2], then we define p; as handle.

2. If u is terminal but v is not terminal, and if t; € [0, 0.5 +
p/2], then we define p; as handle.

3. If u is not terminal but v is terminal, and if t; € [0.5 —
p/2, 1], then we define p; as handle.

Those three cases are depicted in 2D in Fig. 7 where black points
represent handles and green points represent free vertices. With
this way the movements of only the mesh vertices near joints will
be updated by the minimization of ARAP energy.

Bones in the embedded skeleton are moved to their positions
in the target skeleton one by one. The handles corresponding to
the points on a bone are moved to the target in the same way as
that bone.

5.2. Mesh augmentation

We call the additional edges between some sample points on
the embedded skeleton and free vertices of the source mesh as
support edges. We call the mesh updated with the support edges
as the augmented mesh.

At the beginning of mesh augmentation we uniformly choose
sample points on the embedded skeleton where the gap between
each is €. If we denote ith sample as s;, we compute normal plane
P; of the embedded skeleton at s; as shown at left of Fig. 8. Then
we mark the mesh vertices whose distances to 7; are smaller
than €/2 and which are free as candidates. With this way we
actually have chosen as candidate all the free vertices of the mesh
between two parallel planes which are also parallel to 7;, and
distance between P; and both are €/2. Those two planes can be
seen at right of Fig. 8. We chose ¢ to be the average edge length
of the source mesh throughout the study.

For each candidate, we check whether the edge between it and
its corresponding vertex on the skeleton intersects the mesh. If
it does, we discard the candidate because support edges should
completely be inside of the source mesh. If the sample points on
the skeleton are incident to the edges supporting unrelated parts
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Fig. 7. Three cases for a bone while selecting free vertices according to p in a
2D case. In the top, neither u nor v is terminal, in the middle u is terminal but v
is not terminal, in the bottom, u is not terminal but v is terminal. Green points
represent free vertices and black points represent handles. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. Left figure shows the normal plane at point s; of the skeleton, which
is shown as a red stick, inside of a hexagonal prism. Tight figure shows two
parallel planes to the normal plane s; with € gap in-between.

of the mesh, the transfer can result in inconsistent deformations.
Thus, all the support edges emanating from a sample should
support the vertices only in the most related part to it. To find
the most related mesh part of a sample point, we paint each
disconnected free vertex set (They are disconnected by handles.)
to a different color. The most related part of a sample point is the
free vertex set having the color of the closest one of remaining
candidates to it. We then discard the candidates in other than
the most related parts.

Some mesh vertices may still be corresponded to more than
one skeleton sample after selecting candidates for each sample
point in the mentioned way. Multiple support edges may cause
inconsistent deformations around neighborhood of these vertices.
Thus, we choose the closest corresponded skeleton sample in
multiple correspondence cases and discard the others. We add
edges between all remaining corresponding pairs of free mesh
vertices and skeleton samples. The support edges for a human
mesh are shown in Fig. 9. Free vertices of a mesh are indicated
with green color and handles are indicated with yellow color both
in Fig. 9 and all other figures in the paper.

5.3. Skeleton-driven ARAP deformation
Let us suppose the source mesh is represented as Mg, =

(Vgre, Esre) where Vg is the vertex set and Eg is the edge set. Let
the set of support edges be E,,, and additional vertices incident

Computer-Aided Design 151 (2022) 103352

Fig. 9. Left subfigure shows the skeleton embedded into the human mesh.
Middle subfigure shows support edges added to the source mesh which is
the augmented mesh. Right subfigure shows the source mesh, green regions
represent free vertices, yellow regions represent handles. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

to support edges be Vy,. Then the augmented mesh can be
represented as Mayg = (Vaug, Equg) Where Ve = Ve U Vi and
Eaug =Egc U Esup-

The local cell ¢; corresponding to vertex i consists of the vertex
i itself and its 1-ring neighborhood A/(i). The local cell is defined
over the augmented mesh, which means a skeleton edge may be
incident to a mesh vertex i. Also, there are no edges between
vertices in V.

If we represent local rigidity energy per cell as in [3]

E(Ci )=y wyll(p; — p)) — Ri(pi — pII” ®)
JEN(D)

where ¢; is the cell of ith vertex and ¢/ is its deformed version.
Choosing weights of support edges are tricky here. As Mg, is
not manifold anymore, we cannot compute them with the well
known cotangent formula. The weight of the support edge inci-
dent to ith vertex should be related to the weights of non-support
edges incident to it. Choosing the weight of the support edge as
the average of weights of non-support edges produce satisfying
and consistent results, i.e., deformation process both preserves
surface details and prevents the surface from collapsing inwards.
Thus, edge weights are computed with the following formula:

%[COI’O[U + cot Bj] if (i, J) € Egrc
72|A}/(i)‘ > kenvplcotaix + cot Byl if (i, j) € Esup 9)
0 otherwise

Wij =

where o5 and Bj; are the opposite angles of edge (i, j) and N(i) =
N —{j}.

The ARAP energy is defined as in [3] and computed by using
the augmented mesh and its deformed version M’. Namely,

Naug

E(Mag. Mpg) =Y > wyll(p; —p)) —R(pi —p)I>  (10)
i=1 jeN(i)

where Ny, is the number of vertices in the augmented mesh.

Notice that we implicitly set the weight of per cell rigidity energy
to 1 as suggested.
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Fig. 10. Various poses generated by deforming the source mesh in Fig. 9 towards
the target skeletons shown in the left column with the resulting meshes. Right
column zooms to the highlighted regions on the results.

90° 180°
120° )120°
90° 180°

Fig. 11. Twisting a box by rotating the skeleton edge as shown. The embedded
skeleton and source mesh are given in the top row. Middle row shows the
results of rotating the edge for 90° and 180°, The last row shows the results of
defining 60° bending in addition to the rotations.

Solution of Eq. (10) is approximated iteratively where each
iteration consists of two steps. In the first step, p’s are used from
the previous step and optimum R;’s minimizing E(C;, C;) in Eq. (8)
are computed. Computation of optimum R;’s is briefly explained
in [39] and we will not repeat the same explanation here. In the
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Fig. 12. Rotating the right arm of a human around its corresponding bone
without suffering from the candy-wrapper artifact. Result shown in different
views.

implementation, we used McAdams’ fast SVD algorithm for 3 by
3 matrices to compute optimum R;’s [22].

After computing optimum local rotations in the first step, op-
timum p;’s minimizing E(Mayg, Mg,,) in Eq. (10) are computed.
Taking derivative of Eq. (10) w.r.t. p; and doing the required
arrangements results in the linear system

l-'augp, =b. (11)

Layg in Eq. (11) differs from the system matrix in original ARAP
deformation in the sense that L, contains weights for support
edges. Let # be the set of indices of handle vertices, i.e., the
vertices computed with the procedure explained in Section 5.1
and skeleton samples incident to a support edge. The elements I;
of Ly are computed as,

w ifijandigH
li=1—Yenvpws ifi=jandigH (12)
1 ifi=jandie H.

If i € H then by is set to the position of ith vertex which is known.

We first pre-factored the system matrix of the sparse linear
system in Eq. (11) by LU decomposition then solved the system
for p;, pj, and p; independently by using Eigen linear algebra
library in C++. The iteration is stopped when (E’ — E)/E < 107
where E’ and E are the global rigidity errors in the current
iteration and previous iteration, respectively. Please note that, we
moved each vertex of the source mesh by applying the transfor-
mation of the closest bone (rigid skinning) prior to the iterative
solution, and used this shape as the initial solution.

6. Results and discussion

Visual results. Different poses of the human figure from MPI
FAUST dataset [40] in Fig. 9 generated by our method can be seen
in Fig. 10. Target skeletons and new poses can be seen in the left
column and zoomed regions highlighted in the right column. It
can be verified from the figure that surface details are preserved
around armpits, shoulders, ankles, waist and knee during the
deformation.

The user can define rotation around the axis of a target skele-
ton edge. The effect is formed as a twist near joint regions on the
surface. An example is given in Fig. 11. The embedded skeleton
and source mesh of a box is given in the top row. Resulting
deformations for 90° and 180° rotations are given in the middle
row. Deformation results of adding 60° to the target skeletons
are given in the last row. A result of applying rotation around
skeleton edge axis is given in Fig. 12. Here, right arm of the source
mesh was rotated 90°, and our method produced a plausible
deformation.

We also deformed the source mesh by using classical and
recent skinning methods to compare them with our method. We
generated the same poses given in the top and bottom rows
of Fig. 10 by using LBS [2], DQS [20], Fast Automatic Skinning
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Our method

DDM (SD-ARAP)

Fig. 13. Same poses shown at top and bottom rows of Fig. 10 are obtained by deforming the source mesh given in Fig. 9 by using different skinning methods.
Volume loss artifacts still occur with the skinning methods around the right armpit of the human while the proposed method results in more natural deformations

around those areas.

Transformations (FAST) [24], and Direct Delta Mush (DDM) [28].
Aforementioned and well known volume-loss artifacts occurring
with LBS and DQS can be noticed around armpits of the human
shape in Fig. 13 obtained by deforming the source in Fig. 9. FAST
reduces to LBS in our framework without using abstract handles.
Thus, we enriched the deformation space by adding abstract
handles as suggested. Although this improves the results, the
deformation around armpits of the human shape is still unnatural.
DDM is a recent skinning method not requiring any blend weight
setting yet the results obtained with that are still not as natural
as results obtained by our method.

The difference between our method and skinning methods
is much more prominent in twisting cases. While twisting with
skinning methods causes distortions and singularities around the
twisting joint, our method results in much more intuitive and
visually appealing results as can be seen in Fig. 14.

It is possible to learn skeleton based deformations by the uti-
lization of existing mesh-skeleton datasets. Neural Blend Shapes
(NBS) [32] is a recent example of such method. They trained a
neural network by using the data in SMPL [41] and Multi Garment
Network [42]. Similar to our problem formulation, the provided
source mesh is deformed towards the target skeleton, obtain-
ing the deformed shape. The resulting deformed meshes of two
different characters for three poses are depicted in Fig. 15. The
qualities of both deformations are parallel yet our method avoids
intense training efforts required by supervised learning methods
(Section 2.2). Note that such a training should be performed
separately for each shape class whereas our method runs without
any modifications on a diverse set of classes, e.g., horse, wolf, box,
and cylinder. Also, the source shape in NBS should be in T-pose
which limits the datasets we can use with it, e.g., MPI FAUST does
not have a shape in T-pose so we cannot use NBS on that dataset.
Our method does not have such constraints which makes it easier
to use.

We tried utilizing the original ARAP and a modified version of
it, Smooth-Rotation enhanced ARAP [43], instead of our augmen-
tation process while deforming the source meshes. The resulting
meshes along with a brief discussion are provided in the sup-
plementary document. The readers are encouraged to read the
discussion to understand better how the augmentation process
improves the results that ARAP framework can generate.

LBS

DQS

FAST

DDM

Our method
(SD-ARAP)

Fig. 14. The box shown in Fig. 11 are twisted 180° by using different skinning
methods. The proposed method is significantly more successful than skinning
methods to handle twisting near joints without requiring any blend weight
painting and parameter tuning.

Quantitative analysis. We quantitatively assessed how well
SD-ARAP deformation can approximate to the ground truth defor-
mations in addition to volume loss. To do this, we used the human
figure in Fig. 9 as the source mesh, and tried to obtain other
poses in MPI FAUST [40] dataset, which were obtained by using
real subject. To compute the target skeletons best describing the
poses, we first transferred the skeleton samples of the embedded
skeleton into the target pose by using registration between the
two poses, and constrained them to lie on linear segments so that
we can obtain the target skeleton by combining these samples.
We transferred the free vertices of the source mesh to new pose
with SD-ARAP by moving handles of the source mesh to their



C. Seylan and Y. Sahillioglu

Computer-Aided Design 151 (2022) 103352

Fig. 15. Comparison of our method with NBS [32]. In each subfigure, the mesh on the left is resulted from NBS while the one on the right is resulted from our
approach. The character on the top is from SMPL dataset [41], and the character on the bottom is from Multi Garment Network dataset [42].

0 1 2

Fig. 16. Reconstructing some poses in the FAUST dataset. The source mesh is
shown in Fig. 9. Target skeletons are given in the first and transferred meshes
in the second column. Ground-truth poses from the dataset are shown in
the third column. Displacement errors A;/Ixr i between the approximated and
ground-truth mesh vertices are shown in the last column as a color code.

10

registered vertices on the ground-truth pose and by moving the
embedded skeleton to the computed target skeleton. We mea-
sured the distance A; between each vertex of the deformed and
ground-truth poses. Then we scaled each distance with 1/l
where Iy is the average length of the edges between ith ver-
tex and the vertices in its 1-ring neighborhood. The results of
this experiment are stated in Fig. 16 where the target skeleton,
transferred mesh, ground-truth mesh, and A; /Iy values as color
codes are given in column by column. Each row shows a different
pose.

Timings. Average computation times for obtaining new poses
are shown in Table 1. The time consumed in preliminary opera-
tions before SD-ARAP optimization like mesh augmentation and
LU factorization of the system matrix is reported in ”pre”. column.
The time consumed in the optimization process and the time
consumed in each iteration are reported in separate columns.
More than % 90 of the time is spent in skeleton embedding
according to the timing analysis. A more detailed analysis of the
timings along with comparisons with other ARAP methods is
provided in the supplementary document.

Example applications. In addition to testing the method on
manually drawn stick figures, we also tested it on the stick figures
which are outputs of other methods. Those experiments reveal
potential applications of the method at the same time. CMU
MoCap dataset [44] contains large number of kinematic skeletons
in the form of stick figures abstracting the poses of the subjects
doing certain movements. We transferred two source shapes
from FAUST dataset shown at the leftmost column in Fig. 17 to
the skeleton of a running subject, whose poses were captured at
120 Hz frame rate, and abstracted as a kinematic skeleton consist-
ing of 27 vertices and 26 edges. The whole movement consists of
100 frames. The results for the frame numbers multiple of tens
are shown in Fig. 17. Transferring the source shape to the target
skeletons as a batch took around 4.5s in total.

We also tested the method on the skeletons obtained by
VIBE [45], a recent 3D pose estimation method. The 3D kinematic
skeleton of a shape in 2D video was estimated by using VIBE, con-
sisting of 17 vertices and 16 edges. Then two source shapes from
FAUST dataset (which are different from the ones in other tests,
and also in different poses) were transferred to those skeletons.
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Table 1
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Running time analysis of the whole pipeline. Human model can be seen in Fig. 9, wolf model is shown in 5, and the horse model
was depicted in the supplementary document. |V| and |Vyg| represent the number of vertices in the curve-skeleton an in the
target skeleton, respectively. The algorithm was run for 500 iterations, giving us the total skeleton embedding time. |V | and |Viy|
represent the number of vertices and edges, respectively, in the source mesh. The reported timings are obtained with a single core

of 2.2 GHz Intel® Core™ i7 processor.

Source |Ves| |Virg| Per Skeleton |Vire | |Egre | Pre. (ms)  Per SD-ARAP Total (s)
iter. (ms) embedding (s) iter. (ms) opt. (ms)
Human 522 17 36 18.127 6890 20664 234 5.25 42 18.403
Horse 654 24 41 20.509 19248 57738 1106 19.21 653 22.268
Wolf 508 19 50.4 25.197 4344 13026 25 3.33 100 25.322
I | | | |
n -
| ‘ \ I N \ \ )
\\ ] A ( \‘ /
I M | () f
I ‘\ { I } \yf |
) )
Source fr. #0 fr. #10  fr. #20  fr. #30 fr. #40 fr. #50 fr. #60 fr. #70 fr. #80  fr. #90

Fig. 17. Mesh transfer results to the kinematic skeletons from the video of a running subject from CMU MoCap dataset (subject #9, trial #1) [44] for 10 frames. The
video was captured in 120 Hz. The kinematic skeletons consist of 27 vertices and 26 edges. While the leftmost columns show source shapes, the other ones show
transfer results. Each column corresponds to a frame and the frame number is indicated beneath each column.

A

3D pose est.
with VIBE

A4

Target skeleton

Transferred
meshes

Source
meshes

Fig. 18. Mesh transfer results to the kinematic skeletons estimated from a 2D
video by using VIBE [45], consisting of 17 vertices and 16 edges. Meshes at left
are from FAUST dataset and represent the source meshes. The skeleton in the
middle is the estimated pose. The meshes at right are the results of the mesh
transfer method.

Results are shown in Fig. 18. Along with those tests, we used the

meshes of 4 different human subjects from FAUST dataset.

11

Limitations. The extracted skeleton and tar-
get skeleton matching procedure described in
Section 4.2 places the regular vertices from the
target skeleton to the embedded skeleton ac-
cording to Eq. (4). This implies the user should
carefully place the regular vertices in the target
skeleton. If the user places them far away to

articulation regions, the matching procedure
has no means to correctly embed them close to articulation re-

gions, which in turn results in unnatural deformations. The figure
inset shows a resulting mesh from a target skeleton in which the
regular vertices around shoulders are poorly placed. Moreover,
our method cannot be used for stretching out limbs of the source
mesh as the handles on the mesh surface are transferred rigidly,
not non-isometrically, to the target skeleton.

As a limitation in the deformation side, the source mesh
should not contain self intersections. If the source has self in-
tersections as in Fig. 19 at left side, support edges cannot be
added correctly in the mesh augmentation process, which leads
to erroneous transferred meshes as can be seen at the right side
of Fig. 19.

7. Conclusion and future work

We proposed a two-stage shape deformation method with
which one can (i) repose an articulated character with a 3D stick
figure and (ii) transfer a source mesh to this target skeleton. In
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Source Mesh Transferred Mesh

Fig. 19. If the source mesh contains self intersections, it cannot be transferred
robustly as the support edges cannot be constructed in the correct way in the
mesh augmentation process.

the first stage, the target skeleton is embedded into the source
mesh so that the pose of the source mesh is captured by the target
skeleton. Then, the source mesh is augmented by introducing
new edges between the embedded skeleton and the source mesh.
In the second stage, the source mesh is deformed towards the
new pose by utilizing the one-to-one correspondence between
the embedded skeleton and target skeleton, and by minimizing an
ARAP energy defined for the augmented mesh. The first stage can
be used for rigging purposes standalone and the second stage can
be used for reposing purposes standalone too, if the user already
has an embedded skeleton in a source mesh.

The current version of the method does not consider possible
self-intersections of the deformed mesh. One of the future work
directions is introducing a contact model, so that we can get
rid of self-intersections with bulging effect in a realistic manner.
Another direction is designing a user-friendly GUI with which one
can easily draw target skeletons in 3D, or potentially in 2D, and
see the transferred mesh in real-time, which also helps the user
to place the regular vertices more easily preventing potential limb
stretching. Non-isometry support that would allow additional
stretching and squeezing deformations can also be incorporated
into our framework.
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