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a b s t r a c t

Generating 3D models from 2D images or sketches is a widely studied important problem in computer
graphics. We describe the first method to generate a 3D human model from a single sketched stick
figure. In contrast to the existing human modeling techniques, our method does not require a statistical
body shape model. We exploit Variational Autoencoders to develop a novel framework capable of
transitioning from a simple 2D stick figure sketch, to a corresponding 3D human model. Our network
learns the mapping between the input sketch and the output 3D model. Furthermore, our model
learns the embedding space around these models. We demonstrate that our network can generate
not only 3D models, but also 3D animations through interpolation and extrapolation in the learned
embedding space. In addition to 3D human models, we produce 3D horse models in order to show the
generalization ability of our framework. Extensive experiments show that our model learns to generate
compatible 3D models and animations with 2D sketches.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

3D content is still not as big as image and video data. One of
he main reasons of this lack of abundance is the labor going into
he creation process. Despite the increasing number of talented
rtists and automated tools, it is obviously not as simple and
uick as hitting a record button on the phone.
3D content is, on the other hand, as important as the image

nd video data since it is used in many useful pipelines ranging
rom 3D printing to 3D gaming and filming.

With these considerations in mind, we aim to make the im-
ortant 3D content creation task simpler and faster. To this end,
e train a neural network over 2D stick figure and corresponding
D model pairs. Utilization of easy-to-sketch and sufficiently-
xpressive 2D stick figures is a unique feature of our system that
akes our system work properly even with a moderate amount
f training, e.g., 72 distinct poses of a human model and 8 distinct
oses of a horse model are used. We focus on human models as
hey are prominent in 3D applications and extend our generation
bility on horse models.
Given 2D stick figure sketches, our algorithm is able to pro-

uce visually appealing 3D point cloud models without requiring
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any other input such as a statistical body shape model. After
an easy and seamless tweaking in the network, the system is
also capable of producing dynamic 3D models, i.e., animations,
between source and target stick figures as shown in Fig. 1.

2. Related work

Thanks to their natural expressive power, sketches are com-
mon modes for interaction for various graphics applications
[1,2].

The majority of sketch-based 3D human modeling methods
deal with re-posing a rigged input model under the guidance of
user sketches. [3] performs this action by transforming imaginary
lines running down a character’s major bone chains, whereas
[4,5] propose incremental schemes that pose characters one limb
at a time. [6] proposes a skeleton-based as-rigid-as-possible de-
formation energy that reposes the template model using a stick
figure. 2D stick figures to pose characters benefit from user an-
notations [7], specific priors [8], and database queries [9,10].
Bessmeltsev et al. [11] claim that ambiguity problems of all these
methods can be alleviated by contour-based gesture drawing. The
deep regression network of [12] utilizes contour drawing to allow
face creation in minutes. Another system which takes one or more
contour drawings as its input uses deep convolutional neural
networks to create a variety of 3D shapes [13]. We avoid forcing
the user to supply a statistical body shape model as input, hence

save a significant amount of effort and time that would otherwise
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Fig. 1. Our framework is capable of performing three tasks. (a) It can generate 3D models from given 2D stick figure sketches. (b) It can generate dynamic 3D models,
i.e., animations, between given source and target stick figures. (c) It can further extrapolate the produced 3D model sequence by using the learned interpolation
vector.
be spent on rig creation. We merely require a user sketch, which,
when fed into our network, produces the 3D model quickly in the
specified pose. For example, as the network is trained with the
SCAPE models [14], our resulting 3D shape looks like the SCAPE
actor, i.e., a 30 year-old fit man.

There also exist sketch-based modeling methods for other
specific objects such as hairs [15,16] and plants [17], as well
as general-purpose methods that are not restricted to a partic-
ular object class. These generic methods, consequently, may not
perform as accurately as their object-specific counterparts for
those objects but still demonstrate impressive results. 3D free-
form design by the pioneer Teddy model [18] is improved in
FiberMesh [19] and SmoothSketch [20] by removing the potential
cusps and T-junctions with the addition of features such as topo-
logical shape reconstruction and hidden contour completion. The
recent SymmSketch system [21] exploits symmetry assumption
to generate symmetric 3D free-form models from 2D sketches. In
order to increase quality in generating 3D models, [22] focuses on
piecewise-smooth man-made shapes. Their deep neural network-
based system infers a set of parametric surfaces that realize
the drawing in 3D. Other solutions to the sketch-based generic
3D model creation problem depend on image guidance [23,24],
snapping one of the predefined primitives to the sketch by fitting
its projection to the sketch lines [25], and controlled curvature
variation patterns [26].

3D model generation and editing have been extended to 3D
scenes as well. Dating back to 1996 [27], this line of works
generally index 3D model repositories by their 2D projections
from multiple views and retrieve the elements that best match
the 2D sketch query [28,29]. Xu et al. [30] extend this idea
further by jointly processing the sketched objects, e.g., while a
single computer mouse sketch is not easy to recognize, other
input sketches such as computer keyboard may provide useful
cues. Sketch-based user interfaces arise in 2D image generation
as well [31,32].

Sketches also arise frequently in shape retrieval applications
due to their simplicity and expressive. Our focus, the human stick
figure sketch, has been used successfully in [33] to retrieve 3D
human models from large databases. The prominent example in
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this domain [34] as well as the convolutional neural network
based method [35] report good performance with gesture draw-
ings when it comes to retrieving humans. These three methods,
as well as many other sketch-based retrieval methods [36], are in
general successful on retrieving non-human models as well.

Although human body types under the same pose can be
learned easily with moderate amounts of data through statistical
shape modeling [37,38], this approach requires much greater
amounts of input data to learn plausible shape poses under var-
ious deformations [39,40]. In addition to the data issue, this
family of methods that are based on statistical analysis of human
body shape operate directly on vertex positions, which brings the
disadvantage that rotated body parts have a completely different
representation. This issue is addressed with various heuristics,
most successful of which leads to the SMPL model [41] that en-
ables 3D human extraction from 2D images [42,43]. Our learning-
based solution requires moderate amount of training data, and
also alleviates the rotated part issue by simply populating the
input data with 17 other rotated versions of each model. Our
method needs to be trained on a dataset of 3D models with the
same identity. In the face of auto-rigging methods that make
using a rigged 3D model a more flexible approach for different
identities, there are shape correspondence methods that enable
our framework to be used for different identities. A survey of
recent works in shape correspondence is provided in [44].

3. Overview

We have two main objectives: (i) Generating 3D models from a
single sketched stick figure, (ii) creating 3D animations between
two 3D models, generated from 2D source and target sketches.
In addition, we present an application that allows interactive
modeling using our algorithm.

Our approach is powered by a Variational Autoencoder net-
work (VAE). We train this network with pairs of 3D and 2D points.
The 3D points come from the SCAPE 3D human figure database
and TOSCA 3D horse figure database, while the 2D points are
obtained by projecting joint positions of these models on a 2D
surface. Hence the correspondence information is preserved. Our
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Fig. 2. Our neural network architecture. (a) Train Network: We train this network with (3D point cloud, 2D points of stick figure) pairs during training time. It
consists of a VAE: Encoder3D and Decoder consecutively, and another external encoder: Encoder2D. We use regression loss from the output of Encoder2D to the
mean vector of the VAE in addition to standard losses of VAE. While

⨁
represents vector addition,

⨂
represents multiplication for the reparameterization trick to

sample the latent vector z. (b) Test Network: We remove Encoder3D and reparameterization layer from our VAE and use Encoder2D-Decoder as our network in our
experiments.
Fig. 3. Screenshots from our user interface. (a) 3D model generation mode. (b)
3D animation generation mode. The users sketch either (iii) a 2D stick figure
to generate the corresponding 3D model, or (iv, v) sketch the initial and final
frames to generate corresponding 3D animation.

neural network model ties the 2D and 3D representations through
a latent space, which allows us to generate 3D point clouds from
2D stick figures.

The latent space that ties the 2D and 3D representations also
cts as a convenient lower dimensional embedding for interpo-
ation and extrapolation. Given a set of target key frames in the
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form of 2D drawings, we can map them into the lower dimen-
sional embedding space, and then interpolate between them to
obtain a number of intermediate points in the embedding space.
These intermediate points can then be mapped to 3D through
the network to obtain a smooth 3D animation sequence. Further-
more, extrapolation allows extending the animation sequence
beyond the target key frames.

4. Methodology

Our method aims to generate static and dynamic 3D models
from scratch, that is, we require only the 2D input sketch and no
other data such as a statistical body shape model waiting to be
reposed. To make this possible, we learn a model that maps 2D
stick figures to 3D models.

4.1. Training data generation

The original SCAPE [14] and TOSCA [45] datasets consist of
72 key 3D meshes of a human actor and 8 key 3D meshes of a
horse respectively. They also contain point-to-point correspon-
dence information between these distinct model poses. We use a
simple algorithm to extend these datasets by rotating the existing
figures with different angles. First, we determine the axes and
the angles of the rotation with respect to the original coordinate
system shown in the wrapped figure. We ignore the rotation with
respect to the x-axis, since stick figures are less likely to be drawn
from this view. Next, we rotate the models with respect to the y-
axis and z-axis, in a range of −90 degree to 90 at intervals of 30
degrees for the y-axis, and −45 to 45 degrees at intervals of 45
degrees for the z-axis. In the end of this process, we output 21
models per key model in the SCAPE and TOSCA datasets.

Since our network is trained with (2D joints, 3D model) pairs,
we also extract 2D joints from a 3D model in a particular per-
spective. For SCAPE dataset, we designate 11 essential points
that alone can describe a 3D human pose. These are the fol-

lowing: forehead(1), elbows(2), hands(2), neck(1), abdomen(1),



A. Akman, Y. Sahillioğlu and T.M. Sezgin Computers & Graphics 109 (2022) 65–74
Fig. 4. Neural network architecture for standard autoencoder baseline.

knees(2) and feet(2). These essential points extends to 12 for
the TOSCA dataset: forehead(1), shoulder joint(1), hip joint(1)
knees(4), feet(4) and tail(1). Since the datasets have the point-
to-point correspondence information in itself, we select these 3D
points in a pilot mesh from each dataset. We project these joints
onto a 2D camera plane (x − y in our case) across the entire
datasets to create 2D joint projections. In order to be indepen-
dent from the coordinate system, we represent these points with
relative positions (∆x, ∆y). We determine two separate specific
orders in 2D points forming a sketching path with 17 points for
our human model and 20 points for our horse model (some joints
are visited twice but in the reverse direction). These sketching
paths represent the order of visited body joints while sketching.
For example, users should follow this path for the human stick
figure: Forehead to neck, neck to shoulders (right parts first),
shoulders to elbows, elbows to hands, neck to abdomen, abdomen
to knees, knees to feet. Each sketching path determines the order
of 2D points that form the input vector of our neural network.
The input vector format also handles front/back ambiguity while
generating 3D models. We set the first point in the sketching path
as the origin, (0, 0) and then we set the remaining points with

respect to their relative position to the preceding point.
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4.2. Neural network architecture

We build upon the work of Girdhar et al. [46] while designing
our neural network architecture. Girdhar et al. aim to learn a
vector representation that is generative, i.e., it can generate 3D
models in the form of voxels; and predictable, i.e., it can be
predicted by a 2D image. We utilize variational autoencoders
rather than standard autoencoders to build our neural network as
shown in Fig. 2. Unlike standard autoencoders, VAEs are genera-
tive networks whose latent distribution is regularized during the
training in order to be close to a standard Gaussian distribution.
This property of VAEs ensures that its latent distribution has a
meaningful organization which allows us to generate novel 3D
models by sampling in this distribution. In addition to generating
novel 3D models, since our framework is capable of learning
the vector space around these 3D models, it enables meaningful
transitions between them and extrapolations beyond them.

For our training network, we have two encoders and one
decoder for each dataset: Encoder3D, Encoder2D, and Decoder.
Encoder3D and Decoder together serve as a VAE. Our VAE takes
in a 3D point cloud as input, and reconstructs the same model as
output. While our VAE learns to reconstruct 3D models, it forces
latent distribution of the dataset to approximate normal distribu-
tion which makes the latent space interpolatable. Meanwhile, we
use our Encoder2D to predict latent vectors of corresponding 3D
models from 2D points. In order to provide our latent distribution
with similarity information between 3D models, we design this
partial architecture for our neural network instead of using a VAE
which directly generates 3D models from 2D sketches. Thus, our
Encoder3D is capable of learning relations between 3D models
rather than 2D sketches while creating a regularized latent distri-
bution. With this method, we aim to explore latent space better
and generate more meaningful transitions between 3D models. It
also prevents the model from the training difficulties of a direct
VAE where low-dimensional 2D space (34) is directly mapped to
high-dimensional 3D space (37500).

Encoder3D-Decoder VAE Network Architecture:
Our VAE takes 12500 × 3 points of human 3D model or

19248 × 3 points of horse 3D model as input. Encoder3D contains
two fully connected layers and its outputs are a mean vector and
a deviation vector. We use ReLU as an activation layer in all the
internal layers. There is no activation layer in the output layers.
Our Decoder takes the latent vector z as input. It also consists of

two fully connected layers with a ReLU activation layer and one
Fig. 5. Generated 3D human models in front and side views for given sketches using our VAE network and standard AE network. Flaws are highlighted with red
circles.
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ully connected output layer with a tanh activation layer. It gives
a reconstructed point cloud of the input 3D model as output.

We train our VAE with the standard KL divergence and recon-
struction losses. The total loss for our VAE is given in Eq. (1).

LVAE = α
1
BN

B∑
i=1

N∑
j=1

(xij − x̂ij)2 + DKL(q(z|x) ∥ p(z)) (1)

In Eq. (1), α is a parameter to balance between the reconstruc-
tion loss and KL divergence loss, B is the training batch size, N is
the 1D dimension of vectorized point cloud (37500 in our case
for human models), xij is the jth dimension of ith model in the
raining data batch, x̂ij is the jth dimension of model i’s output
rom our VAE, z is the reparameterized latent vector, p(z) is the
rior probability, q(z|f ) is the posterior probability, and DKL is KL
ivergence.

apping 2D Sketch Points to Latent Vector Space:
Our Encoder2D learns to predict the latent vectors of 3D mod-

ls that correspond to 2D sketches as discussed. It takes 17 × 2
points of human stick figure or 20 × 2 points of horse stick figure
as input to map it into mean vector. It has the same structure with
Encoder3D except its input and internal fully connected layers’
dimensions. In the test case we use Encoder2D and Decoder as
a standard autoencoder. Decoder takes the mean vector output
of Encoder2D as its input and generates 3D point cloud as the
output.

We train our Encoder2D with mean square loss to regress
256D representation of mean vector given by pre-trained En-
coder3D. The loss for our Encoder2D is given in Eq. (2).

L2D =
1
BZ

B∑
i=1

Z∑
j=1

(µ1
ij − µ2

ij)
2 (2)

In Eq. (2), B is the training batch size, Z is the dimension of
latent space (256 in our case), µ1

ij is the jth dimension of mean
ector produced by Encoder3D to ith model in training batch, and

µ2
ij is the jth dimension of mean vector produced by Encoder2D

to ith model in the training batch.

4.3. Training details

We follow a three-stage process to train our network for each
dataset. (i) We train our variational auto encoder independently
with the loss function in Eq. (1). We run this stage for 300 epochs.
(ii) We train our Encoder2D with the loss function in Eq. (2) using
Encoder3D trained from (i). Specifically, we train our Encoder2D
to regress the latent vector produced from the pre-trained En-
coder3D for the input 3D model. We run this stage for 300 epochs.
(iii) We use both losses jointly to fine-tune our framework. We
run this stage for 200 epochs. It takes about two days to complete
the whole training session.

For the experiments throughout this paper, we set α = 105.
We set the prior probability over latent variables as a standard
normal distribution, p(z) = N (z; 0, I). We set the learning rate as
10−3 and 104 for our human model generation and horse model
generation networks respectively. We use the Adam Optimizer as
our optimizer in training.

4.4. User interface

As we have explained in prior sections, our method can be
used in a variety of applications in different fields such as char-
acter generation and making quick animations. In order to better
utilize these applications we propose a user interface with fa-
cilitative properties that enables users to perform our method
69
Fig. 6. Qualitative comparison of our method (columns 3 and 4) with [47]
(columns 1 and 2).

Fig. 7. Generation results for (a) two human stick figure sketches observed in
training and (b) an unobserved human stick figure sketch. The generated models
(last column) are colored with respect to the distance map to the ground truth
(first column). Distance values are normalized between 0 and 1.

in a better manner (Fig. 3). Our user interface acts as an agent
that ensures the input–output communication between the user
and our neural network. The user first chooses whether to gen-
erate human 3D models or horse 3D models. Then, the user
can choose whether to generate 3D models from 2D stick figure
sketches or create animations between the source and target
stick figure sketches. While it takes about one second to process
a sketch input for generation of the corresponding 3D model,
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Table 1
Per-vertex reconstruction error on validation data with different network
architectures. VAE represents our method.
Method Z (Latent Dim.) Mean (×10−3) Std (×10−3)

AE 256 2.996 1.568
VAE 256 2.118 2.598

Table 2
Per-vertex reconstruction error on validation data with different latent
dimensions. 256 is our promoted latent space dimension.
Method Z (Latent Dim.) Mean (×10−3) Std (×10−3)

VAE 128 3.887 3.802
VAE 256 2.118 2.598
VAE 512 10.830 6.888

this time extends approximately to five seconds for producing
animation between (interpolation) and beyond (extrapolation)
sketch inputs.

Our user interface takes a sketch input from the user via an
mbedded 2D canvas (Fig. 3(iii)). The users are required to sketch
n a predetermined path that allows us to know the order of
ketched vectors of body parts. The collected sketch is trans-
ormed into a map of the joint locations as an input to our neural
etwork using this information. The user interface then shows the
D model output produced by the neural network on the embed-
ed 3D canvas (Fig. 3(i)). For 3D animation generation, the users
re required to sketch the initial and final frames (Fig. 3(iv, v)).
lthough our output is a 3D point cloud, for better visualization,
ur user interface utilizes the mesh information that already ex-
sts in the SCAPE and TOSCA datasets. Polygon mesh information
s provided in these datasets in order to build 3D model shape
n top of 3D cloud. Since this information is shared across each
ataset due to point-to-point correspondence and our framework
oes not break this correspondence during generation process,
e could embed this information in our generated 3D models.
enerated point clouds are consequently combined with this
nformation to display 3D models as surfaces with appropriate
endering mechanisms such as shading and lighting.

Since we trained an abundance of neural networks until
chieving the best one with the optimal parameters, our user
nterface showed two different 3D model outputs coming from
wo different neural networks for comparisons during the devel-
pment phase. The interface in Fig. 3 belongs to our release mode
here only the promoted 3D output is displayed.
We construct our user interface such that it is purified from

nnatural interaction tools such as buttons and menus. Genera-
ion process starts as soon as the last stroke is drawn without
orcing the user to hit the start button. We provide brief infor-
ation in text that describes the canvas organization. To make

he interaction more fluent, we add a simple ‘‘scribble’’ detector
o understand the undo operation.

. Experiments and results

In this section, we first evaluate our framework qualitatively
nd quantitatively. We evaluate three tasks performed by our
ramework. (i) Generating 3D models from 2D stick figure
ketches. (ii) Generating 3D animations between source and tar-
et stick figure sketches. (iii) Performing simple extrapolation
eyond stick figures. All the input stick figures in the figures
ere provided by 6 novice users composed of undergraduate and
raduate students.
70
Fig. 8. Generated 3D horse models in front and side views for given sketches
using our VAE network.

Fig. 9. More generation results for (a) human models and (b) horse models.

.1. Framework evaluation

Standard Autoencoder Baseline. To quantitatively justify our
reference on variational autoencoders, we design a standard
utoencoder (AE) baseline with similar dimensions and activation
unctions (Fig. 4). We train this network on SCAPE dataset for 300
pochs with Euclidean loss between generated 3D models and
round truth ones. We compare the per-vertex reconstruction
oss on a validation set consisting of held-out 3D models with
ur VAE network and standard AE network trained with human
odels. The results in Table 1 shows that our VAE network
utperforms AE network, exploiting latent space more efficiently
o enhance the generation quality of novel 3D models.

Latent Dimensions. We evaluate different latent dimensions
or training our VAE framework with SCAPE dataset using per-
ertex reconstruction loss on a validation set. The results in
able 2 show that using 256 dimensions improves generation
uality compared to lower dimensions. Higher dimensions lead
o overfitting. We use 256 dimensions for the following experi-
ents.

.2. Generating 3D models from 2D stick figure sketches

To evaluate the generation ability, we feed 2D human stick
igure sketches as input to our framework. Our user interface
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Fig. 10. Qualitative comparison with linear interpolation. (a) Produced 3D model sequences for given sketches using our network are better than linear interpolation
results. (b) Extrapolation results for 3D model sequences are given as red models.
is used for the sketching activity. In Fig. 5, we compare gen-
eration results for sample sketches with our VAE network and
standard AE baseline. These results show that standard AE net-
work generates models with anatomical flaws (collapsed arm in
Fig. 5) and deficient body orientations. Our VAE network produces
compatible models of high quality.

We compare the generation ability of our framework with a
recent study [47] that predicts 3D shape from 2D joints of hu-
man. While our framework outputs 3D point clouds, the method
described in [47], tries to fit a statistical body shape model, SMPL,
on 2D joints. Their learned statistical model is a male who is in
a different shape than our male model as shown in the second
column of Fig. 6. We take the visuals reported in their paper and
draw the corresponding human stick figures for a fair comparison.
Despite being restricted to the reported poses in [47], our method
compares favorably. The sitting pose, for instance, which is not
quite captured by their statistical model shows in an inaccurate
3D sitting while our 3D model sits successfully (Fig. 6 - top row).

We also compare our 3D human model generation ability
to the ground-truth by feeding sketches that resemble 3 of the
72 SCAPE poses used during training. Two of these poses were
observed during training at the same orientations as we draw
them in the first two rows of Fig. 7, yet the last one is drawn
with a new orientation that was not observed during training
(Fig. 7-last row). Consequently, we had to align the generated
model with the ground-truth model via ICP alignment [48] for
the last row prior to the comparison. We observe almost perfect
replications of the SCAPE poses in all cases as depicted by the
colored difference maps.

In order to show generalization ability of our method with
different 3D model types, we evaluate our VAE framework which
is trained on the TOSCA dataset. To evaluate the generation ability
with 3D horse models, we feed 2D horse stick figure sketches
as input to our framework. In Fig. 8, we show generation results
for sample sketches with our VAE network. We also show more
generation results for both human models and horse models in
Fig. 9.

5.3. Generation of dynamic 3D models - Interpolation

We test the capability of our network to generate 3D human
animations between source and target stick figures. To accom-

plish this, our framework takes two stick figure sketches via our
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user interface. The framework then encodes the stick figures into
the embedding space to extract their latent variables. We create
a list of latent variables by linearly interpolating between the
source and the target latent variables. We feed this list as an
input to our decoder, with each element of the list being fed one
by one to produce the desired 3D model sequence. In Fig. 10(a),
we compare our results with direct linear interpolation between
source and target 3D model output. Our results show that the
interpolation in embedding space can avoid anatomical errors
which usually occur in methods using direct linear interpolation.
Further interpolation results can be found in the teaser image and
the accompanying video.

We also compare our 3D human model generation ability with
interpolation at the sketch level. In order to implement this, we
design an algorithm that interpolates between source and target
stick figure sketches. Our algorithm first finds the best rotation
vector between each component of source and target stick figure
sketches using the proposed method in [49]. Then it generates
interpolated rotations in the form of quaternions using quater-
nion spherical interpolation. We obtain the list of interpolated
sketches with these interpolated rotations. We feed this sketch
list as an input to our decoder, with each element of the list being
fed one by one to produce the desired 3D model sequence. In
Fig. 11, we compare our embedding space interpolation results
with sketch level interpolation. The 3D model generation results
on interpolated sketches shows the high adaptation capacity of
our framework to novel sketches. However, interpolation in em-
bedding space results in more meaningful transition between
source and target poses. For example, in the sketch interpolation
results in Fig. 11, the leg of the middle 3D model unnecessarily
turns right due to similar pose information coming from the input
sketch as pointed out in the red circle.

5.4. Generation of dynamic 3D models - Extrapolation

Our results show that the interpolation vector in the embed-
ding space is capable of reasonably representing the motion in
real world actions. To improve upon this idea, we exploit the
learned interpolation vector in order to predict future move-
ments. We show our results for extrapolation in Fig. 10(b). This
figure shows that the learned interpolation vector between two
3D shapes contains meaningful information of movement in 3D.
Further extrapolation results can be found in the teaser image and

the accompanying video.
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Fig. 11. Qualitative comparison with interpolation at the sketch level. The transition between produced 3D model sequences using interpolation in embedding space
are more meaningful than interpolation at sketch level.
5.5. Timing

We finish our evaluations with our timing information. The
losest work to our framework reports 10 min of production time
or an amateur user to create 3D faces from 2D sketches [12].
n our system, on the other hand, it takes an amateur user
0 s of stick figure drawing and 1 s of algorithm processing to
reate 3D bodies from 2D sketches. There are two main reasons
or this remarkable performance advantage of our framework:
i) Human bodies can be naturally represented with easy-to-draw
tick figures whereas faces cannot. The simplicity and expres-
ive make the learning easier and more efficient. (ii) Our deep
egression network is significantly less complex than the one em-
loyed in [12]. In another work, the authors propose a framework
hich takes as input a vector-format rough gesture drawing, and
igged 3D character model, then poses the character to conform
o the depicted pose [50]. This work requires an existing 3D
odel, which takes several minutes to create. In contrast, we can
enerate 3D models from scratch in a matter of seconds.
Our application runs on a PC with 8 GB ram and i7 2.80 GHz

PU. Training of our model is done on Tesla K40 m GPU and took
bout 2 days (800 epochs total).

. Conclusions

In this paper, we presented a deep learning based framework
hat is capable of generating 3D models from 2D stick figure
ketches and producing dynamic 3D models between (interpola-
ion) and beyond (extrapolation) two given stick figure sketches.
nlike existing methods, our method does not require a statis-
ical body shape model. We demonstrated that our framework
ot only gives compatible results on generation, but also com-
ares favorably with existing approaches. We further supported
ur framework with a well-designed user interface to make it
ractical for a variety of applications.

. Limitations

The proposed system has several limitations that are listed as
ollows:

• Training of our network is dependent on the existing 3D
shapes in the dataset. Our network cannot learn vastly dif-

ferent shapes than existing ones: it produces incompatible

72
Fig. 12. Failure cases of our framework. Our framework generates anatomically
unnatural results if the input sketch has disproportionate body parts (left), or it
is significantly different than the ones used during training (right).

3D models with sketch inputs that are not closely repre-
sented in the dataset. For example, our network does not
correctly capture the arm orientation for the right model in
Fig. 12.

• The system can only generate human shapes because of the
content of the dataset.

• The system can produce articulated shapes. Although it can
twist and bend 3D model body, it cannot, for instance,
stretch or resize a body part.

• The system benefits from the one-to-one correspondence in-
formation of the dataset. Thus, the quality of results depends
on this information.

• Since our network takes its input in a specific order, our
user interface constrains users to sketch in that order. Users
cannot sketch stick figures in an arbitrary order.

8. Future work

Potential future work directions that align with our proposed
system are described as follows. Human stick figures used in this
paper can be generalized to any other shape using their skeletons.
Consequently, an automated skeleton extraction algorithm would
enable further training of our network, which in turn extends our
solution to non-human objects. Voxelization of our input data
would spare us from the one-to-one correspondence informa-
tion requirement, which in turn would enable our interpolation
scheme to morph from different object classes that do not often
have this type of information, e.g., from cat to giraffe. Automatic
one-to-one correspondence computation [51–53] can also be con-
sidered to avoid voxelization. Latent space can be exploited in a
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etter manner in order to obtain a more sophisticated extrapo-
ation algorithm than the basic one we introduced in this paper.
ew sketching cues can be designed and incorporated into our
etwork to be able to produce body types different than the one
sed during training, e.g., training with the fit SCAPE actor and
roduction with an obese actress.
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