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Abstract

We present an automatic method that establishes 3D cor-
respondence between isometric shapes. Our goal is to find
an optimal correspondence between two given (nearly) iso-
metric shapes, that minimizes the amount of deviation from
isometry. We cast the problem as a complete surface cor-
respondence problem. Our method first divides the given
shapes to be matched into surface patches of equal area and
then seeks for a mapping between the patch centers which
we refer to as base vertices. Hence the correspondence
is established in a fast and robust manner at a relatively
coarse level as imposed by the patch radius. We optimize the
isometry cost in two steps. In the first step, the base vertices
are transformed into spectral domain based on geodesic
affinity, where the isometry errors are minimized in poly-
nomial time by complete bipartite graph matching. The re-
sulting correspondence serves as a good initialization for
the second step of optimization in which we explicitly min-
imize the isometry cost via an iterative greedy algorithm in
the original 3D Euclidean space. We demonstrate the per-
formance of our method on various isometric (or nearly iso-
metric) pairs of shapes for some of which the ground-truth
correspondence is available.

1. Introduction
3D shape correspondence methods aim to find a map-

ping between the surface points of two given shapes, or
more generally, they seek on two given shapes for pairs
of surface points that are similar or semantically equiva-
lent. 3D shape correspondence is a fundamental problem in
both computer vision and computer graphics with numer-
ous applications such as mesh morphing [1], mesh parame-
terization [2], shape registration [3], shape matching [4],[5]
and analysis of sequential meshes [6]. In this paper we ad-
dress the problem of establishing correspondence between
isometric (or nearly isometric) shapes. Isometric shapes ap-
pear in many different contexts such as different poses of
an articulated object, models of a mesh sequence represent-

ing the motion of a human actor, or two shapes representing
different but semantically similar objects (e.g., two different
humans or animals).

If two shapes are perfectly isometric, then there exists
an isometry, i.e., a distance-preserving mapping, between
these shapes such that the geodesic distance between any
two points on one shape is exactly the same as the geodesic
distance between their correspondences on the other. How-
ever, two shapes are hardly ever perfectly isometric, even
for different poses of an articulated object due to imperfec-
tions of the modeling process and/or geometry discretiza-
tion errors. Hence the goal of isometric correspondence
methods existing in the literature is usually to find an op-
timal mapping that minimizes the amount of deviation from
isometry. Isometry errors are however expensive to com-
pute and optimize in the original 3D Euclidean space [7].
A common strategy to avoid excessive computation is to
embed shapes into a different domain where Euclidean dis-
tances can approximate geodesic distances so that the isom-
etry errors can efficiently be measured and optimized in the
embedding space [5], [8]-[13].

Euclidean embedding can be achieved in various ways.
While Jain et al. [9] have used Principle Component Anal-
ysis (PCA) on the normalized geodesic affinity matrices to
achieve spectral embedding, Elad et al. [5] have employed
multidimensional scaling (MDS) to create pose and bending
invariant shape signatures. Other related examples are due
to Ovsjanikov et al. [8] who define the embedding space
by the eigenfunctions of the Laplace-Beltrami operator, and
Lipman et al. [12] who apply Möbius transformation in
order to transform the given shapes into a canonical coor-
dinate frame on the complex plane where deviations from
isometry can be computed based on mutually closest points.
Carcassoni et al. [11] have achieved correspondence by us-
ing EM algorithm after embedding the problem into spec-
tral domain via alternative proximity weighting matrices,
e.g., the sigmoidal proximity matrix, instead of the standard
Gaussian proximity matrix. Although the matching process
can be enhanced by incorporation of local geometric prop-
erties as in [14], a problem common to these embedding-
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based techniques is that they all produce approximate so-
lutions since they can measure deviations from isometry
only approximately in the embedding space. Hence all
these techniques have room for improvement. In this paper,
we describe a computationally efficient and robust method
which finds an optimal correspondence that minimizes de-
viations from isometry in the original 3D Euclidean space.

2. Problem Description
We cast the 3D shape correspondence problem as a sur-

face correspondence problem. To this effect, we divide the
given source and target shapes into surface patches of equal
area. We assume that the given shapes are (nearly) isomet-
ric and represented as manifold meshes on which geodesic
distances can easily be computed. We denote the resulting
two sets of surface patches by S and T , where each patch
is represented by the point at its center, a base vertex as
we call it. The problem is then reduced to searching for
an optimal correspondence between the surface patches, or
the base vertices of S and T . Note that one can find more
than one optimal correspondence for symmetrical objects.
The optimal correspondence that we seek for has to meet
two requirements: It has to be as complete (not partial, as-
suming perfect isometry such that |S| = |T |) and isometric
as possible, i.e., has to minimize deviations from isometry
through the following isometry cost:

Diso =
1
|§|

∑

(si,tk)∈§

∑
(sj ,tl)∈§ |d(si, sj)− d(tk, tl)|

|§| (1)

where § denotes the set of correspondences between S and
T , and d(., .) denotes the normalized geodesic distance be-
tween two surface patches, or between two base vertices, or
more generally between two points on a given surface. We
optimize the isometry error in two steps. In the first step, the
base vertices are transformed into spectral domain based on
geodesic affinity, where the isometry errors are minimized
in polynomial time by complete bipartite graph matching.
The resulting correspondence serves as a good initialization
for the second step of optimization in which we explicitly
minimize the isometry cost via an iterative greedy algorithm
in the original 3D Euclidean space.

3. Base vertices
The base vertices in S and T are computed by launch-

ing the Dijkstra’s shortest paths algorithm from an arbitrary
source vertex. When a base vertex is selected, all the ver-
tices lying within its patch of radius r are marked. The next
base vertex is then selected arbitrarily from the unmarked
vertices. When this is repeated until no unmarked vertex
is left, we obtain a partitioning of the surface into possibly
overlapping patches of equal size, where the patch centers,

i.e., the base vertices, are at least at distance r apart from
each other [4]. Once the base vertices are paired up accu-
rately between two shapes through the process described
in this paper, the surface patches defined by these bases
hold valuable information that can be used to expand the
obtained correspondence to a denser one if desired. All the
base vertices and some of the resulting patches for a given
shape are shown in Figure 1 for two different values of r.

Figure 1. |S| = 184 base vertices extracted from a mesh of 16K
vertices (left). Zoom on the leg (middle). |S| becomes 48 by
simply updating r (right). Some random patches painted as well.

4. Spectral embedding and alignment
Running the Dijkstra shortest paths algorithm from each

base vertex yields the geodesic distances between all pairs
of bases. These pairwise distances, when exposed to a zero-
mean unit-variance Gaussian kernel, form a geodesic affin-
ity matrix, Aij = exp(−d2(i, j)/2) for each of the base
vertex sets S and T . Each of these base vertex sets is
then transformed into the K-dimensional spectral domain
using the K leading (scaled) eigenvectors of the associated
geodesic affinity matrix [9]. We will denote the base ver-
tices embedded in the spectral domain by Ŝ and T̂ , respec-
tively for each shape. The geodesic distances between base
vertices in the Euclidean space now approximately corre-
spond to L2 distances between their K-dimensional em-
beddings in the spectral domain. Although the same trans-
formation is applied to both shapes, due to arbitrary sign
flips of eigenvectors, a disambiguation process is required
to test the 2K different possible embeddings for the best
alignment. We measure the alignment of each such em-
bedding Ŝk with the fixed T̂ by means of the cost Lk =∑|Ŝk|

i=1 (‖ŝi,k − t̂i‖), i.e., the sum of Euclidean distances be-
tween each closest pair (ŝi,k, t̂i). The embedding Ŝk pro-
ducing the minimum Lk aligns best with T̂ . This alignment
operation is visualized in Figure 2 for K = 3.
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Figure 2. Two shapes along with the spectral embeddings of their
base vertices (left), the alignments obtained using an arbitrary per-
mutation of the eigenvectors (left box), and using the best permu-
tation (right box). The boxes display two different views for visual
convenience.

5. Optimization

The optimal correspondence is determined in two steps.
We first find an initial correspondence in the spectral do-
main, which then serves as the initialization of the Eu-
clidean greedy optimization performed in the second step,
as described in the sequel.

5.1. Initial correspondence

We create a complete bipartite graph G on which the
minimum-weight perfect matching is sought. The aligned
base vertices Ŝ and T̂ form the disjoint vertex sets of G
which is made complete by connecting every vertex of one
set to every vertex of the other with edges weighted by
cij = ‖ŝi − t̂j‖, specifying the cost of matching ŝi and
t̂j . Since the cardinalities of disjoint sets must match for a
perfect matching, we introduce virtual vertices in the defi-
cient side with connector edges of∞ weights. Note that the
numbers of base vertices are almost equal for a given pair
of isometric shapes but need not be exactly the same due to
variations from isometry. Hence at the end of the optimiza-
tion process, some base vertices may be left unassigned. We
currently employ the Hungarian algorithm [15] to solve the
complete bipartite graph matching problem, which provides
us with the optimal initial correspondence when the amount
of deviation from isometry is measured in the embedding
space.

5.2. Isometry-driven greedy optimization

We have developed an iterative greedy optimization al-
gorithm that minimizes the isometry cost Diso given by
Eq. 1 in the original Euclidean space. The greedy opti-
mization starts with the initial correspondence, §0, found
via complete bipartite graph matching in the spectral do-
main. The algorithm traverses the correspondence list § and
replaces each time the current pair (si, tj) with (si, tc) if
this replacement decreases the isometry cost. The accumu-
lation of these greedy decisions, each of which considers a
local improvement, eventually leads to an optimal solution
on Diso as we re-traverse § until convergence, i.e., until Diso

no longer improves.
The replacement of the correspondence (si, tj) with

(si, tc) relies on the votes collected from the correspon-
dences of the base neighbors of si. Each of these correspon-
dences votes for its own base neighbors and the most voted
base vertex, tc, replaces tj if this replacement decreases the
following vertex-based isometry cost,

viso(si|tk) =
1
|§|

∑

(sj ,tl)∈§
|d(si, sj)− d(tk, tl)| (2)

with (si, tk) ∈ §, i.e., if viso(si|tc) < viso(si|tj), where
(rare) ties are resolved by picking the name that yields
the minimum Diso. In addition to a potential replace-
ment concerning si, we also consider the current match s+

i

of tc by replacing (s+
i , tc) with (s+

i , tj) if viso(s+
i |tj) <

viso(s+
i |tc). The Voting process is demonstrated on an ex-

ample in Figure 3.

Figure 3. Each base vertex (filled circles) has 4 neighbors (empty
circles) and (si, tc) is the ground-truth correspondence. When
(si, tj) is in process, Voting realizes the correspondences of the
base neighbors of si (pointed by the dashed arrows) (left-bottom)
and takes votes for their neighbors. Since the most voted base tc

is different than tj in this case, the correspondence (si, tj) is re-
placed with (si, tc) after checking viso(si|tc) vs. viso(si|tj). Note
that the pair (s+

i , tc) is also considered next for a possible replace-
ment with (s+

i , tj), though not illustrated in the figure.

The overall greedy optimization algorithm and the Vot-
ing procedure are given in pseudocode as follows:
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Greedy optimization algorithm

Input: Initial Correspondence list §0
Output: Correspondence list § that minimizes Diso

§ = §0
Until convergence (until Diso no longer improves)

For next pair (si, tj) ∈ §
tc = Voting((si, tj))
If viso(si|tc) < viso(si|tj)

(si, tc) replaces (si, tj) in §
Let s+

i be the match of tc, i.e., (s+
i , tc) ∈ §

If viso(s+
i |tj) < viso(s+

i |tc)
(s+

i , tj) replaces (s+
i , tc) in §

Voting(Pair (si, tj) ∈ §)
V = {η(tr) | (sp, tr) ∈ § where sp ∈ η(si)}

where η(si) is the set of base neighbors of si

tc = The most voted base listed in V
Return tc as the candidate replacer

Note that the performance of the voting scheme, hence
of the greedy algorithm, highly depends on the assump-
tion that the base neighbors are mostly paired up correctly,
which holds thanks to the initial correspondence §0 that
serves as a good initialization.

6. Computational complexity

The base vertices are obtained in O(Vs log Vs) time be-
cause the shortcut Dijkstra shortest paths for each patch
adds up to one Dijkstra algorithm spanning Vs, where Vs

is the number of vertices in the original mesh. The geodesic
affinity matrix is computed in O(|S|Vs log Vs) time. The
eigenanalysis for embedding into the K-dimensional spec-
tral domain takes O(|S|3) time followed by O(2K |S|2) op-
erations for alignment where K ≤ 6. Repetition of all
these operations for T is free of asymptotic cost. Assum-
ing, with no loss of generality, |S| ≥ |T |, O(|S|3) time
is necessary for the Hungarian assignment which could be
replaced with Edmonds’ blossom algorithm [16] that re-
quires O(|S|2 log |S|) time. The greedy optimization de-
mands O(|S|2) time since the computation of viso can be
performed in linear time for each of the |S| pairs, and the
whole process is repeated until Diso converges where the
number of iterations never exceeds 7 in our tests thanks
to the good initialization. Under the valid assumption of
|S| ¿ Vs, the overall complexity is then O(|S|Vs log Vs).

7. Results and Discussion

We have conducted experiments on two mesh sequences,
Jumping Man [17] and Dancing Man [18] as we refer to
them, both originally reconstructed from real scenes and

each representing the real motion of a human actor. The
original meshes of the sequences are all uniform and given
at high resolution with fixed connectivity hence we have the
ground-truth dense correspondences in both cases. We have
also tested our method on a relatively low-resolution Dog-
Wolf shape pair from the Nonrigid World 3D database [7].

In addition to visual results which display the computed
correspondences in Figures 4-6, we also provide quantita-
tive results in Table 1 which helps assessing the perfor-
mance in terms of average and vertex-based isometry and
ground-truth errors. The average deviation from isometry is
measured by the isometry cost Diso (Eq. 1) whereas vertex-
based isometry deviation is given by viso (Eq. 2). On the
other hand, the average and vertex-based ground-truth cor-
respondence errors are measured by using the ground-truth
correspondence pairs (si, ti) whenever available, respec-
tively as

Dground =
1
|§|

∑

i,(si,tj)∈|§|
d(ti, tj) (3)

vground(si|tj) = d(ti, tj), where(si, tj) ∈ § (4)

In Table 1, we provide, for different cases, the values of
the performance measures Diso, viso, Dground and vground

before and after greedy optimization to emphasize the ben-
efit of the latter. The vertex-based measures are given only
for the worst matches, which we denote by v∗iso and v∗ground.
The average-based measures are each computed over 10
different runs of the algorithm on 10 different pairs corre-
sponding to different poses of the actor in the correspond-
ing sequence. We have to note that in some cases our al-
gorithm may confuse the symmetrical parts of two given
shapes, which we have excluded in our experiments in or-
der not to artificially burst the ground-truth performance er-
rors. All the distance-based measures are given as a factor
of the patch radius r for better interpretation of the corre-
spondence errors. Through all experiments, the dimension
of the spectral domain was set to be K = 6 and the number
of base vertices was about 50 as determined in proportion to
the surface area. We have also tested the contribution of a
local shape descriptor to the initial correspondence, i.e., in
addition to L2-only cost used for complete bipartite graph
matching (Section 5.1), we have also tried a weighted cost,
w1L2 + w2κ, with w1 = w2 = 0.5, where κ is the Gaus-
sian curvature [19], computed for each base vertex as an
average value over the associated patch. This local feature
slightly improves the initial correspondence but eventually
has no contribution to the greedy optimization phase as ob-
served in Table 1. We also observe that the correspondence
performance is significantly improved after the greedy op-
timization, for all cases and for all performance measures.
It is interesting to see that the improvements in the ground-
truth error performances are generally larger as compared to
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improvements in isometry, which verifies the intuition that
small deviations from isometry can lead to a significant loss
in the correspondence performance.

The execution time of our implementation is mainly
dominated by the number of the vertices in the original
meshes due to the geodesic distance computation. On
a 2GB 2.1GHz duo laptop, correspondences for Jumping
Man (Vs = 16K), Dancing Man (Vs = 20K), Jumping-
Dancing, and Dog-Wolf (Vs = 3.4K) pairs are achieved in
102, 164, 126, and 10 seconds, respectively.

Figure 4. Correspondences displayed from two different views
(top-bottom) for two different Jumping Man pairs (left-right).
Bold green and red lines represent the worst matches w.r.t. ground-
truth and isometry costs, respectively. Some other matches are also
highlighted with similarly colored spheres.

8. Conclusion
We have presented a novel and computationally efficient

algorithm that can achieve robust correspondences between
two isometric (or nearly isometric) shapes represented as
manifold triangle meshes. We first establish a sufficiently
good initial correspondence that minimizes the isometry de-
viations in the spectral domain by solving a complete bipar-
tite graph matching problem. This initial correspondence is
fed to a greedy optimization procedure which further mini-
mizes the isometry cost in the original Euclidean space. In
fact, our greedy optimization algorithm can be used to fur-
ther optimize the output of any isometric surface correspon-

Figure 5. Correspondences displayed for two different Dancing
Man pairs (left-right). Bold green and red lines represent the worst
matches w.r.t. ground-truth and isometry costs, respectively.

dence method available in the literature.
As future work, we will expand our relatively coarse cor-

respondence to a denser one, which should be robust and
computationally efficient thanks to the information encap-
sulated within the surface patches that are already matched
through base vertices. Another obvious research direction is
to extend our method to handle partially isometric shapes.
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