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Abstract
In this work, we present a novel 3D indirect shape analysis method which successfully retrieves 3D shapes based on hand–
object interaction. To this end, the human hand information is first transferred to the virtual environment by the Leap Motion
controller. Position-, angle- and intersection-based novel features of the hand and fingers are used for this part. In the guidance
of these features that define the way humans grab objects, a support vector machine (SVM) classifier is trained. Experiments
validate that SVM results are useful for retrieval of 3D shapes. We also compare the retrieval performance of our method
with an interaction-based indirect method based on the Data Glove controller as well as a direct method based on 3D shape
distribution histograms. These comparisons reveal different advantages of our method, which are (i) being lower-cost and
more accurate compared to the Data Glove, and (ii) being more discriminative compared to a direct approach. We finally note
that our algorithm is rigid-motion invariant and able to explore databases of arbitrarily represented 3D shapes.

Keywords Indirect shape analysis · 3D shape retrieval · Leap Motion · Interaction-based shape analysis · Data Glove

1 Introduction

Over the last few years, there is a growing demand for the
analysis and retrieval of 3D shapes in areas such as computer-
aided design, molecular biology, medicine, geometry mod-
eling, computer animation, and video games. Searching 3D
shapes in huge model databases is becoming an essential
task to enhance design and discovery processes in a time-
efficient manner. To achieve 3D shape searching easily and
efficiently, related shape retrieval and analysis approaches
need to be developed. Although text-based searching meth-
ods can be used if the text queries of the 3D shapes are well
linked with the models, searching 3D shapes using only text
query is not very practical in large databases. Features that
are extracted directly from the form of the 3D object can also
be preferred in the context of example-based direct search-
ing, which, however, brings up the issue of finding the right
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3D shape features for an accurate classification. Humans can
easily classify objects from their surroundings according to
their functionality, but for computers, it is unclear how much
information is needed to detect their functionality. With-
out observing its complete functionality, problems may arise
while classifying the 3Dobjects. Features are generally insuf-
ficient to capture the functionality.

We address the problem of recognizing and retrieving 3D
digital objects that are geometrically similar but functionally
different. Such objects regularly appear in our daily lives and
consequently in the digital lives. This fact constitutes our
main motivation for designing this system. The following
design decisions are taken:

– Distinguishing geometrically similar but functionally
different shapes, e.g., cylinder versus pencil, with con-
ventional feature-based direct analysis methods is not
sufficiently robust as they are defined based on purely
geometric and/or topologic information. A better design
choice is to guide the process via live user feedbacks
which, however, takes away the attractiveness of a fully
automatic system that is convenient for, e.g., batch pro-
cessing. We consequently design an interaction-based
system free of direct geometric/topologic features and
user interventions.
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– For the interaction agent,weprefer a non-rigid hand agent
over a body agent since it interacts with small indoor
objects in a more natural way.

– For the hand interaction, we preferred the Leap Motion
sensor over the Data Glove sensor since it is cheaper and
able to provide a larger variety of features which in turn
renders it more accurate.

– For the method input, we admit a large domain of 3D
object representations including clean manifold meshes,
non-manifold meshes, meshes of arbitrary genus, poly-
gon soups, and point clouds. Also, rotation and transla-
tion differences in the input do not affect our rigidmotion
invariant method.

2 Related work

There are various methods that have been proposed for 3D
shape retrieval and analysis since the early 1990s. This sec-
tion discusses and reviews some of the most significant
papers from this domain by dividing them into three cate-
gories: rigid, non-rigid, and interaction-based retrieval and
analysis methods.

2.1 Rigid shape retrieval and analysis

A shape is considered to be rigid if it can be observed
under rigid transformations, which are translation and rota-
tion. Methods based on rigid-motion invariant features such
as volume–surface ratio and Fourier transform of the vol-
ume exist in the literature for rigid shape retrieval task [1–3].
Osada et al. [4] introduce a novel method that computes fea-
tures extracted from 3D rigid shapes. This approach aims to
decrease the computational complexity by comparing only
3D shape distributions. The fundamental idea of this work
is generating a shape function using different approaches.
Shape functions are used to create shape distribution his-
togramswhich are themain elements tomeasure similarities.

Another work for rigid shape retrieval is shown by Paquet
et al. [5]. According to that article, 2D and 3D shape descrip-
tors can be extracted from MPEG-7 images of the shapes.
In this work, bounding box information is extracted from
images and is used for categorizing 3D shapes. This approach
naturally extends to 2D image retrieval [6].

Using Zernike invariants as 3D shape descriptors is yet
another method for 3D rigid shape retrieval [7]. This algo-
rithm aims to classify 3D shapes according to their general
categories by utilizing the 3D Zernike descriptors using Can-
terakis’ work [8].

Similarity-based 3D shape retrieval by Chen et al. [9] is
another rigid shape retrieval method. The main idea of this
approach is that if two 3D shapes are similar, then they should
be viewed similar from certain view points. To this effect,

Chen et al. introduce a novel method based on the Light Field
Descriptor to describe 3D shapes. Using Light Field Descrip-
tors, they extract 3D shape features from camera views at
different angles. This work aims to reduce the feature size
and decrease the complexity of the retrieval process.

In general, global rigid shape features are suitable formost
of the 3D shapes, but some shapes become distinctive accord-
ing to their local features, which are defined locally around
shapepoints.According toShilane et al. [10] similarity of two
shapes can be found using their set of local descriptors. How-
ever, this work also states that finding local features in local
shape retrieval is a highly expensive process. Because of this,
they introduce a new method for selecting the most distinc-
tive local features. Local features are selected from several
regions for each 3D shape, and their retrieval performance
is computed using multivariate Gaussian distributions. This
method uses only important local features because using all
local features in 3D shapes results in longer retrieval times.

With the advancements in computational hardware and
developments of large-scale public repositories, new tech-
niques have been introduced in rigid retrieval [11–13]. Thus,
multi-view-based approaches became another essential tech-
nique for 3D shape analysis and retrieval. Bai et al. [14]
present a new method that obtains projective images from
different angles and collects features of the 3D models using
GPU acceleration. Also, reducing the time complexity helps
to work with large model databases. Gao et al. [15] introduce
another view-based method that constructs hyper-graphs
using 2D views. Most of these approaches have predefined
camera array settings. Using constraint-free camera arrays
[16], on the other hand, improves matching accuracy.

A different line of thought for rigid shape retrieval is intro-
duced by Leifman et al. [17] with their interactive relevance
feedback mechanism. Such a feedback helps user influence
the search results, which in turn enables retrieval of seman-
tically similar rigid shapes. This work also utilizes a novel
descriptor that captures the characteristics of the geometry
and topology of the model.

2.2 Non-rigid shape retrieval and analysis

A shape is regarded as non-rigid if it can be observed under
rigid transformations and an additional bending transforma-
tion, e.g., articulated poses of a human avatar. Non-rigid
3D shape retrieval methods are getting significant research
attention with the increasing popularity of the recent trends
in multimedia contents such as prerendered images, motion
captures, computer animations, video games and interactive
applications. 3D shapes such as human body and hand mod-
els that appear in different poses by using different joint
data are widely employed in both virtual and real environ-
ments [18,19]. Categorization and analysis of these similarly
structured but distinctly posed 3D shapes are needed. These
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non-rigid models can be inaccurately classified as different
shapes if we use rigid shape analyzing techniques.

Non-rigid shape retrieval is considered more challenging
than the rigid case due to the increased degree of freedom in
the database models to be searched. A non-rigid approach is
based on a similarity calculation between 3D shapes using a
novel technique called topology matching [20]. It suggests a
method for finding similarities between non-rigid polyhedral
models using multi-resolution Reeb graphs, which represent
functions based on the pose-invariant geodesic distances over
the shape. Another topology-matching method is skeleton-
based shape matching [21], in which skeleton of the volume
is first created and then indexed to 3D shape databases.

Many investigations have also been trying to employ the
geodesic distance of non-rigid 3D models for shape match-
ing. Jain et al. [22] suggest a retrieval approach by comparing
eigenvectors of the geodesic affinity matrices of the 3D
shapes. On the other hand, in Reuter et al. [23] eigenvectors
of the Laplace–Beltrami operator are used. A recent method
basedongeodesic distance preservation establishes non-rigid
retrieval of 3D shapes from 2D sketch queries [24].

Another approach is based on the exact differences
between 3D non-rigid shapes. It is a reliable solution, but
because of the required direct match between shapes [25], it
has high computational complexity. The prominent examples
of this approach is based on Gromov–Hausdorff distances
[26,27]. Deformation-basedmethods [28,29] tackle the same
non-rigid retrieval problem by bringing the shapes to be com-
pared into a detail-preserving canonical pose [30].

Hierarchical multi-resolution approaches [31,32] as well
as bag-of-words approaches [33,34] also fit well to the task
of 3D non-rigid shape retrieval.

Besides these approaches, recently, deep learningmethods
are emerged for fast solutions to many related applications
ranging from 3D pose estimation [35] to 3D scene genera-
tion [36]. Network architectures constructed in the spirit of
residual learning bring solutions to the retrieval problem as
well. Xie et al. [37] introduce deep shape descriptor using
a novel discriminative deep auto encoder which is insensi-
tive to deformations. This method implements a multi-scale
shape distribution and use it as the auto encoder. Afterward,
they utilize the Fisher discrimination criterion on the neurons
in the hidden layer, and in the final stage, these neurons are
concatenated to create a shape descriptor which can be used
for 3D shape retrieval and classification. The main draw-
back of this, and many other deep learning approaches, is the
tedious training process.

2.3 Indirect shape retrieval and analysis

Shape retrieval methods discussed thus far analyze the 3D
shapes based on their geometric or topological features.
These features are extracted directly from the shape. In recent

years, new 3D shape analysis approaches are developed.
Interaction-based shape retrieval methods are based on how
external agents interact with the shape of the surface. This
type of retrieval approach has some benefits upon other con-
ventional retrieval methods. The most significant advantage
of this class ofmethods is that 3D shape functionalities can be
conveniently discovered by the object’s interactionwith, e.g.,
human body and hand. The other benefit of the interaction-
based retrieval is that shape retrieval is not affected by the
defects of the shape.

Liu et al. [38] introduce a method where shape features
are not computed directly from the shape itself. It rather
uses external agents which are deformable 3D shapes. This
work aims to map external models to 3D shapes correctly.
Using external model’s position and orientation information,
Liu et al. match objects with their probabilistic information.
This method has some drawbacks. Firstly, 3D shapes must
be placed upright correctly and scaled according to its exter-
nal models. Also, the models should be appropriate to enable
accurate alignments with the predefined agents that are not
allowed to be reposed.

Kim et al. [39] propose a new shape analysis method that
reposes a human agent on the human-made objects in order
to extract the semantic and functionality of the 3D shapes.
After the learning process, when a 3D shape is used as an
input, the framework searches to find the proper human pose
with small energy according to affordance model [40]. They
also extract contact points and kinematic parameters of the
3D shape.

Kaick et al. [41] introduce another interaction-based
method that contains contextual descriptors. They aim to
define the functionality of the objects in a geometric man-
ner. The contextual descriptors here are called the interaction
contexts. Normally, other works extract functionality of the
shape indirectly. On the other hand, interaction contexts
define functionality of the objects explicitly. Interaction con-
text collects the geometric data between the center object
and the peripheral objects. After that, it constructs a hierar-
chical structure to define the interaction relations between
the shapes.

Another fundamental topic for 3D shape classification
is object reasoning and their affordances. Instead of using
shapes, names, types, or colors to categorize shapes, objects
can be classified by defining which function that object is
used for. For example, basketball object can be labeled as a
rollable object or apple can be defined as an eatable object.
According to Zhu [42], the knowledge base approach gives
a new direction to the classification methods by using the
functionalities of the objects. Knowledge base is a graph like
structure that holds entities to define the functionality of the
object. It consists of various object attributes and entities.
Attributes consist of three different types; visual attributes
(e.g., color), physical attributes (e.g., size, weight) and cate-
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gorical attributes (e.g., cat is an animal). Affordances provide
a moderate representation to represent the objects, allowing
objects to be recognized even if they have never been seen
before. Analysis of objects can be strengthened by establish-
ing a link between attributes and affordances.

Bar-Aviv and Rivlin [43] introduce a novel approach to
classify 3D shapes using their functional usage. It argues
that the classification can be achieved through simulation of
actions. In order to validate this idea, the ABSV: agent-based
simulated vision approach tries to imitate the way humans
perform certain classification tasks. In the ABSV method, a
corresponding virtual agent is assumed to exist for any func-
tionality. For instance, a corresponding virtual human model
should exist for the seatability function. By embodying that
model in the system, they classify objects as chairs by trying
to make the virtual human seat on them.

3 Proposedmethod

We propose a supervised learning approach to analyze and
retrieve 3D shapes using support vector machine classifier
and their interactionswith a digital hand.Ourmethod is based
on the analysis of how people are grabbing a 3D object.

In particular, we implement two different analysis tools
for our grab-based retrieval task. The first tool captures the
hand features using the Data Glove device. We obtain the
hand data using the real-world objects. This tool is used to
compare accuracy with the proposed software. Our proposed
tool is implemented using the Leap Motion device, which
captures the hand data using virtual objects. We estimate the
performance of our method using tenfold cross-validation.
Our training set consists of nine labeled objects that have
different functionalities. Every object can be held by only
one hand.

The organization of the algorithms implemented for this
work is shown in Fig. 1 for the Leap Motion application and
Fig. 2 for the Data Glove application.

In the first step of both applications, the hand descrip-
tors and the interaction attributes are gathered from the Leap
Motion controller and theDataGlove controller, respectively.
Then, the set of relevant features is extracted from the data

Fig. 1 Leap Motion application pipeline

Fig. 2 Data Glove application pipeline

that are acquired by these devices.After the feature extraction
process, training and test data are converted into the proper
formatted file for the support vector machine (SVM). Dur-
ing the data collection process, these two controllers provide
different types of data, and these data are collected at various
times. For this reason, extracted features are used separately
in the machine learning process. In the preprocessing part,
data are scaled and offset. Afterward, the best SVM kernel is
selected according to the data type of the feature. With grid
search approach, the best kernel parameters are found for
each approach. Cross-validation method using the best ker-
nel parameters gives the best result for this dataset. Finally,
a multi-class SVM is applied to the extracted features from
both applications.

3.1 Features for the leapmotion application

In the Leap Motion application part of this work, different
types of features of the hand are used to classify 3D shapes
accurately. These features are mostly extracted directly from
the hand and computed by theLeapMotionAPI.We combine
some of the API features into novel features as well as define
a different feature that calculates the interaction between the
hand and the virtual object to enhance the retrieval perfor-
mance.

During the process of sample acquisition, we observe that
most of the values that are calculated by the Leap Motion
device are very accurate. However, in some situations, Leap
Motion device may produce unsatisfactory results. We found
out that light source angle, intensity, and type are some of
the reasons for the poor results; therefore, we took the sam-
ples during daylight to prevent data distortion. Also, if the
fingers are standing next to each other, Leap Motion device
may not get the data of the fingers correctly. Moreover, hand
orientation is another factor for capturing finger data prop-
erly. Thus, some of our virtual objects are aligned differently
to capture all fingers correctly. Background objects cause
another problem for obtaining the hand data. For example, if
a part of the human body or real-life object enters the Leap
Motion camera frame, the device may not recognize the hand
appropriately. Therefore, users are asked to sit on the chair
when application samples were taken, and the objects that
may affect Leap Motion camera are removed from the room.

All features used in the Leap Motion application are
explained in the following list of 11 items. Note that, some
items represent a set of features in this list. The actual number
of distinct features is indeed 119. While the first five items
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are obtained directly from the API, we design and propose
the other six as novel contributions of this work.

1. Position and direction of fingertips These features are
the translation and orientation of the fingers in world
coordinates. Fingertip positions are denoted as Fi for
i = {1, 2, 3, 4, 5}. Fingertip directions are the unit nor-
mals of the corresponding tips.

2. Hand and arm direction Vectors that show hand and arm
directions are unit direction vectors in world coordinates.
Direction vectors are shown using Dh and Da for hand
and arm, respectively.

3. Hand normal and center Hand normal is a unit vector
that is perpendicular to the palm plane and pointing down
from the palm center in world coordinates. Hand center is
an approximate position of the palm region in the world
coordinates.

4. Pinch and grab strength Pinch strength shows howmuch
the hand joints are close to the predefined pinch pose.
Additionally, grab strength shows closeness of the hand
joint values to the predefined grab pose. These values are
defined between zero and one.

5. Sphere center and radius Sphere center value defines the
center position of the imaginary sphere that is located
around the palm such that it gets smaller as the pose turns
into a fist. Radius refers radius of the defined sphere.

6. Distance of fingertips It is a distance value between all
fingertips calculated as:

Di j = ∣
∣
∣
∣Fi − Fj

∣
∣
∣
∣ , i, j = 1, . . . , 5 (1)

7. Wrist angle This feature is based on the angle between
the normalized arm and hand direction vectors defined
as:

α = acos (Dh · Da) (2)

8. Angle difference between initial and current joints This
feature uses the rotation of each finger joint in local coor-
dinates. These joint variables are shown as Ji j , where
i = {1, 2, 3, 4, 5} is the finger ID and j = {1, 2, 3} is
used for the joint ID. When the application starts, initial
quaternion values of the hand in reference null pose is
recorded to calculate every joint angle. These joint vari-
ables are shown as Ii j with the same indexing as Ji j .
To record the current sample, which is essentially the
difference between the reference and the current pose,
conjugated angle θ for each joint is calculated as fol-
lows, where A0 is the angle component of the currently
computed quaternion Ai j :

Ai j = Ji j · conj
(

Ii j
)

(3)

Ai j = [A0 A1 A2 A3] (4)

θ = 2 · acos (A0) (5)

9. Interaction points Interaction points consist of 64 small
spheres that reside on the inner surface of the hand and
indicate whether the hand touches the 3D shape or not.
When spheres intersect the virtual object, they become
active. Each sphere is attached to a part of the hand
according to the position and rotation information gath-
ered from the Leap Motion API and if that part of the
hand moves, the spheres move accordingly. Sphere inter-
action status is recorded 60 times per second through
intersection operations. To get a sample, the application
calculates an average of the interaction point values in
one second over all participants. During the data col-
lection phase, interaction points might lead to inaccurate
results because of the lack of feedback. To prevent incon-
sistent interaction points feature data, a visual feedback
mechanism is implemented which shows the interaction
between the virtual object and the hand (Fig. 3-right).
We also show the interaction points which are created
according to the average interaction data over all objects
and the digital hand, green being the highest interaction
and red the lowest (Fig. 3-left).

10. Fingertip direction and distance from hand center This
feature is the unit direction from the hand centerC to each
fingertip as well as the corresponding distances, given as:

Di = Fi − C, i = 1, . . . , 5 (6)

Mi = ||Di || , i = 1, . . . , 5 (7)

11. Fingertip elevation from hand center Fingertip elevation
is the angle between the hand plane normal and the vector
from the hand center to each fingertip. It is calculated for
one tip via:

u = Fi − C (8)

N = (A, B, C) (9)

α = |A · u1 + B · u2 + C · u3|√
A2 + B2 + C2 ·

√

u21 + u22 + u23

(10)

Note that, since all of our features, except the Interaction
Points, are computed on the digital hand, our method is quite
flexible in dealing with databases of 3D shapes, may it be
represented as a clean manifold mesh in arbitrary topology,
non-manifold mesh, polygon soup, or a point cloud. Interac-
tion Points feature processes the hand as well as the object
but still enforces no constraints on the representation of the
object.
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Fig. 3 Interaction points obtained by averaging the results of all the
objects (left) and Leap Motion feedback component (right)

3.2 Features for the data glove application

In this application, since the users interact only with the real-
world objects, only the features supported by the Data Glove
is used. The Data Glove API provides hand values from 14
different points. Ten of these values are the angles of the fin-
ger joints (two per finger), and the remaining four are the
angles between the five fingers. The values that are transmit-
ted from the glove can be between zero and one, as well as
between zero and 4096 [44].

3.3 Experiments

3.3.1 Object selection

Many different objects are used in the LeapMotion and Data
Glove applications developed for this work. In total, nine
different objects are employed. Three of them are chosen
as objects with primitive shapes, and the other objects are
selected as objects which are regularly used in daily life.
Every object has a real and a virtual version. Real objects are
employed in the Data Glove application, and virtual objects
are for the Leap Motion application. Real and virtual objects
are not identical, but their dimensions and shapes are the
same. As seen in Figs. 4 and 5, the virtual and real versions of
these objects are cup, sphere, cylinder, mouse, pencil, phone,
quadrangular, scissor, and tablet.

3.3.2 Data collection

The data in our user study are obtained from user-defined
static hand motions. To this effect, two different data-
capturing processes are built and nine different shapes are
found. The first experiment uses the real objects and is based
on the Data Glove controller. In order to perform the second
experiment that is based on the LeapMotion controller, these
objects are created virtually using their real-world references
as shown in Fig. 6.

The participants to our user study are provided with the
hardware and software they needed for both experiments. In

Fig. 4 Real-world objects that are used in the Data Glove application:
cup (top left), cylinder (top middle), mouse (top right), pencil (middle
left), phone (center), quadrangular (middle right), scissor (bottomLeft),
sphere (bottom middle), and tablet (bottom right)

Fig. 5 Virtual objects used in the Leap Motion application: cup (top
left), cylinder (top middle), mouse (top right), pencil (middle left),
phone (center), quadrangular (middle right), scissor (bottom Left),
sphere (bottom middle), and tablet (bottom right)

every experiment, firstly, the necessary information is given
to each participant to let them perform the sampling process
properly. After that introduction, their data are captured for
each real-world or virtual object. Finally, this hand infor-
mation is processed and used in support vector machine for
object classification.
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Fig. 6 Examples of capture processes using Leap Motion and Data
Glove controllers

3.3.3 Participants and experiment area

For this work, 26 participants are volunteered from Ankara
METU Area. The volunteers are 21 male and five female
participants within age range between 24 and 46, and their
average age is 32. The candidates are chosen from various
professions. On the other hand, to avoid technical bias, we
choosemost of them from computer-based jobs, such as soft-
ware developers or 3D–2D graphics artists.

The participants average daily computer usage is 6 hours
(the least is 4, and the most is 10). 13 participants reported
that they used the Leap Motion controller before. None of
the participants used data glove device before. Moreover, the
other five stated that they used human–computer interaction
devices before, e.g., Microsoft Kinect or Nintendo Wiimote.
In the experiments, all participants used their right hands
even if they are left handed.

The experiments are performed in a closed environment.
The samples were taken during the daytime because Leap
Motion gives better results under natural light. A relatively
quiet environment is created so that users are not distracted
or experiment is not interrupted by external factors.

3.3.4 Process

At the beginning of the hand data collection process, we
gave a tutorial regarding how to use both of these applica-
tions.After that process,we show the 3Dvirtual or real-world
shapes that are used in both experiments. It is the vital issue
that example of how the users should hold the objects is not
given. On the other hand, for functional objects only, users
are informed that they should grab items as if they are using
the objects.

When a user starts any of our two applications, namely
the Data Glove and Leap Motion applications, his/her name
is first entered through the graphical user interface. Subse-
quently, the appropriate application is opened according to
the controller type (Fig. 7). When the user holds the object,
the hand information is saved with the help of the submit
button in the application. If the hand information is success-

Fig. 7 Screenshots from our Leap Motion (left) and Data Glove appli-
cations (right)

fully saved, the status field corresponding to that object turns
green, and this process continues for each object. Each saved
user file contains information about which objects are stored
in the saved file along with the corresponding hand informa-
tion, and how many samples are taken from the participant.
After the samples are taken from all users, they are exported
in a suitable file format. If the feature is a scalar value, then
it is inserted as a single entry, and if it is a vector value, the
value is added as a separate feature for each dimension.

3.4 Shape retrieval

In order to apply multi-class support vector machine (SVM),
all vectors are classified according to their corresponding
3D shapes. To obtain the classification results, first, SVM
calculates the outcome of every 3D shape. In other words, if
we have N different objects that will be used in SVM, then
N (N − 1)/2 binary SVMs are used to find a result for each
3D shape pair. Each result of these SVMs is used as a point of
a certain shape, and the object that has the maximum number
of points is selected as the output of the classification.

In this work, nonlinear radial basis function (RBF) is used
to train the feature vectors in SVM. To find the best RBF
variables, the grid-based search method is applied for the
Leap Motion and Data Glove applications. For every RBF
parameters (C, γ ), a range of values is selected, and a basic
grid is created for every (C, γ ) pair. Then, SVM with RBF
is applied with these values repeatedly until the best results
are found. Furthermore, to find the best results, tenfold cross-
validation approach is used for both application features. In
this cross-validation, the original data is randomly divided
into tenfold. Each fold contains prelabeled data special to
the application at hand. We then train the model using every
fold except for one, whichwe call the test fold.We essentially
test to see how well the model is doing on this test fold. We
record the number representing its performance and repeat
the whole process with a new test fold and nine other training
folds. In the end we have 10 performance numbers which
we average into a single estimation with the optimal RBF
variables.
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4 Results and discussion

We examine hand–object interactions from two different
viewpoints: via Data Glove (Sect. 4.1) and Leap Motion
(Sect. 4.2) and promote the results of the latter as our
proposed solution. We also provide a comparison with a
direct analysis method which is not interaction-based at all
(Sect. 4.3).

In the Data Glove solution, the real-world objects are
captured using the Data Glove controller, and the samples
are collected with the aid of the software which is imple-
mented for this work. In this stage, hand–object interaction
samples which are captured from Data Glove application
are analyzed with the help of the support vector machine
(SVM), and eventually these objects are categorized with
the result.

In the Leap Motion solution, the samples are taken from
the users by providing the objects in the virtual environment
with the help of Leap Motion controller. The objects used
in this phase have the same dimensions and shapes as the
objects utilized in the Data Glove part. Also, SVM is used in
the same way as that part to categorize the shapes.

In the sequel, the analysis and categorization results
computed by these solutions are shown, and a detailed com-
parison is made between their results. The accuracy results
found in this section are computed by the ratio of the true
positive predictions to all predictions.

4.1 Data glove results

To measure the performance of the approach that is used
in Data Glove controller application, we capture a dataset
of the hand–object interaction information. The Data Glove
dataset contains data of 9 different real-world objects which
can be seen in Fig. 4. This data are captured from 20
different people. Each object is captured twice for every par-
ticipant, and 9 × 20 × 2 = 360 samples are obtained in
total.

The features obtained from the Data Glove controller are
very few due to the limited capabilities of the device. For
this reason, only 14 different features are extracted from the
samples obtained from the Data Glove. These features are
the normalized joint angles between the Knuckle joints and
the Second joints for every finger, hence a total of 5+5 = 10
features. Also, the horizontal angle between the fingers, 4 in
total, are used as features in this phase, and these features are
called as Abduction angles.

Table 1 shows the results obtained from the Data Glove
application using the classification algorithm in Sect. 3. Each
row of the confusion matrix shown represents the number of
instances in the actual class while each column represents
the number of instances in the predicted class. This matrix

Table 1 Confusion matrix for Data Glove when all 14 features are in
use

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1: Sphere 27 0 3 0 0 5 4 0 1

O2: Mouse 0 32 0 0 4 0 3 0 1

O3: Cylinder 2 0 34 0 0 2 1 0 1

O4: Cup 0 0 1 36 0 0 0 0 3

O5: Phone 0 0 0 0 31 0 2 4 3

O6: Cube 4 0 2 0 2 27 4 1 0

O7: Scissor 1 1 1 1 1 2 25 2 6

O8: Tablet 0 0 0 0 2 1 2 32 3

O9: Pencil 0 1 0 0 1 0 4 5 29

Table 2 Performance of Data Glove when different sets of features are
in use

Feature set Accuracy (%) Train + test time (s)

Abduction 60.55 6.12

Knuckle 46.94 6.21

Second 42.50 6.49

Abduction + knuckle 65.83 7.79

Knuckle + second 61.94 5.92

Abduction + second 66.94 6.25

Abduction + second + knuckle 75.83 7.82

Last row shows the case where all the sets, hence all 14 features, are in
use

demonstrates that there is no significant high rate of false-
positive values.

When all features are used, the retrieval accuracy is about
75%, which shows that majority of the shapes are recognized
(last row in Table 2). Also, we have obtained an adequate
result of 0.72 kappa statistics. If the features are narrowed
down to the only abduction angles, the accuracy decreases
to 60.55%. When only knuckle joint features are used in the
SVM to categorize the shapes, the performance decreases
dramatically to as low as 46.94%. These results show that
the objects cannot be separated using only these features.
Additionally, the confusion matrix of the second joints gives
similar results with the knuckle joints with 42.5% accu-
racy.

An interesting observation is that sets of features cap-
ture different properties of the hand, and by combining them
together, it is possible to improve the retrieval accuracy, e.g.,
by combining knuckle, second, and abduction feature sets,
an accuracy of about 65% can be reached. Results obtained
based on different combinations of feature sets are shown in
Table 2 along with the Train + test time. Note that, once the
model is set after training and testing, queries are responded
instantly.
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Table 3 Confusion matrix for Leap Motion when all 119 features are
in use

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1: Sphere 49 1 0 0 0 2 0 0 0

O2: Mouse 0 50 2 0 0 0 0 0 0

O3: Cylinder 1 1 50 0 0 0 0 0 0

O4: Cup 0 0 0 48 0 0 1 1 2

O5: Phone 0 0 0 3 23 0 0 26 0

O6: Cube 3 1 0 0 0 47 0 1 0

O7: Scissor 0 0 0 1 0 1 50 0 0

O8: Tablet 0 0 0 0 32 0 0 20 0

O9: Pencil 0 0 0 2 1 0 0 0 49

Table 4 Performance of Leap Motion when different sets of features
are in use

Feature set Accuracy (%) Train + test time (s)

General 74.14 14.14

Fingers 75.35 26.8

Interaction points 60.00 29.81

General + fingers 78.98 25.6

General + interaction points 73.53 32.81

Fingers + interaction points 77.97 40.5

General + fingers +
interaction points

80.00 68.24

Last row shows the case where all the sets, hence all 119 features, are
in use

4.2 Leapmotion results

The dataset for Leap Motion tests consists of information
about nine different virtual 3D shapes which are shown in
Fig. 5. Our tests are performed on 26 different people. Each
object is captured two times for every people, and9×26×2 =
468 samples are collected in total.

The features that are captured from the Leap Motion
controller are very distinct thanks to controller’s flexible
interface. 119 different features are extracted from the sam-
ples obtained from the Leap Motion controller and these
features are grouped into three main categories as General
features, Finger features, and Interaction Points features. The
former constitutes non-finger features listed as items 2, 3, 4,
5, and 7 in Sect. 3.1, and the last one represents the set of 64
interaction features (item 9). Items 1, 6, 8, 10, and 11 make
up the Fingers features.

The confusionmatrix inTable 3 shows the results obtained
by using all the features extracted from our Leap Motion
application. All the features revealed a result of 80% cor-
rectness (last row in Table 4), which in general shows the
correct classification of the objects. A value of 0.92 kappa
statistics also verifies that the results are satisfactory. There

is, however, a misclassification between the phone and the
tablet objects. These two objects cannot be adequately clas-
sified by SVM, because they are very similar to each other
in the form of grabbing. If these two objects are assumed to
be a single class, a result of more than ninety percent can
be obtained. Also, during the data collection process, users
have already confused these objects due to their visual simi-
larities in the absence of texture mapping (see Fig. 5), which
made them treat the objects wrongly, e.g., used the tablet as
a phone. This led to inaccurate interaction data and explains
the corresponding low scores.

A few cube samples in Table 3 are incorrectly classified
as sphere objects, despite the high accuracy in general. The
main reason of this misclassification is the similarity of the
InteractionPoints.As seen in Fig. 8, there is a high interaction
value in the distal and middle phalanx areas of the fingers,
andmedium-sized interactions can be seen in the areaswhere
metacarpal and proximal phalanx bones join.

The results obtained by using only the General features,
instead of using all the features, also contains frequent
incorrect recognitions between phone and tablet objects. An
overall accuracy rate of 74% is obtained with General fea-
tures only.

4.2.1 Results based on interaction points

In order to emphasize the promoted solution of combined
features, which comes with 80% accuracy, we in this section
focus on the results based on a single feature set, namely the
Interaction Points.

Data obtained using Interaction Points only are prone to
confusions and results in an accuracy of 60% and a value of
0.55 kappa statistics. Themouse object, for instance, has high
false-positive values due to its eight timesmiscategorizations
as cup objects. As demonstrated in Fig. 8—top left and top
right for these two objects, there is interaction in thumb,
index, and middle fingers at high quantity, and also there
is interaction at the points where metacarpals intersect with
these three fingers.

The cylinder object presents a high correct categorization
rate, showing 46 of the 52 samples as true positives, which
is still inferior to the 50/52 result of our promoted combined
solution in Table 3—row 3. This object has a high rela-
tively percentage of interaction on the distal phalanx bones
(Fig. 8—top middle).

The cube object, on the other hand, has a high rate of mis-
classifications as pencil and scissors objects. Thumb, index,
ring and middle fingers play a major role in the hand inter-
action of the cube object (Fig. 8—middle right), which is
similar to the pencil and scissor objects (Fig. 8—middle left
and bottom left). Notice also the lack of interaction with the
metacarpals (palm and finger connections) common to both
these three objects.
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Fig. 8 Hand–object interaction points for every object. Layout is con-
sistent with that of Fig. 4

When looking at the accuracy rates of phone and tablet
shapes, there is a large number of false-positive results as in
the other Leap Motion analyses. As shown in Fig. 8—center
and bottom right, the thumb and index fingers show a high
level of interaction on these two objects and the same rate of
interaction does not appear in the other fingers and the palm.
24 of the 52 samples in the phone object are consequently
miscategorized as tablets, and 19 of the 52 tablet objects are
misguessed as phones. As in the other feature sets, combined
or alone, the Interaction Points feature set cannot distinguish
the difference between the phones and the tablets.

When all of the InteractionPoints for each shape are exam-
ined, we observe in general that the objects do not interact
with the parts of the metacarpal near the wrist, and therefore
these areas do not contribute to the classification at all. Dur-
ing the interaction, phalanx bone regions play a major role in
classification. Besides, the thumb finger can be seen as the
common part in every interaction.

4.2.2 Results based on other feature combinations

Similar to Sect. 4.2.1, we now examine the results when a
pair of feature sets is used. We observe in this scenario that
accuracy slightly increases (Table 4). With a combination of
feature sets of General and Fingers, the accuracy increases
to 78.98%, and the kappa value reaches to 0.76 which is
a strong value. In these results, an unexpected false posi-
tive value is not encountered except for the tablet and phone
objects. Likewise, General and Interaction Points feature set
combination has a good result with 73.53%. In this combina-
tion, in addition to the tablets and phones, it can be seen that

the spheres and cube objects are not satisfactorily classified.
Fingers and Interaction Points feature set pair shows a result
that is similar to the combination of General and Fingers with
a result of 77.97%. In these results, there is an unexpected
false-positive result of classification between the pencil and
the cup.

Another feature set combination is achieved via the leave-
one-out method with the results in Table 5. When compared
to the tenfold cross-validation experiment (Table 3), there are
no significant true positive value changes in the confusion
matrices. Furthermore, the confusion matrix of this experi-
ment shows that the distribution of the false-positive values is
similar to the tenfold cross-validation experiment. Using all
the features sets found on LeapMotion experiment, a similar
accuracy result of 80.17% is achieved compared to our pro-
posed tenfold cross-validation technique. Despite the similar
performance in terms of accuracy, leave-one-out method is
about 12 times slower than our tenfold cross-validation solu-
tion as it divides the data into much more folds of much
smaller sizes during training and testing.

In summary, using different feature variety in the pro-
moted Leap Motion application and the competitor Data
Glove application has led to different accuracy results with
a five percent difference favoring our system. In the Data
Glove application, we can only access the angles between
finger joints, on the other hand, LeapMotion API gives posi-
tional information of the hand and fingers alongside the joint
information. Therefore, we can extract new features using
the Leap Motion data, e.g., the Interaction Points. Also, in
the data collection phase with Data Glove, we noticed that
the collected device output is not precise compared to Leap
Motion. Leap Motion application, however, demonstrates
unsuccessful results in phone and tablet classification in con-
trast to theDataGlove application.Note finally that, although
queries are responded instantly in both applications, our pro-
moted solution takes more training and testing time due to
the larger number of features in use. The difference is linear
in the number of features, i.e., Data Glove with 14 features
is about 8.5 times faster than LeapMotion with 119 features.

4.3 Direct retrieval versus indirect retrieval

In addition to the interaction-based classification experi-
ments, the success of our approach is also verified when
compared to a direct shape retrieval method based on 3D
shape distribution histograms [45]. Measurement of the dis-
tance between a fixed point and random points on the surface
is used in this work as the histogram descriptor. As seen
in Fig. 9, if the objects have different geometric forms,
shape histograms can be used for classification. However,
there is no satisfaction in classifying objects that are similar
in geometry but have different functionalities and classes.
Shape histograms show that cylinder objects give similar
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Table 5 Confusion Matrix for Leap Motion when all 119 features are
in use under leave-one-out cross-validation

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1: Sphere 48 1 0 0 0 2 0 1 0

O2: Mouse 0 51 1 0 0 0 0 0 0

O3: Cylinder 4 0 48 0 0 0 0 0 0

O4: Cup 0 0 0 46 1 0 2 1 2

O5: Phone 0 0 0 2 28 1 0 21 0

O6: Cube 3 0 0 0 1 48 0 0 0

O7: Scissor 0 0 0 0 0 1 51 0 0

O8: Tablet 0 0 0 0 25 0 0 27 0

O9: Pencil 0 0 0 2 1 0 0 0 49

Fig. 9 D1 shape distributions of six shapes. In each plot, the horizontal
axis shows the normalized distance, and the vertical axis represents the
probability of that distance being between two shape points

results with the pencil shapes. On the other hand, in Leap
Motion application, we get a successful accuracy without a
false-positive result in the classification between pencil and
cylinder (Table 3). Note that cylinder can be replaced with
many other practical objects in similar geometric forms but
different functionalities, such as batteries, toiler paper rolls,
aerosol cans, and candles. With this work, we can see that
such objects with similar geometries but different function-
alities can be successfully classified according to how they
are grabbed.

5 Limitations

Although this work is algorithmically complete and has
achieved its purpose, there is room for improvement in the

experimentation part. Firstly, for each object class, one type
of each object was used during the experiment. A more com-
prehensive evaluation could be carried out by populating
the object set with various versions of these models. Sec-
ondly, DataGlove experiments could be repeatedwith virtual
objects to be fully compatible with the Leap Motion tests.
Finally, the number of participants could be increased for
more generic results.

6 Conclusion and future work

In this work, we developed a novel 3D rigid shape retrieval
algorithm based on indirect analysis paradigm. In contrast
to body–object interactions popular in the indirect anal-
ysis approaches, we utilize a novel hand–object analysis
framework which presents difficulties as well as opportu-
nities that are specific to this new problem. Our approach
is also fundamentally different from yet another pop-
ular technique, retrieval by direct analysis. We in the
end show that our method successfully predicts objects
groups with 80% accuracy. Our algorithm coupled with
a cheap device like Leap Motion achieves more accurate
results than a comparative algorithm run on the expen-
sive Data Glove equipment. Experiments show that our
indirect approach to the retrieval problem distinguishes cer-
tain objects classes much better than a comparative direct
approach.

Our algorithm works on existing feature descriptors and
our novel feature descriptors obtained using the information
of how to grab 3D objects in the correct way. These features
define which parts of the 3D shapes and the digital hand
model interact with each other. Fed into the support vector
machines, our features produced promising retrieval results
in our learning-based framework. These features do not con-
straint the representation of the input 3D database models in
any way.

Our results can serve as a guide to describe how hand
parts are involved in the grabbing action. In particular, our
results show which parts are the most and least important
and demonstrate user habits while grabbing an object. These
findings extend well to future work, such as time-varying
analysis where the motion of the hand is also important,
e.g., in robotics. Yet another fruitful research direction can
be the addition of the second hand to the process which
should increase the recognition scope. We finally point out
the possibility of replacing the user control on our digital
hand agent with a fully automatic control through artificial
intelligence.
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29. Sahillioğlu, Y., Kavan, L.: Detail-preserving mesh unfolding for
non-rigid shape retrieval. ACM Trans. Gr. 35(3), 27 (2016)

30. Pickup, D., Liu, J., Sun, X., Rosin, P., Martin, R., Cheng, Z., Lian,
Z., Nie, S., Jin, L., Shami, G., Sahillioğlu, Y., Kavan, L.: An evalua-
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