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Abstract
We present a multiple shape correspondence method based on dynamic programming, that computes consistent
bijective maps between all shape pairs in a given collection of initially unmatched shapes. As a fundamental
distinction from previous work, our method aims to explicitly minimize the overall distortion, i.e., the average
isometric distortion of the resulting maps over all shape pairs. We cast the problem as optimal path finding on
a graph structure where vertices are maps between shape extremities. We exploit as much context information
as possible using a dynamic programming based algorithm to approximate the optimal solution. Our method
generates coarse multiple correspondences between shape extremities, as well as denser correspondences as by-
product. We assess the performance on various mesh sequences of (nearly) isometric shapes. Our experiments
show that, for isometric shape collections with non-uniform triangulation and noise, our method can compute
relatively dense correspondences reasonably fast and outperform state of the art in terms of accuracy.
Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling[Matching]

1. Introduction

Shape correspondence is an important problem in computer
vision and graphics with numerous applications from mor-
phing to retrieval [BBK08]. Being well studied for a pair
of shapes in isolation, this problem is yet at its infancy
for exploitation of context information when a collection
of multiple shapes is given to be matched. In this paper,
we address this new version of shape correspondence, that
one may also refer to as multiple shape correspondence.
More specifically, we aim to find consistent mappings be-
tween all shape pairs of a given collection while minimizing
the overall distortion. A consistent correspondence within a
shape collection is useful in creation of statistical models
[BA03], group skeletonization [WH10], animation recon-
struction [ATR∗08], and many other correspondence-related
tasks.

There are two major contributions of this paper. First, we
explicitly show that, by using the idea of multiple shape cor-
respondence, it is possible to obtain better correspondences
(according to ground-truth) than one would obtain by pair-
wise matching, not only over the totality of a given collec-
tion of (nearly) isometric shapes but in some cases even over
individual shape pairs. For this, we provide quantitative re-
sults to compare the resulting distortions in both scenarios,
i.e., multiple correspondence vs. pairwise matching. We also

compare, for some computationally trivial cases, the distor-
tions obtained by these two approaches with the distortions
resulting from theoretically optimal correspondences. Sec-
ond, we propose a multiple shape correspondence algorithm
which explicitly minimizes the overall distortion while en-
forcing consistency. We define the overall distortion as the
average isometric distortion over all shape pairs within the
collection. To this end, we represent the input shape collec-
tion with a novel graph structure where vertices are maps
between shapes, and then cast the problem as optimal path
finding on this graph. We solve this optimization problem
approximately based on dynamic programming. We assume
that the shapes in the given collection are (nearly) isomet-
ric and that all possible maps between two given shapes can
be enumerated based on some distortion measure which is
in our case the deviation from isometry. Our method primar-
ily seeks for coarse correspondences between shape extremi-
ties. However we compute these correspondences based on a
dense matching framework, that is, we evaluate all possible
coarse maps with denser sampling and matching, which in
turn yields also denser correspondences as by-product. This
matching strategy, which can be thought of as coarse-to-fine,
improves resiliency of the method against noise, alleviates
the symmetrical flip problem inherent to coarse matching,
and results in a computationally very efficient algorithm.
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2. Related Work

The straightforward solution to solve the multiple shape cor-
respondence problem without leveraging the context infor-
mation is to compute all pairwise correspondences indepen-
dently, and any two-instance shape correspondence method
available in the literature can be used for this purpose such
as [BBK06,LF09,OMMG10,KLF11,SY12], among others.
A detailed survey on shape correspondence methods can be
found in [vKZHCO11]. A particular group of methods in
this respect address the problem of generating dynamic mesh
sequences from time-varying data, finding correspondences
between time-consecutive shapes each constructed indepen-
dently, which can hence incorporate Euclidean proximity
clues to their algorithms as well as local shape descriptors
[ATR∗08,TM10]. A slight step towards taking collection in-
formation into account as a whole is taken by [DMW∗07]
which proposes to repeat pairwise matching between a tem-
plate shape from the collection and each of the remaining
ones, and then to recover all possible pairwise maps through
map compositions over the template. A template-based so-
lution is however prone to errors, especially if the collec-
tion exhibits a large amount of shape variations. Hence the
method in [MTSW12], though in the context of 2D shape
matching, proposes to pre-organize 2D shapes in a mini-
mum spanning tree where edges identify two similar shapes
to be matched with a pairwise algorithm in isolation from the
collection. [BHKH13] extends this idea for 3D shape align-
ment.

Most of the works on multiple 3D shape correspondence
strive to improve a given set of pairwise maps instead of
computing them from scratch. One method from this cate-
gory [Cha09] builds a complete graph connecting all shapes
with edges weighted by the matching costs of the initially as-
sumed pairwise maps. The method then computes the short-
est path between each shape pair, which implies a map com-
position to replace the initial map with. Such an approach,
however, considers only the pairwise distortions during com-
positions. An alternative that better exploits the collection
information uses the same graph structure but with a differ-
ent weighting scheme to force an approximate consistency
rule such that all 3-cycles of consistent maps return to iden-
tity [NBCW∗11]. The method weights an edge between two
shapes by evaluating the deviations of all the 3-cycles con-
taining the edge from identity, which in turn yields signif-
icant improvements, provided that a good seed set of ini-
tial maps and plenty of computational time are available. A
more recent work [HZG∗12], based on a sparse set of ini-
tial pairwise maps, employs similar cycle-consistency crite-
ria as [NBCW∗11] as well as additional constraints to en-
force neighbor-preservation and alignment with the initial
maps. The method first creates soft maps from a set of auto-
matically extracted base shapes to all the shapes in the col-
lection by diffusing the initial maps, and then computes a
point-to-point map from each base to every shape using a
global optimization procedure. These maps are used to cre-
ate a compact graphical data structure (hub-and-spoke cor-

respondence network) from which globally optimal cycle-
consistent maps are extracted using simple graph algorithms.
Lastly and most recently, the method proposed in [HG13]
formulates the cycle-consistency constraint as the solution
to a semidefinite program, and casts the problem of esti-
mating cycle-consistent maps to finding the closest positive
semidefinite matrix to an input matrix that stores all the ini-
tial maps. Although the resulting method exhibits similar
(only slightly better) performance on various shape bench-
marks when compared to [HZG∗12] and [NBCW∗11], it
provides theoretical guarantees for correctness of the gen-
erated correspondences, which lack in the other works. We
note that all the three works mentioned above, [NBCW∗11],
[HZG∗12] and [HG13], use the BIM (Blended Intrinsic
Maps) method of [KLF11] to obtain the initial maps upon
which the whole shape correspondence process then relies.

The process of multiple shape correspondence can
help understanding shape variations in a given collection.
Amongst several such efforts, the method in [KLM∗12]
enables region-based exploration of shapes by establishing
fuzzy correspondences over the collection in spectral do-
main. To achieve spectral embedding, the method requires
a sparse set of initial pairwise maps between sample shapes
from the collection. The correspondence-less approach of
[OLGM12] employs shape descriptors to retrieve the shape
that best matches a given deformable template configuration
up to rotation and scaling. Both methods employ naviga-
tion interfaces to browse shape collections based on simi-
larities and differences. Instead of understanding shape vari-
ations, two recent works focus on creating them by generat-
ing new models for the population based on part correspon-
dences. The first one [XZCOC12] performs shuffling and
mutations whereas the other [KCKK12] learns a probabilis-
tic model that represents the structural variability within the
domain. Another group of recent methods address the prob-
lem of shape segmentation by incorporating context infor-
mation from the collection based on consistent part-to-part
correspondences [HKG11, WAvK∗12].

The major difference of our multiple shape correspon-
dence method from previous work, hence our primary con-
tribution, is that we explicitly minimize the (isometric) dis-
tortion over all possible pairs of shapes in a collection
while preserving consistency. Previous state of the art efforts
[NBCW∗11, HZG∗12, KLM∗12, XZCOC12, HG13] heavily
rely on a given initial set of maps between all or some pairs
of shapes, and instead of optimizing overall distortion, they
rather enforce consistency on the initial set for constant-
length cycles or via diffusion. They mostly rely on the BIM
method to obtain initial maps, which is however compu-
tationally very demanding and sensitive to noise and non-
uniform triangulation. On the other hand, our method does
not require any initialization, and when compared to these
methods, it is computationally much more efficient but more
susceptible to symmetric flip errors since we primarily seek
for correspondences at a coarse scale between shape extrem-
ities. We alleviate this symmetric flip problem by evaluating
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coarse maps with denser sampling, hence our method gener-
ates also denser correspondences as by-product.

3. Problem Description
Given a shape collection S = {S1,S2, ..,SM}, we aim to
compute the optimal set of consistent correspondences, that
minimizes the average distortion over all

(M
2
)

pairwise maps.
Let ψk,l be a bijective map between the points sampled from
Sk and Sl , and Ψ = {ψk,l |k < l} denote a set of such

(M
2
)

pairwise maps. A set Ψ of maps defined over a shape col-
lection S is said to be consistent if and only if all possible
map compositions between any two shapes Sk and Sl yield
the same map ψk,l . We then define the optimal Ψ∗ as the
set of consistent maps that minimizes the following overall
distortion function:

D(Ψ) =
1
|Ψ| ∑

k<l
D(ψk,l), (1)

where D(ψk,l) is some distortion measure that evaluates the
quality of a given correspondence.

We sample from the sur-
face of each shape its geo-
metrical extremities and use
them as points to be matched.
We find the most prominent N
shape extremities by applying
the farthest point sampling algorithm of [ELPZ97], start-
ing from the most extreme point of the surface, that is the
one which maximizes the average geodesic distance func-
tion [HSKK01]. From this point forward, we will use the
notation ψk,l to represent a coarse map between the extrem-
ities of two given shapes Sk and Sl .

4. Distortion Measure
We will define the distortion measure D in Eq. 1 based on
isometric deviation in a dense evaluation framework.

4.1. Isometric Deviation
Let Diso(ψk,l) represent the deviation of a map ψk,l from
isometry such that

Diso(ψk,l) =
1

|ψk,l | ∑
(ak ,bl)∈ψk,l

1
|ψ′ | ∑

(ckdl)∈ψ′
|g(ak,ck)−g(bl ,dl)|

(2)
where (ak,ck) and (bl ,dl) are point pairs sampled from Sk
and Sl , respectively, g(., .) is the geodesic distance between
two points on a given surface, and ψ′ = ψk,l −{(ak,bl)}.
Scale invariance is achieved by normalizing the function g
with respect to the maximum geodesic distance over the sur-
face. This isometric deviation function can also be seen as a
variant of the distortion measures used in [BBK06, SY12].

4.2. Dense Evaluation

The isometric deviation measure Diso given in Eq. 2 can be
vulnerable to symmetric flips when evaluating the distortion
of a coarse map, such as the ones running between shape ex-
tremities [SY13]. To increase robustness, we define the dis-
tortion measure D used in Eq. 1 in a dense matching frame-
work as described in the sequel.

Given a coarse map ψk,l between the extremities of two
shapes Sk and Sl , we uniformly sample N̂ ≫ N points on the
surface of each shape [ELPZ97], and then compute a dense
map ψ̂k,l via the following perfect matching based optimiza-
tion procedure. We fill a cost matrix C where each entry
cab represents the cost of matching a dense sample âk from
Sk to a dense sample b̂l from Sl . We build C by comput-
ing each cab via the inner summation in Eq. 2 based on the
given coarse map, hence by setting ψ′ = ψk,l . We then per-
form minimum-weight perfect matching [Kol09] on C, that
reveals the desired dense map ψ̂k,l . We use the deviation of
this dense map from isometry in the evaluation of the coarse
map between the extremities. Hence we set the isometric dis-
tortion used in Eq. 1 as

D(ψk,l) = Diso(ψ̂k,l) (3)

This dense matching based evaluation allows us to consider
the shapes at a finer scale while evaluating a coarse map,
which in turn alleviates the symmetric flip problem that is ac-
tually inherent to all isometric shape correspondence meth-
ods, especially at coarse resolutions.

We also incorporate a simple strategy that improves the
performance of our dense analysis above. Prior to perfect
matching, we remove from ψ′ possible outliers, i.e., poten-
tially faulty matches. Such faulty matches may exist in ψ′

due to possible inconsistencies in extremity sampling, which
may eventually degrade the performance of the dense corre-
spondence phase. We eliminate these outliers by excluding
the correspondence pairs with high individual isometric dis-
tortion (computed via the inner summation term in Eq. 2).
More specifically, we arrange the individual distortion val-
ues of the correspondence pairs in ψ′ into a list with ascend-
ing order, detect the location of the first significant jump in
distortion values, and then eliminate the matches with dis-
tortion larger than the value at this location. We assume that
a significant jump occurs where the difference between two
consecutive values becomes larger than the sum of the first
two distortion differences, i.e., the sum of the difference be-
tween the first and the second values, and the difference be-
tween the second and the third values in the sorted list.

5. Optimization of the Overall Distortion

Optimization of the overall distortion function given in Eq. 1
is an NP-hard problem. An intuitive approximate solution is
to compute a sequence of minimum-distortion maps between
pairs of consecutive shapes, {ψ∗

k,k+1}, k = 1,2, ...,M − 1
(hence assuming an order in the collection S), which can
then be used to generate a consistent set of maps via map
compositions. The resulting consistent map set, which is in-
duced by these M−1 individually optimal maps, is not how-
ever necessarily optimal on overall since this intuitive se-
quential approach does not leverage the context provided by
the whole collection. In this section, we propose a method
that also yields an approximate solution, but better exploits
the information available in the collection as a whole, and
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Y. Sahillioğlu & Y. Yemez / Multiple Shape Correspondence by Dynamic Programming

thus approximates the optimal solution more closely than the
sequential approach, as explained in the sequel. We also note
that while the optimal map set Ψ∗ is independent of the order
of the shapes in the collection S, our method as well as the
sequential approach generates order-dependent solutions.

5.1. Formulation - Optimal Path of Maps
For minimization of the overall distortion function, we rep-
resent the shape collection with a graph structure where
vertices are maps between shapes, and then search for an
optimal path on this graph. Let Φi = {ϕ j

i } be the set of
all possible bijective maps between consecutive shapes Si

and Si+1, such that ϕ j
i = ψ j

i,i+1 with i ∈ [1,M − 1] and
j ∈ [1,N!], assuming N points are sampled from each sur-
face. We then cast the problem as optimal path finding on the
graph G = (V,E), where V =

∪
i Φi and E = {(ϕ j1

i ,ϕ j2
i+1)},

where j1, j2 ∈ [1,N!], as illustrated in Fig. 1. Hence each of
(M−1)N! vertices of this graph is a map (ϕ j

i ∈ Φi) between
two consecutive shapes, and its edges completely connect
Φi and Φi+1 for all i. Let π(m) = {ϕ j1

1 ,ϕ j2
2 , ...,ϕ jm

m } define a
path of m maps on this graph. Our goal is to find the optimal
path π∗(M − 1) which covers all the shapes in S, minimiz-
ing D(Ψ(π(M−1))), where Ψ(π(M−1)) denotes the set of
all

(M
2
)

pairwise maps induced by π(M−1).

Figure 1: Each vertex ϕ j
i ∈ Φi (circles) in G is one of the N!

possible maps between two consecutive shapes Si and Si+1
(rectangles), whereas edges completely connect Φi and Φi+1
(some shown with lines). Two paths are highlighted in yellow
where πN!(5) is a subpath of π4(M).

5.2. Pruning

Due to N! complexity of the graph structure to be processed,
we fix the number of samples as N = 6 or 9, which is most
often sufficient to represent a given shape. In order to further
prune the set of N! possible maps between N extremities of
each consecutive shape pairs, we sort the maps in each Φi in
ascending order with respect to their deviation from isome-
try, {Diso(ϕ

j
i )} (see also Eq. 2), and discard all but the first

R maps to be used in constructing the graph G. By choosing
R ≪ N!, we significantly shrink G with no expected loss of
accuracy. In all our experiments we have used R = 16 for
pruning and have not observed any performance drop com-
pared to using larger values.

5.3. Dynamic Programming Approximation

We now describe our dynamic programming based algo-
rithm that gives an approximate solution for the overall op-
timal path π∗(M−1). Let π∗

r (m), m = 1,2, ..,M−1, denote

the optimal path that minimizes the distortion over the par-
tial shape collection S1,S2, ...,Sm+1 such that:

π∗
r (m) = argmin

j1, j2,... jm−1

D(Ψ(ϕ j1
1 ,ϕ j2

2 , ...ϕ jm−1
m−1,ϕ

r
m)), (4)

where Ψ(ϕ j1
1 ,ϕ j2

2 , ...ϕ jm−1
m−1,ϕ

r
m) denotes the set of all

(m
2
)

maps induced by a path of m maps terminating at ϕr
m. Hence

π∗
r (m) is the optimal path that terminates at ϕr

m, with distor-
tion D∗

r (m). The optimal path π∗
p(m+1) for m < M−1 can

then be approximated for each node p by

π∗
p(m+1)≃ π∗

q (m)∪ϕp
m+1 (5)

with

q = argmin
r

D∗
r (m)+

m+1

∑
k=1

D(ψr,p
k,m+2) (6)

where {ψr,p
k,m+2} are the new m + 1 maps induced by in-

clusion of ϕp
m+1 to π∗

q (m) via Eq. 5, namely the bijections
between extremities of Sk and Sm+2 for k = 1,2, ..,m + 1.
Hence each time a new shape is added the process, the can-
didate optimal paths and their overall distortions are com-
puted incrementally based on the previously computed op-
timal paths and distortions, and then those with minimum
distortions are picked.

To implement the algorithm, we keep track of R (approx-
imately optimal) paths, Π(m) = {π1(m),π2(m), ..,πR(m)},
from S1 to Sm+1, which are expanded via Eq. 5 as the al-
gorithm is iterated over m by adding each time a new shape
Sm+1 ∈ S to the process. The overall isometric distortions
D1(m),D2(m), ...,DR(m) are also stored and accumulated
based on Eq. 6. The set Π(1) is initialized trivially with
the set Φ1 of maps between S1 and S2, associated with the
isometric distortions D(ϕ1

1), D(ϕ2
1), ...,D(ϕR

1 ). An approxi-
mately optimal final path is then given by πq(M − 1) with
q = argminr Dr(M−1). The creation of a path πp(m+1) ∈
Π(m+1) based on Π(m) is illustrated in Fig. 2, whereas the
overall multiple shape correspondence algorithm is given in
pseudocode in Fig. 3.

Figure 2: Amongst all R paths of Π(m) (dashed lines),
π2(m) (black dashed and highlighted) is selected to be the
best fit for the current map ϕ4

m+1, hence creating π4(m+1)∈
Π(m+1).
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The success of our algorithm depends mainly on the va-
lidity of the approximation in Eq. 5. This approximation im-
plicitly assumes that the optimal paths from S1 to Sm given
{S1,S2, ...,Sm+1} are equal or distortion-wise similar to the
optimal paths from S1 to Sm given {S1,S2, ...,Sm}. Each time
a new shape Sm+1 is added to the process, the algorithm does
its best to propagate the correspondence information accu-
mulated at iteration m− 1 to iteration m by taking into ac-
count the distortions of the new map compositions induced
by this addition, and expands the current set of maintained
paths Π(m−1) to Π(m).

Although it seems difficult to find an exact upper bound
for the approximation error in Eq. 5, one can conjecture
that it is closely related to how isometric the shapes in a
given collection are. It is actually easy to see that, in the
case of perfect isometry, the inclusion of a new shape Sm+1
to the collection will by no means effect the optimal paths
from S1 to Sm. Hence while the approximation error tends
to saturate for isometric shape collections as more shapes
are added to the process, it can be arbitrarily large in the
presence of severe non-isometries. Since we assume in this
work that the collection consists of shapes which are (nearly)
isometric, we expect our algorithm to perform reasonably
well. We also note that, in practice, even for different poses
of the same shape, it is usually impossible to have perfect
isometry due to imperfections of the modeling process, sam-
pling inconsistencies, and/or geometry discretization errors.
As we will later verify by experiments in Section 7, our al-
gorithm closely approximates the optimal solution for M > 3
on (nearly) isometric shapes. For M = 2, it simply chooses
the optimal mapping with minimum distortion, whereas for
M = 3 we guarantee to achieve the overall optimal π∗(2)
since the optimal subpath π∗(1) is certainly available in
Π(1) which includes all available paths from S1 to S2.

The naïve brute-force solution to find the exact optimal
path that minimizes the overall distortion D would require(M

2
)

evaluations of the isometric distortion function in Eq. 2
for each of the RM possible paths, and hence is intractable for
M > 8 on a standard computer. Our method reduces the ex-
ponential search space of this brute-force solution by main-
taining some good paths each equipped with an accumulated
distortion information stored via dynamic programming. We
note that the multiple shape correspondence output gener-
ated by our algorithm is dependent on the (assumed) order
of the shapes in the collection, whereas the brute-force so-
lution, that we will refer to as exponential algorithm, is not.

6. Computational Complexity

On a collection of M shapes each having W vertices,
sampling of N shape extremities to be matched requires
O(MNW logW ) computation. We then construct V of G by
listing all N! possible maps between all pairs of consecu-
tive shapes along with their isometric distortion values in

Input: S = {S1,S2, ..,SM}
Output: Approximately optimal path of maps over S

Sample N extremities to be matched on each shape Sm

//Construct graph G by initializing Φi: Set of all possible
//bijective maps between each consecutive shape pair
For each consecutive shape pair (Si,Si+1) ∈ S

//Map enumeration
Φi = {ϕ j

i } s.t. Diso(ϕ1
i )≤ Diso(ϕ2

i )≤ ..≤ Diso(ϕN!
i )

//Prune Φi to keep top-R minimum-distortion maps
Φi = {ϕ1

i ,ϕ2
i , ..,ϕR

i }
Sample N̂ dense points on each shape Sm for upcoming
distortion computations

//Dynamic programming
//Create paths of interest on G
//by filling Π(m) with paths πr(m) from S1 to Sm+1
//along with their overall distortions Dr(m)

//Initialization
Π(1) = {ϕ1

1,ϕ
2
1, ..,ϕ

R
1} //= Φ1

{Dr(1)} = {D(ϕ1
1),D(ϕ2

1), ..,D(ϕR
1 )} for r = 1,2, ..,R

//Iterations over m
For m = 1 to M−2

Π(m+1) = ∅
//Create path terminating at ϕp

m+1 for p = 1,2, ..,R
//by finding the best fit path for ϕp

m+1
q = argminr D∗

r (m)+∑m+1
k=1 D(ψr,p

k,m+2) //Eq. (6)
//and expanding the best fit with ϕp

m+1
πp(m+1) = πq(m)∪ϕp

m+1 //Eq. (5)

Π(m+1) = Π(m+1)∪πp(m+1)
Dp(m+1) =D∗

q (m)+∑m+1
k=1 D(ψq,p

k,m+2)

Return from Π(M −1) the path with minimum distortion

Figure 3: Our multiple shape correspondence algorithm.

O(MN!N2) time since the isometric distortion measure D is
quadratic in the size of the input map. Then we prune each
set of N! maps between shape pairs to R in O(MN! logN!)
time due to sorting. As the last step in building G, we densely
sample the shapes with N̂ points in O(MN̂W logW ) time,
followed by their perfect matching in O(MRN̂2 log N̂) time.
Distortions of these dense maps are computed in O(MRN̂2)
time.

For dynamic path computations over G, we append each
of R vertices to the best fit amongst all R paths by evaluating
isometric distortion D for at most M −1 new map composi-
tions, in O(MN̂2) time, plus adding the distortion accumu-
lated on the path, for another O(1). These appending opera-
tions are performed throughout all M shapes to achieve the
output path of length M, costing O(M2N̂2R2) time in total,
where R ≪ N!. The complexity of our coarse multiple corre-
spondence algorithm is hence dominated by the construction
time of G, which is O(MN̂W logW +MRN̂2 log N̂), yielding
fast execution times on a standard computer under the as-
sumption N ≤ 10 and N̂ ≤ 300.

c⃝ 2014 The Author(s)
Computer Graphics Forum c⃝ 2014 The Eurographics Association and John Wiley & Sons Ltd.
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7. Experimental results
We have tested the performance of our multiple shape cor-
respondence algorithm on high-resolution mesh sequences
with non-uniform triangulation and noise. The first dataset
is a reconstructed pose sequence of a human actor from
the SCAPE benchmark [ASK∗05], which contains 71 non-
uniformly sampled models, whereas the second one con-
sists of Noise and Shotnoise classes of the SHREC’11 shape
benchmark [BBB∗11] with 5 meshes in each. The third set
is based on the TOSCA shape benchmark [BBK08] with
uniformly-sampled models from various classes Cat, Cen-
taur, David, Gorilla, Horse, and Victoria, each represent-
ing the motion of an articulated object with 11, 6, 7, 4, 8,
and 12 meshes, respectively. We also create a hybrid class,
that we refer to as Across Humans, which is a mixture of
all 7 males from David and the first 7 females from Vic-
toria. We add a combination of noise (random amount of
displacement in normal direction) and shotnoise (random
direction of displacement) to all TOSCA meshes. Specifi-
cally, we set the amount of displacement to a random num-
ber in [0,10ε], where ε is the average edge length in the
original mesh. For compactness, we pack the TOSCA re-
sults concerning humans and animal into Within Humans
and Within Animals classes, respectively. While the ground-
truth correspondences for SCAPE and TOSCA are due to
fixed-connectivity meshing, we manually define the ground-
truths for the corresponding SHREC’11 classes.
7.1. Evaluation measures
We measure the overall distortion of a multiple correspon-
dence Ψ by the average of all pairwise isometric distor-
tions, hence by D(Ψ) in Eq. 1. Similarly we use Dgrd(Ψ)
to quantify the deviation of Ψ from the ground-truth corre-
spondence:

Dgrd(Ψ) =
1
|Ψ| ∑

k<l
Dgrd(ψk,l), (7)

where

Dgrd(ψk,l) =
1

|ψ̂k,l | ∑
(sa

k ,s
b
l )∈ψ̂k,l

g(ϑ(sa
k),s

b
l ) (8)

Here ϑ(sa
k) stands for the ground-truth correspondence of sa

k
on the other shape, g(., .) is the geodesic distance function as
defined before in Eq. 2, and ψ̂k,l represents the dense version
of the coarse map ψk,l .

We also define another measure, denoted by D̃(π), that
computes the distortion of a given path π only over its con-
stituent maps:

D̃(π) = 1
|π| ∑

ϕ j
i ∈π

D(ϕ j
i ), (9)

and its deviation from ground truth is given by:

D̃grd(π) = ∑
ϕ j

i ∈π

Dgrd(ϕ
j
i ) (10)

The symmetric flip problem that may arise especially due

to sparse sampling is expected to be alleviated with our
method due to its dense matching framework. We measure
this improvement by the ratio of symmetrically flipped map-
pings on a path π by F̃ and over all induced pairwise maps
by F . Note that we use the notation π to represent a map path
that may be given as output by the exponential algorithm, the
sequential algorithm, or our algorithm.
7.2. Comparison to Baseline Methods
We compare our method with two baseline algorithms that
we refer to as sequential and exponential. Recall that the
exponential method computes the theoretical optimal corre-
spondence by a brute-search algorithm, whereas the sequen-
tial algorithm finds a sequence of minimum-distortion maps
between individual pairs of consecutive shapes, which can
then be used to generate a consistent set of maps through
map compositions. In addition to the visual results given in
Figures 4, 7, and 8, we quantitatively evaluate the correspon-
dence performance via isometric and ground-truth distortion
measures and resulting symmetric flip counts (Table 1).

Figure 4: Multiple correspondence obtained by our method
on SCAPE dataset (three different subsequences are shown).

In all experiments, we set the parameters of our algo-
rithm to N = 6 (number of shape extremities) or N = 9
(for Centaur only), N̂ = 50 (number of dense samples), and
R = 16 (number of enumerated maps), based on the assump-
tions that the number of representative extremities on a given
shape does not usually exceed 9, 50 samples are enough to
uniformly cover the shape, and a pairwise mapping outside
the top-16 minimum-distortion maps can safely be discarded
throughout the whole process. Increased values of these pa-
rameters have not led to any performance improvement. We
however note that the choice of R is closely related to the
number of extremities, N, as well as intrinsic symmetries of
the given shape. In principle, the value of R should be larger
than the number of possible symmetrically flipped corre-
spondences, and the setting R = 16 was sufficient for all the
shapes in our database.

We plot in Fig. 5, for varying values of M (number of
shapes), the behavior of the isometric and ground-truth dis-
tortion measures in three different cases: our method, the se-
quential method and the exponential algorithm. We compare
the distortions obtained over all pairwise mappings as well
as over only the maps that constitute the resulting paths. We
observe that the path-based isometric distortion D̃ for the
sequential algorithm bounds the other D̃ plots from below
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for all M as expected since it optimizes the path distance,
whereas the overall distortion D of the sequential method
is an upper bound for the others with its highest distortion.
Similarly, D for the exponential algorithm bounds the other
D plots from below since it explicitly optimizes the overall
distortion. Note that our result closely approximates the ex-
ponential result in this case as well as for Dgrd and D̃grd mea-
sures. When the collection is populated with M = 8 shapes,
as far as Dgrd is concerned, the methods are ordered, from
the worst to the best, as the sequential algorithm, our algo-
rithm, and the exponential algorithm, yet our method can
work with arbitrary number of shapes whereas the exponen-
tial one can handle at most M = 8 due to its heavy computa-
tional load.

Figure 5: Overall (D, solid lines) and path-based (D̃,
dashed lines) isometric (top) and ground-truth (bottom) dis-
tortions as a function of number of shapes from the SCAPE
dataset.

We have also tested the exact optimality of our method,
and its superior performance over the sequential method, for
collections of size M = 3 over 100 random triplets of SCAPE
meshes. Our method results in an overall isometric distortion
of .05 on average, which is better than the resulting .0526 of
the sequential algorithm. The resulting ground-truth distor-
tion and the symmetric flip ratio are also less in the case of
our method, being .225 vs. .291, and 102/300 vs. 153/300,
respectively, whereas the exponential algorithm replicates
our results in this experiment. We observe that symmetric
flips are most often inevitable in the case of coarse match-
ing. We however note that our dense evaluation framework
significantly alleviates this problem; we have run the same
experiments without using dense evaluation, that is, by set-
ting D(ϕ j

i ) = Diso(ϕ
j
i ) in Eq. 3, and we have obtained the

symmetric flip ratios as 142/300 vs. 182/300.
For the quantitative evaluation given in Table 1, we av-

erage the results of our algorithm and the sequential algo-
rithm over 5 random orderings of all models of a given class
from the corresponding dataset. We provide results for all
available datasets (see the beginning of Section 7), includ-
ing TOSCA classes with noise (w/n). We observe that the

overall isometric distortion D of our method is always better
than that of the sequential method whose path-based distor-
tion D̃ is always smaller as expected. Consequently, Dgrd
values always favor our method, and more interestingly, in
the case of SCAPE we obtain a slightly better D̃grd value
since close isometric distortion values may indeed prefer a
flipped mapping over a correct one, which can however be
resolved in some cases incorporating additional information
from the collection as our dynamic programming algorithm
does. We also provide the ratios of the symmetrically flipped
maps, F and F̃ , which basically follow the same pattern
as in overall distortions. We see that the symmetric flip ra-
tio F of our method is considerably smaller especially in
the case of SCAPE dataset. For the rest of the cases, our
method results in F and F̃ values which are still better than
the values resulting from the sequential method but not as
effective as the SCAPE case, mainly because of the large
number of shapes in SCAPE that enables a better integra-
tion of context information. As for the performance under
noise, comparing the results over TOSCA classes with and
without noise, we observe that the performance values de-
teriorate only very slightly with noise, mainly thanks to the
coarse-to-dense framework that we employ.

We examine the sensitivity of our algorithm to the order
of the shapes in a given collection in Fig. 6, where the over-
all distortion D is plotted as a function of number of shapes,
separately for 5 different orderings. We observe that our al-
gorithm exhibits consistent performance in terms of overall
distortion, and the variations remain insignificant under dif-
ferent orderings. We see that the overall distortion curve ex-
hibits a similar behavior under different orderings with rel-
atively rapid increase at the beginning due to accumulation
of approximation errors (recall that the solution is exactly
optimal only for M ≤ 3), and then tendency to saturate at
the same value as the shape collection is sufficiently popu-
lated. This is as expected since the SCAPE sequence is an
isometric shape collection.

Figure 6: Isometric distortions for five different orderings of
the SCAPE dataset as a function of number of shapes.

The execution times of our method on a 2.53GHz PC for
SCAPE dataset of M = 71 shapes (each with 12.5K vertices)
is 96 seconds of graph construction followed by 25 sec-
onds of dynamic programming. Noise, Shotnoise, and David
(from TOSCA) classes deal with only M = 5 or 7 shapes
and consequently take about 40 seconds of graph creation
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Table 1: Quantitative evaluation of our multiple shape correspondence method in comparison with sequential method.

Our method Sequential method
Dataset D,D̃ Dgrd,D̃grd F , F̃ D,D̃ Dgrd,D̃grd F , F̃
SCAPE .0321, .0404 .228, .224 1192.9/2556,37.7/71 .0756, .0401 .303, .239 1825.1/2556,40.5/71
Noise (SHREC) .0202, .0259 .153, .166 2.4/10,1.2/4 .0200, .0251 .166, .160 3.5/10,1.1/4
Shotnoise (SHREC) .0211, .0350 .162, .165 2.7/10,1.2/4 .0207, .0291 .176, .164 3.5/10,1.2/4
Within Humans (w/n) .0430, .0473 .133, .147 33.9/87,5.9/17 .0496, .0466 .179, .146 47.1/87,7.3/17
Across Humans (w/n) .0447, .0515 .213, .292 40.9/91,6.2/13 .0519, .0498 .299, .232 63.1/91,8.3/13
Within Animals (w/n) .0475, .0467 .195, .188 26.5/55,5.9/10 .0601, .0451 .250, .185 42.1/55,6.3/10
Within Humans .0422, .0469 .131, .157 33.1/87,6.2/17 .0449, .0460 .161, .144 45.4/87,7.1/17
Across Humans .0431, .0501 .197, .182 37.2/91,6.1/13 .0489, .0469 .233, .170 50.8/91,5.4/13
Within Animals .0471, .0460 .185, .161 30.5/55,6.4/10 .0508, .0447 .205, .160 40.1/55,6.2/10

Figure 7: Resulting pairwise map of HAS method [HZG∗12]
(left) and our method (right) on Noise dataset.

followed by 0.4 seconds of dynamic programming, despite
their large number of vertices that is around 52K. The Across
Humans class doubles this last execution time with M = 14
shapes in the collection. The sequential method yields very
similar execution times.

7.3. Comparison to HAS Method
Visual comparisons of our method and the HAS (hub-and-
spoke) method of [HZG∗12] are available through Figures 7
and 8. In Table 2, we also provide quantitative evaluation of
our matching algorithm, in comparison to the HAS method
(averaged over 5 different orderings as in Section 7.2). For
comparison, we have run the HAS code made publicly avail-
able by the authors of [HZG∗12].

We first note that the HAS method produces many-to-one
maps, hence boosting the distortion performance but yield-
ing clustered correspondences. Our method, on the other
hand, generates bijections between shapes, which is more
intuitive in the case of complete isometric shape correspon-
dence. For fair comparisons, HAS method is evaluated based
on the samples that are closest to the 50 dense samples used
by our algorithm, hence performance of both methods are
based on the whole shape, not just the extremities. Since it
is hard to infer the symmetric flip situation of the HAS re-
sults, e.g., uncategorized head↔arm or hand↔head matches
in the middle row of Fig. 8, we avoid symmetric flip count

comparisons in this case. Similarly, the isometric distortion
measure that we explicitly minimize does not carry impor-
tant information in this setting.

We first observe that, in the case of perfect mesh mod-
els without any non-uniformities and noise, such as in
TOSCA classes, the HAS method significantly outperforms
our method, while for the rest of the cases the results clearly
favor our method over HAS. The success of HAS method
depends highly on the number and quality of the initial full
dense maps provided to the system. Their default initializa-
tion choice is the BIM method [KLF11], which works well
for genus zero meshes with uniform triangulation and with-
out noise. In the case of SCAPE dataset, HAS method suffers
both from the number and quality requirements of the initial
maps as we initialize it with the BIM maps computed over
only 70 pairs of consecutive shapes due to the relatively high
population of this dataset. Quality of these maps is also not
so perfect due to the non-uniform triangulations. Since the
other collections in Table 2 contain considerably less num-
ber of shapes, in these cases the HAS method can be initial-
ized with the BIM maps computed over all possible pairs.
Some of these maps, however, are of low-quality as can be
seen by the top row of Fig. 8.

The multiple correspondences that we generate are al-
ways perfectly consistent unlike the HAS outputs contain-
ing cycle-consistency distortions. We have to also note that
the tolerance of the HAS method is higher to possible non-
isometries in the collection while our method is designed
rather for nearly isometric shape sequences.

An important advantage of our method, when compared
to state-of-the-art methods in the literature, is that it does
not require any "good" initialization of pairwise matchings.
For example, computing a multiple correspondence between
50 points with the HAS method takes slightly more than an
hour on the SCAPE sequence, assuming that the method is
initialized with 70 dense maps, all computed using the BIM
method between consecutive shape pairs. Our algorithm, on
the other hand, performs the same task in about 2 minutes.
We have to however note that with almost the same compu-
tation time, the HAS method can readily deliver full dense
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maps much beyond N̂ = 50 as well while the resolution of
our results is limited by O(N̂2 log N̂) complexity due to the
perfect matching step.

We finally note that there is a fine line between coarse and
dense analysis in the success of a matching algorithm, es-
pecially in the noisy environments. BIM and HAS methods,
tailored to match shapes at high resolution, hence consider-
ing all vertices, are likely to result in poor performance under
noise and non-uniformities. On the other hand, seeking for
correspondences at a coarse scale, as our extremity match-
ing case suggests, helps improve resiliency against noise
but may in turn increase occurrence rate of symmetrically
flipped matches. We address this symmetrical flip issue by
considering N̂ = 50 samples spread evenly over the shape
surface for evaluation of coarse maps and thereby genera-
tion of denser correspondences (Section 4.2). In Fig. 9, we
display an example of the denser correspondence that our al-
gorithm generates as by product, where full dense maps be-
tween models are interpolated based on the available N̂ = 50
pairs as described in [KLF11].
Table 2: Quantitative evaluation of our multiple shape cor-
respondence method in comparison with HAS [HZG∗12].

Our method HAS
Dataset Dgrd,D̃grd Dgrd,D̃grd
SCAPE .109, .105 .153, .169
Noise (SHREC) .033, .042 .120, .131
Shotnoise (SHREC) .029, .040 .124, .113
Within Humans (w/n) .039, .051 .103, .123
Across Humans (w/n) .113, .176 .242, .287
Within Animals (w/n) .077, .082 .159, .167
Within Humans .041, .059 .012, .032
Across Humans .063, .077 .020, .033
Within Animals .057, .072 .010, .025

8. Conclusion
We have presented a multiple shape correspondence method
that computes consistent mappings between all shape pairs
of a given collection without using any initial correspon-
dence information. The experiments conducted show that
our dynamic programming based algorithm closely approx-
imates the theoretical optimal solution that minimizes the
overall isometric distortion, and performs better than the in-
tuitive alternative that composes maps based on a sequence
of minimum-distortion maps computed between pairs of
consecutive shapes without leveraging any context informa-
tion from the collection. Another finding of this work is that,
by considering the shape collection as a whole and by pre-
serving consistency, it is possible to obtain distortion-wise
better correspondences than one would obtain by pairwise
matching, not only over the totality of a given collection of
(nearly) isometric shapes but in some cases even over indi-
vidual shape pairs, hence a proof of concept for the multiple
shape correspondence idea.

Our method should be preferable to its competitors avail-
able in the literature when the problem is to find consistent
bijections over all pairs of an isometric shape collection in

Figure 8: Extremity matches over the sequence of meshes in
the Shotnoise dataset, generated by BIM method of [KLF11]
(top), HAS method of [HZG∗12], and our method (bottom).

Figure 9: Multiple correspondence generated by our method
on a Horse subsequence for N̂ = 50 samples (spheres), in-
terpolated and visualized as full dense maps.

a computationally very efficient way. We have also demon-
strated the benefit of our method over non-uniformly sam-
pled and/or noisy shape collections. One key component of
our method is the coarse-to-dense matching framework that
improves its resiliency against noise and alleviates the sym-
metrical flip problem inherent to coarse matching. Our ex-
periments show that, for isometric shape collections with
non-uniform triangulation and noise, our method can com-
pute relatively dense correspondences reasonably fast and
outperform state of the art in terms of accuracy.

Nevertheless, symmetric flips are still observed in the re-
sults, which are often inevitable with any method in the lit-
erature. We note that symmetric flips are not actually much
of a problem in some applications such as statistical shape
analysis and shape recognition but may cause complications
in other cases such as shape morphing and registration. One
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possible remedy to resolve the symmetric flip problem here
would be to incorporate explicit symmetry information by
resorting to methods that can detect global intrinsic symme-
tries such as [KLCF10, OSG07]. Another limitation of our
method is that it works only for collections of (nearly) iso-
metric shapes with distinct extremities, and fails in the case
of arbitrarily deforming objects, such as cloths and faces, ex-
hibiting severe non-isometries and/or changing extremities.

The key idea in our multiple shape correspondence
scheme is explicit minimization of the overall isometric dis-
tortion function, rather than improving a given set of ini-
tial pairwise maps. Our future work will involve further ex-
ploitation of this idea to deal with collections that contain
shapes which are partially isometric and/or which exhibit
non-isometries.
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