3D Correspondence by Breadth-First Search Frontiers

Yusuf Sahillioglu
Computer Science Dept., Ko¢ University, Istanbul, 34450, Turkey

Abstract— This paper presents a novel, robust, and fast 3D
shape correspondence algorithm applicable to the two snap-
shots of the same object in arbitrary deformation. Given two
such frames as triangle meshes with fixed connectivity, our
algorithm first classifies vertices into Breadth-First Search
(BFS) frontiers according to their unweighted shortest path
distance from a source vertex. This is followed by the rigid
or non-rigid alignment of the corresponding frontiers of two
meshes as the second and final step.

This algorithm is flexible; high-resolution meshes are
welcome. It is robust; results approved by human intuition as
well as our own numerical correspondence error metric. It
is fast; sequential running time turns out to be quadratic in
number of vertices, whereas this upper bound can be pulled
down as low as subquadratic O(V1®) once the second
step is naturally and easily parallelized. Due to consistent
frontier selection, second step does the optimal work of
O(V3) Hungarian assignment in less than a quadratic time.

Keywords: 3D shape correspondence, BFS

1. Introduction

The shape correspondence problem takes two snapshots
of the same shape, or two different shapes, and tries to
determine where a vertex in the first shape is transformed
in the second one. This task has received great attention
in the computer graphics and computer vision disciplines
mainly because it stands as the initial problem to be solved
for generating many useful applications, such as shape
morphing/deformation, alignment, and animation. Lee [1]
have provided a pioneering morphing application when the
correspondence between input shape and target shape is
known. Accuracy of the well-known Iterative Closest Point
(ICP) alignment algorithm by Besl and Mckay [2] can
be improved further if in each iteration ICP is forced to
associate vertices that are known to be corresponding pairs.
A fundamental animation technique known as keyframe
animation uses the correspondence information between two
keyframes to compute those in between. Correspondence can
also be of help to simplify the shape matching problem
where one tries to return the most similar item(s) to a
given query. Another, yet not last, application area of this
problem is in texture mapping as the work of Kraevoy [10]
forces feature correspondence for planar parameterization of
meshes.

Jain and Zhang [3] have provided a satisfactory shape
correspondence method whose efficiency and accuracy de-

crease as the resolution of shapes, i.e., number of vertices, in-
creases. Mateus et al. [4], on the other hand, have employed
the Graph Laplacian operator to address this problem. In
addition to being inefficient for large inputs, the adaptation of
this voxel-based method to mesh-based representation tries
to pair vertices only with the same connectivity information.
However, this is not always the case. This method is only
valid when one shape is exactly the transformed version of
the other, i.e., the vertices are displaced but the connectivity
is fixed. We currently have this restriction too, but it will
be easier to drop it in our case. It should also be noted
that there are nevertheless applications that use fixed con-
nectivity input; e.g., for the transmission of a large animation
sequence, one can transmit only few keyframes over the poor
network and interpolate the in-betweens in the host with a
fast correspondence algorithm like ours.

Umeyama [8] has managed to produce binary correspon-
dence matrix between two graphs with same number of
vertices using the eigendecomposition of their adjacency
matrices. He implied the fixed connectivity requirement too
since he establishes the correspondence that respects vertex
degrees. Scott and Higgins [9] have extended solutions to
weighted graph matching problem by introducing Gaussian
proximity matrix.

From an asymptotic complexity view, our spatial-domain
approach outperforms existing methods that work in spectral
domain [11], [12], [8] as well as in spatial domain [13],
[7] while producing competitive results. On the other hand,
most of these aforementioned methods do not require fixed
connectivity and same vertex count requirement that we
currently do.

The rest of the paper is organized as follows. In Section 2,
we state the problem rigorously and define the objects used
for the correspondence algorithm we describe at Section 3.
Section 4 provides experimental results, followed by the the
future work and conclusion on Section 5 and 6, respectively.

2. Problem Statement

Given two separate frames obtained from the motion of
an object, we want to track any given vertex, hence the
correspondence problem. To accomplish this, we make use
of several components defined on both input meshes.

2.1 Frontiers

Frontiers are subset of vertices that have the same un-
weigthed shortest path distance from a given source vertex



Fig. 1: Several frontiers of distance 10m, for several
m, fromthesourceatright foottoe.

(Fig. 1). Vertices that go into a given frontier are invariant
to rigid body transformations, scaling, and bending; making
frontiers valuable components for shape correspondence.
One application of modified BFS computes this subset
for two meshes. Number of frontiers, f, is relatively small,
e.g., 130 for a 16 K mesh, yet sufficiently large to guarantee
f = Q(V/V). This lower bound is necessary to achieve the
claimed overall complexity and simplifies the asymptotic
run-time analysis. (Another simplification is £ < 3V —6 =
O(V) and omitting E for sparse 2-manifold meshes (=
simple planar graphs). Although f = Q(v/V) is achieved
naturally for our test cases, it can be forced via edge splits
that introduce additional layers between existing layers.

2.2 Base vertices

Base vertices are subset of vertices that are uniformly
distributed over the whole mesh (Fig. 2). Modified Dijkstra
algorithm by Hilaga [5] computes this subset, which will be
useful for source vertex selection in frontier generation as
well as for our fast correspondence error metric.

Fig. 2: 180 base vertices (yellow) sampled on our high-
resolution input 16K mesh (green).

3. Correspondence Algorithm

This algorithm first establishes a corresponding source
vertex for both meshes from which BES will be launched to
end up with the desired frontiers. The k" frontier is the set
of vertices that are of distance k from the source. Therefore,
true correspondences of the vertices in k' frontier of the first
mesh must lie in exactly the k" frontier of the second mesh,
which triggers us to align these corresponding frontiers.

3.1 Source selection

In order to obtain frontiers consistently, one needs to start
the frontier computation from the same/corresponding source
vertex in both meshes. Although this selection could easily
be done manually, for the sake of keeping system fully
automated, we suggest a method that uses critical points
that can be computed by Katz [6]. Once the critical points
are achieved, we select the most critical one for each mesh
as their source.

3.2 Frontier computation

We run BFS from the source vertex and add the vertices
of the same distance to the same row of our frontiers
matrix. Under the fixed connectivity assumption, it is certain
that corresponding frontiers will involve the true vertex
correspondences (possibly displaced though); however, once
the connectivity changes, true correspondences may fall
into different frontiers that are not paired up (Fig. 3). This
limitation can be dropped by using shortcut edges of [5] to
make the directions of edges isotropic.

Mesh 2
1

sonnectvity
not fived
1 ﬁ 1 1

1

Fig. 3: Under arbitrary connectivity, 6 vertices of left mesh
in frontiers[1] are paired up with 12 in frontiers[1] of right
mesh. Note that, shortcut edges make directions isotropic,
i.e., union of red and green edges, and heal the problem..

3.3 Correspondences by frontiers

Having obtained consistent frontiers from two meshes, fi-
nal step is to pair them up. An example of two corresponding
frontiers is given in Fig. 4.

Some frontiers correspond to the merely-translated portion
of the object for which a center of mass alignment is
sufficient. For the ones that exhibit significant amount of



Fig. 4: Two corresponding (k') frontiers to be paired up.
Note that true correspondences of vertices in k** frontier of
gray mesh must lie on k' frontier of the red one.

change in geometry, e.g., rotated or bent portions, we use
non-rigid iterative alignment algorithm (TPS-RPM) of [7].
To make the difference, we sum the squared L2 distances of
closest points of the two center of mass aligned frontiers. If
this sum S is sufficiently small, then we are satisfied with the
alignment already. Otherwise, we employ TPS-RPM, with
an initial temperature of 105, to align the frontiers under
bending or rotation as depicted in Fig. 5. We finally pair the
aligned frontiers up with the closest L2 distance metric.

Fig. 5: Two frontiers of Fig. 4 need non-rigid alignment
whose result is at right.

Under the observation that corresponding frontiers involve
corresponding vertices, going through these two frontiers
only once finds the optimal correspondence which is no
further required to be updated. So, many updates of Hungar-
ian algorithm [15] in V3 iterations to get to the optimal is
achieved with one update and in much less iterations, which
can further be parallelized as described next.

3.4 Run-time analysis

It is O(VigV) to accomplish the base vertices with
modified Dijkstra for source vertex decision. We employ our
modified BFS once to obtain frontiers in O(V). Cost of TPS-
RPM alignment is > (F?) for i = 1,.., f, where F; is the
number of vertices in i*" frontier. This sum is essentially

O(f x (%)3 = ‘j/—; = va = V?) by assuming that each

frontier is uniform and has same number of vertices of %
Similarly, pairing up aligned frontiers takes O(f x (%)2 =

% = V15). Sum of these three terms, BFS, TPS-RPM,
and final-pairing, is dominated by O(V?) TPS-RPM for the
sequential case which is far better than a O(V3) bipartite
perfect matching algorithm like Hungarian’s.

Despite this impressive asymptotic complexity, there is
still room for improvement after observing that correspon-
dence of i*" frontiers are independent of others and hence
can be parallelized easily. With the availability of f proces-
sors or threads, we only pay one TPS-RPM and final-pairing
cost instead of f, leading to the the drop of f factor and
hence the O((%)3 = V2. = V15) subquadratic cost.

Vl .5
4. Results

In addition to visual results that draw subset of corre-
sponding vertices in Fig. 7 through 10, we also provide
quantitative results computed by our correspondence error
metric introduced next.

4.1 Correspondence error metric

A correspondence error metric is defined as C =
> g(i,corresp(i))? for 0 < i < V, with g being the
geodesic distance between two points, and corresp being
the correspondence of i*" vertex computed by our algorithm.
This metric works because our ground truth values are
known as corresp(i) = i. g is computed efficiently by
running Dijkstra’s shortest paths from each base vertex. This
fills g for base-to-base, base-to-nonbase, and nonbase-to-
base entries. For the remaining nonbase-to-nonbase entries,
we simply use the known distances between representative
bases of two patches that involve the nonbases. This fast
yet accurate heuristic of ours computes geodesic distances
between any two points of V' vertices in O(k x VIgV') time
with £ < V being the number of base vertices, instead
of the perfectly accurate but O(V3) time Floyd-Warshall’s
all-pairs-shortest path algorithm [14]. For large number of
vertices, e.g., V = 16K, computation is done in a minute
instead of a couple of hours with sufficiently accurate results
(Fig. 6). Note that, what we quickly create here is the
geodesic proximity matrix which can also be of use for other
shape correspondence algorithms, such as [3].

194.358 122.573 141.316
-195.074 213.966 213.966- -
195.074 213.966 213.966- -
.197.266 109.117 109.117.
307.781 124599 124.599

194.358 122.573 141.316
'183.874 136.710 153.236 - -
183.960 134.817 153.560 * *
190.458 136.904 145.871 - -
211.212 111.098 125.898

vs.

All-pairs shortest paths Our fast heuristic

Fig. 6: Same portion of the geodesic distance matrix com-
puted by all-pairs algorithm (left) and our heuristic (right).



4.2 Visual and scalar results

High-quality correspondences between two consecutive
frames achieved, an example of which provided in Fig. 7.
For the sake of comparison, we implemented naive algorithm
that just pairs up closest pairs after center of masses of
two meshes made coincide. This naive quadratic matching
causes larger C' = 1.7 in 124 seconds, whereas a better result
(C = 0.09) was achieved by our algorithm in just 5 seconds.
Moreover, the naive quadratic scheme does not change the
correspondence of a vertex once it is set. The cure, e.g., a
cubic Hungarian scheme, would need a couple of hours to
achieve our C for these high-resolution (16/’) meshes.

Fig. 7: Correspondence between two consecutive frames
with C' = 0.09.

In order to see how the correspondence is established
between apart frames, we run the algorithm with frames that
exhibit a significant change in pose, and obtain the result in
Fig. 8 with C' = 5.9. It took 20 minutes in a sequential
C++ code due to the frequent TPS-RPM calls that were
almost never needed for the 5-second case above. (Note
that, MatLab implementation of TPS-RPM is known to be
much faster due to frequent matrix operations.) A parallel
system which would collapse all TPS-RPM times into one
would decrease our running time significantly. Also, naive
algorithm finished this correspondence with C' = 105.

Another test reveals another satisfactory result (shown in
Fig. 9) with C' = 7.7 in 10 minutes on our 2GHz dual
processor machine while the error of the naive algorithm
goes as high as C' = 91. In Fig. 10, we provide the
correspondence result for two high-resolution, e.g., V =
20K, input meshes of a different animation sequence. This
is obtained after 40 minutes with C' = 180.

Fig. 8: Correspondence under significant deformation ends
with C =5.9.

Fig. 9: Randomly picked 100 yellow vertices from first mesh
(gray) are displayed with their correspondences in second
mesh (red).

Fig. 10: Correspondence between two apart frames of high-
resolution meshes with 20K vertices.



5. Comments and Future Work

Using this generic framework, new correspondence met-
rics other than or in addition to L2 metric can be used
during the stage where correspondence between the aligned
frontiers are sought. Again in this stage, one can run a cubic
bipartite perfect matching algorithm for the most accurate
result although this is not so crucial given that our current
aligner (TPS-RPM or simple center of mass alignment
according to situation) leaves us with almost coinciding
frontiers, and therefore the first closest correspondences in
the subquadratic final-pairing process will generally be the
optimal ones anyway.

Essential future work would be the relaxation of the
fixed connectivity constraint with the shortcut edges scheme
mentioned in Section 3.2 or with another method. Also,
another graph search algorithm instead of the connectivity-
based BFS can be investigated to produce the frontiers
consistently in the absence of fixed connectivity.

6. Conclusions

A novel, robust, and efficient algorithm that addresses to
the problem of 3D shape correspondence between arbitrary
poses of the same object is provided.

Starting from the same source vertex in both meshes,
which is suggested to be the most critical point, we establish
consistent BFS frontiers, and then pair up BFS frontiers
of same distance from the source. In order to render fron-
tiers consistent, we rely on fixed connectivity although an
arbitrary connectivity may still be successful after some
preprocessing that are partly mentioned and mostly left as
future work. Besides, we mentioned an application of fixed
connectivity input which can be efficiently handled by our
current algorithm.

Algorithm is naturally adaptable to other dimensions
and works fine with high-resolution meshes. Although the
sequential asymptotic complexity is more than acceptable
and surpasses related works, it can further be improved once
the algorithm is easily parallelized.

References

[1] A. Lee, D. Dobkin, W. Sweldens and P. Schroder, “Multiresolution
Mesh Morphing,” ACM SIGGRAPH, pp. 343-350, 1999.

[2] P.J. Besl and N. D. Mckay, “A method for registration of 3-D Shapes,”
PAMI, vol. 14, pp. 239-256, 1992.

[3] V. Jain and H. Zhang, “Robust 3D Shape Correspondence in the
Spectral Domain,” Shape Modeling and Applications, pp. 118-129,
2006

[4] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin and E. Boyer, “Artic-
ulated Shape Matching Using Laplacian Eigenfunctions and Unsuper-
vised Point Registration,” Computer Vision and Pattern Recognition,
pp. 1-8, 2008.

[S] M. Hilaga, Y. Shinagawa, T. Kohmura and T. Kunii, “Topology
Matching for Fully Automatic Similarity Estimation of 3D Shapes,”
ACM SIGGRAPH, pp. 203-212, 2001.

[6] S. Katz, G. Leifman and A. Tal, “Mesh Segmentation Using Feature
Point and Core Extraction,” The Visual Computer, pp. 649-658, 2005.

[71 H. Chui and A. Rangarajan, “A New Point Matching Algorithm for
Non-rigid Registration,” Computer Vision and Image Understanding,
vol. 89, pp. 114-141, 2003.

[8] S. Umeyama, “An Eigendecomposition Approach to Weighted Graph
Matching Problems,” PAMI, vol. 10, pp. 695-703, 1988.

[9]1 G. Scott and L. Higgins, “An Algorithm for Associating the Features
of Two Images,” Biological Sciences, vol. 244, pp. 21-26, 1991.

[10] V. Kraevoy, A. Sheffer and C. Gotsman, “Matchmaker: Constructing
Constrained Texture Maps,” ACM SIGGRAPH, pp. 326-333, 2003.
[11] M. Carcassoni and E. Hancock, “Spectral Correspondence for Point

Pattern Matching,” Pattern Recognition, vol. 36, pp. 193-204, 2003.

[12] L. Shapiro and J. Brady, “Feature Based Correspondence: An Eigen-
vector Approach,” Image and Vision Computing, vol. 10, pp. 283-288,
1992.

[13] S. Belongie, J. Malik and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” PAMI, vol. 24, pp. 509-523, 2002.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction
to Algorithms (2nd ed.),” MIT Press and McGraw-Hill, 2001.

[15] C. H. Papadimitriou, and K. Steiglitz, “Combinatorial Optimization:
Algorithms and Complexity,” Prentice-Hall, 1982.

[16] M. Alexa, “Recent Advances in Mesh Morphing,” Computer Graphics
Forum, vol. 21, pp. 173-196, 2002.

[17] N. Gelfand, N. Mitra, L. Guibas and H. Pottmann, “Robust Global
Registration,” Symposium on Geometry Processing, 2005.

[18] C. Gotsman, X. Gu and A. Sheffer, “Fundamentals of Spherical
Parameterization for 3D Meshes,” ACM SIGGRAPH, vol. 22, pp. 358-
363, 2003.

[19] T. Zinber, J. Schmidt and H. Niemann, “A Refined ICP Algorithm for
Robust 3D Correspondence Estimation,” Image Processing, 2003.
[20] D. Vlasic, I. Baran, W. Matusik and J. Popovic, “Articulated Mesh
Animation from Multi-view Silhouettes,” ACM SIGGRAPH, vol. 27,

pp. 97:1-97:9, 2008.

[21] G. Dewaele, F. Devernay, R. Horaud and F. Ferbes, “The Alignment
between 3-D Data and Articulated Shapes with Bending Surfaces,”
ECCV, 2006.

[22] D. Anguelov, P. Srinivasan, H. Pang, D. Koller, S. Thrun and J.
Davis, “The Correlated Correspondence Algorithm for Unsupervised
Registration of Nonrigid Surfaces,” NIPS, 2004.



