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Problem Statement

Goal: Find correspondence/map between a pair of
isometric (or nearly isometric) shapes.
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Problem Statement

Goal: Find correspondences/maps between all pairs of a
shape collection at once.

suggests

with a total distortion sum of with a total distortion sum of
061 + .063 + .069 = .193 061 + .065 + .060 = .186

.186 < .196 ©
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Theme: Define a way to measure isometric distortion D
of a given map. Perform discrete optimization to get the

optimal map that minimizes D.
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Problem Statement

Goal: Find one-to-one correspondence between a
pair of isometric (or nearly isometric) shapes.
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Problem Statement

Goal: Find sparse one-to-one correspondence between a
pair of isometric (or nearly isometric) shapes.
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Problem Statement

Goal: Find sparse one-to-one correspondence between a
pair of isometric (or nearly isometric) shapes using GA.
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Applications

v Correspondence information needed in many apps such as

v' Shape interpolation: WWM &
v' Deformation transfer: @ @—» @ @ [Surmner & Popovic 2014

9 9 ’ 99 ? [Sahillioglu & Kavan :.:: ]

v" Shape registration: ’<,::‘\ (,m u [Chang & Zwicker 200s]

v Shape matching: \% %%&Q % . ’[Sahlllloglu&Kavan ]
v’ Statistical analysis: @@@ @ Q‘) Nenet o ]

[Kilian et al. 2007]

v" Attribute transfer:




Contributions

v" Natural connection established: EA and corre$ondence.
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Contributions

v' Existing maps improved: Adaptive Sampling scheme.




Contributions

v Auto-initialization provided: dense match.

Four landmark matches for [Aigerman and Lipman 2015].



Contributions

v Auto-initialization provided: real-world scan registration.

Six (left) or more (right) landmark matches for FAUST scans [Bogo et al. 2014].



Contributions

v Simple extension demonstrated: partial matching.

£~

More challenging partial matching problem solved with a simple extension.




Method: Overview

v Permutation creation task carried out by genetic algorithm.
v Looking for the best/fittest permutation/chromosome of
samples/genes that matches w/ the fixed samples: 1 2 .. N.
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Method: Design Decisions

v Healthy parts of two bijections xovered into a better one.




Method: Design Decisions

v Individual map mutated into a better one.




Method: Design Decisions

v' Fitness of a given chromosome representing permutation =

F(r) =1- Diso(Px)
where ¢, is the bijection that maps i'" sample to x[i]th sample,

1 1
Nd D@ =15 D, Mg 2. ldelisn)—dgltintml
(si,tj)€P (st tm)€EP

which is a variant of the isometric distortion measures used in
[Bronstein et al."06, Huang et al.’08, Sahillioglu & Yemez'11].



Method: Desigh Decisions

v’ Fitness of a given chromosome representing permutation =
F(r) =1 - Diso(Pr)

RORSEDIN ( S ldglsivsp) — dg(ts,tm)
7 1, S

(si,tj)€P ‘ ’

.34 - 98| = .64 ®

A bad/high-distortion map.



Method: Initial Population

v Current population evolved to the next generation.

v" Initial population based on geodesic consistency.
v gf;and g}: Vector of geodesic distances to a few special samples

that are already accurately matched — see Initial Bijection.
v Initial match candidates for each sample s; are {tj} that satisfy

i

" \ T \ ©: Special sample matches.
©
@: siand its initial match
| ©
. N

de(g?, g;-) = max 1g5[k] - g}[k]l < .125 (toe to knee half geo)

candidates.




Method: Initial Population

v Current population evolved to the next generation.

v Initial population based on geodesic consistency.
v" About 10 candidates per sample (for N=100 case).

v' Each initial chromosome filled by picking a random candidate for
its i gene. Population size always 10N, i.e. 1000 chromosomes.

v' Duplicates prevented to preserve bijection.
v Some samples to random matches, not initial match candidates.

O
" \ ©: Special sample matches.
©
, @: siand its initial match

candidates.




Method: Initial Population

v Current population evolved to the next generation.
v' Random initial population (left) also lead to a good final
generation, but not as fast & accurate as our initialization.

Fittest members of
initial (top) and |
final (bottom) S e
populations

shown.

F = 9701 F =970
(Do I‘g,u .8 Generations., Seconds )
= (.0298,.0353.274.9.2 (.0290..0312.164.7.8)



Method: Evolution of Population

v Current population evolved to the next generation through
genetic operators.

v' Current population divided into good and bad parts based
on chromosome fitnesses.

v' Some chromosomes in the bad part replaced by the
crossovered child of two good parents.

v' Some chromosomes mutated for individual improvement.

v Elitism for free: best chromosome copied to the next gen.



Method: Evolution of Population

v Current population evolved to the next generation t

genetic operators.

Input: S and T st. |S| = |T| = N, samples on two meshes
Output: ¢ : S — T, one-to-one correspondence
U = initPopulation() /U = {C), Cy, .., Cp ), P is population size
For generation = 1 to max # generations
F* = getFittest(U) //Evaluates all {C;} via F (C] made ready)
If (7" is fixed for the last L, generations || /L, = 100
no swap mutations in the last L; generations || //L; = 10
F*>1-¢€)/le =.001
Break; //Converged!
evolvePopulation()
For i = 1: N //N is # of genes (= samples on mesh)
$(s;) = te,(q) //fittest is maintained as the first chromosome C,
Return ¢

evolvePopulation(Population U)
Descending sort on U s.t. C;’- > C}’- Vi < j,ie., C is the fittest
G={C, Cp ... Cp}, B = {Chyyy -y CN, } //Good and bad parts,
Foreach C; € B //where h = PJ2
If rand() < fiover //rand() returns a number in [0, 1]
Let C; and Cy. be random chromosomes from G s.t. C}’ > C{
C;i = xover(Cj, Cy) //C; € B updated by the newborn child of
//2 good parents. Elitism for free as C; can't
//initially be Cy, the fittest chromosome
Fori=2:P
If rand() < foutation
mutate(C;) //C; € U is updated. Elitism for free as the fittest C,
//is excluded from consideration (i > 2)

nrough



Method: Evolution of Population

v Current population evolved to the next generation through
genetic operators.
v Crossover: duplication-free (bijection), winner/loser-based.

W:24765131217913101514 11 16 8
L: 53124761091611151217 13148
Resultingchild: 54762133121791415101 11 168

v Mutation: duplication-free, geodesic vector compatibility.

mutate(Chromosome C)
Fori=1: N -1
If dc(g5, g‘(‘lil) > t //Slide 16 for d. (r = .125)
//Geodesic vectors g are incompatible; swap C[i] with a good C|j]
Repeat j = rand(i + 1, N)
Until dc(g'(,m. g}) <7
Swap C[i] and C[j]



Method: Evolution of Population

v Current population evolved to the next generation through
genetic operators, whose relative advantages visualized:

Fittest members shown.

(a) random |n|t|al|zat|0n. (Diso- Dygey. # Generations. Seconds ) (L0311..0418.170.8.1)

b) result w/ muts only. = (.2125..3299.1.0) (a) (d)
C) result w/ xovs only.

(d) result w/ both on.

(.0574..0820.45.2.0) (L0368..0548.375.11.4)
(b) (c)



Method: Initial Bijection

v While evaluating F, ¢" = ¢ to make this frequent op. fast.
7,

7

fig

v Few special samples by FPS w/ a special stopping condition.
v Initial population of chromosomes evolved through Slide19.



Adaptive Sampling

v Matched samples relocated in a local neighborhood by
considering geodesic consistency & sampling regularization.

EELg)= D, D ldgsisi) - dg(Ej, Em)| + allF = ]|
(si’tj)€¢ (si,tm)€EQP

v Given a map (bijectionornot) ¢ . s —» T = {(s5 1)}, new
target sample locations computed such that (s;, 7)) is a

better match than (s;, ¢,) was.

v New sampling radius on target 7 (based on new {i;}) asked
to look like the radius of the source samples r..

v' Coordinate descent idea: if moving from ¢ to # in its 1-ring
improves g, then ¢, =7, performed. Process repeated.



Adaptive Sampling

v Matched samples relocated in a local neighborhood by
considering geodesic consistency & sampling regularization.

Sole with AS. *



Adaptive Sampling

v Matched samples relocated in a local neighborhood by
considering geodesic consistency & sampling regularization.

o for GA

GA + AS

Dgr(l —_— .0341 Dgrd —_— -0303



Results

v Genetic maps on isometric (top 2 rows), nearly-isometric
(bottom left-middle) cases. Limitation on non-isometries
(gorilla-human).




Results

v" Fitness guaranteed to increase in new generations (elitism).
v Ground-truth distortion decreased in new generations.
v" AS takes the final distortion of GA and decreases it further.

Genetic Algorithm Adaptive Sampling
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Results

‘/ COmparisonS W|th BIM [Kim et al'11], PS [Tevs et al’11], OTE [Aigerman &

(BR

Lipman‘l5], GW [Solomon et al."16]

PS GA +AS
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GW (20)

. & Dgrd = t‘ N
0463 4 F y ) )
DL U UL 1dll VI HHIULITOPIISIT WPUIVYY tut. wec uu n:t. 0303 , | 5. v Holes fail PS but not us.




Future Work

v Dense correspondence.

v Non-isometric correspondence.

v’ Partially-isometric correspondence.

v" Collection-wise consistent correspondence.

v' Partially-isometric matching already done by updating our
fithess using the scale-invariant measure in [Sahillioglu &
Yemez'12] and introducing dummy entries that represent

the unmatched samples on the full shape.
f‘ Full shape.

N\'e




Conclusion

v" First genetic algorithm presented for isometric shape
correspondence problem.

v Easy to implement, e.qg., no algebra library.

~ast as space of permutations explored wisely.

-ree of embedding errors, e.g., no parameterization.
Requires no initial input matches, no genus restrictions.
Robust against triangulation quality, mild geometric noise.

AN NN

v Adaptive Sampling algorithm presented for improvement of
any sample-based correspondence method.






