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Abstract

We present a 3D correspondence method to match the geometric extremities of two shapes which are partially
isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which
shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar.
Our rank-and-vote-and-combine (RAVAC) algorithm identifies and ranks potentially correct matches by exploring
the space of all possible partial maps between coarsely sampled extremities. The qualified top-ranked matchings
are then subjected to a more detailed analysis at a denser resolution and assigned with confidence values that
accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to combine the
accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended
to a denser map. We test the performance of our method on several datasets and benchmarks in comparison with

state of the art.

Categories and Subject Descriptors (according to ACM CCS):

1.3.5 [Computer Graphics]: 3D Shape

Correspondence—partial shape correspondence, isometric distortion, extremity matching, partial isometry

1. Introduction

Finding correspondences between shapes is a fundamen-
tal problem in computer vision and graphics with numer-
ous applications such as deformation transfer, statistical
shape analysis, shape retrieval and registration [BBKOS]
[VKZHCO11]. The shape correspondence problem can be
divided into two categories as complete and partial corre-
spondence, where the latter deals with shapes that are com-
mon or similar only partially. Partial shape correspondence
can also be thought of as a more general and hence harder
variant of the former, since the partial matching set, which
is a priori unknown, needs to be determined from the global
set of surface points or mesh vertices that define a shape as a
whole. In this paper, we address the partial correspondence
problem, and consider it in its most general setting where
shapes to be matched may have multiple common parts at
arbitrary scales as well as parts that are not similar at all.

Isometry is an important clue in resolving shape corre-
spondences since similar shape parts usually have similar
metric structures. Although partial matching can be achieved
by enforcing geodesic metric consistencies or by searching
for partial mappings with minimum isometric distortion, the
arbitrary scale of similar parts, which may change from one
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shape to the other, usually poses an important challenge that
first needs to be resolved.

We propose a rank-vote-and-combine (RAVAC) algo-
rithm to find correspondences between partially isometric
shapes. We primarily target the partial correspondence prob-
lem, though the proposed scheme can be used to generate
complete correspondences as well. Our algorithm collects
partial isometry cues from the given shapes by considering
all possible partial mappings (relations) between shape ex-
tremities and accumulates the collected information into a
vote matrix which is then used to find an overall optimal
partial correspondence via perfect graph matching. The main
idea in RAVAC is to measure a correspondence pair’s devia-
tion from isometry based on only part of the shape. A small
deviation from isometry gives a high confidence for that cor-
respondence, and a large deviation gives a low confidence.
Since the part segmentation is not available in advance, the
algorithm computes an average deviation (distortion) value
over many candidate segmentations. Each candidate seg-
mentation is generated using a triplet of extremities from the
source and target shapes. The "good" triplets needed to gen-
erate part segmentations are obtained by ranking all possi-
ble pairs of correspondences between extremities in advance
and picking the triplets only from the pairs with low distor-
tion estimates. To estimate distortions for ranking, we em-
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ploy a heuristic based on pairs of k-tuples of extremities from
the source and target with similar intrinsics.

The paper is organized as follows. In Section 2, we discuss
the related work and elaborate on our contributions. Through
Sections 3-7, we describe the main components of our cor-
respondence scheme, which are sampling, ranking, voting,
combining and dense matching, respectively. The computa-
tional complexity of the overall shape correspondence algo-
rithm is relatively low, as analyzed in Section 8. We test the
performance of our method on several datasets and bench-
marks in comparison to two state of the art methods, as pre-
sented in Section 9, where we also discuss the limitations of
our approach. We provide concluding remarks and possible
directions for future research in Section 10.

We note that the source code and the executables for the
method that we present in this paper are publicly available
in http://home ku.edu.tr/~yyemez/partialcorresp.

2. Related Work

There are different ways of dealing with the scale prob-
lem in the literature, whether targeting partial or com-
plete shape correspondence. Some methods simply as-
sume that shapes come in compatible scales [GMGPO5],
[BBKO06], [HAWGO08], [TBW*09], [vKZH13] which is
rather a strong assumption, whereas others normalize the
original geometry with respect to some global intrinsic prop-
erty such as maximum geodesic distance [SY11], [SY12a],
[ZSCO™*08], maximum centricity [ACOT*10] or total sur-
face area [OMMG10], [PBB11]. Relying on global prop-
erties for normalization may lead to satisfactory results in
the case of perfect isometry but may perform poorly when
the shapes to be matched are nearly isometric. For partial
matching on the other hand, the success depends highly on
the degree of scale difference between similar parts of the
shapes.

As a solution, some shape matching techniques rely on
scale-invariant local shape descriptors [FS06], [ZBVH09],
[BK10], [ZWW™10]. Local shape information is valuable
for shape correspondence in the case of non-isometric de-
formations, but otherwise it is considered as less reliable
than global shape information such as isometry. The meth-
ods which rely only on local geometric information may not
perform well when the shapes to be matched exhibit large
variations in their local geometry, or may easily confuse sur-
face parts when there are many points that are locally sim-
ilar. Hence some feature-based correspondence algorithms
include also a pruning procedure that takes into account iso-
metric clues by enforcing geodesic consistency [TBW*09],
[ZSCO*08], [HAWGO08], [ACOT*10]. Another important
issue with the use of local shape descriptors, especially in
the case of partial matching, is that different (uncommon)
surface parts may interfere to computation of the descriptor
at a given point. A very recent work [VKZH13] addresses
this problem by introducing a local shape descriptor, namely

the bilateral map, whose region of interest is defined by two
feature points.

An alternative to geodesic metric for the measurement of
isometric distortions is the diffusion metric which is less ac-
curate but generally considered as more robust to topological
noise [OMMG10]. Local scale differences are however diffi-
cult to handle using diffusion-based metrics. The commute-
time metric for example addresses the scale problem only
globally [WBBP11], hence cannot be used for the partial
matching problem. Likewise, the heat kernel signature, as
used in [PBB11], [DLL*10] to address the part matching
problem, requires setting of a time scale parameter that it-
self depends on the global shape scale. A particular setting of
the partial correspondence problem is part matching where
one of the shapes to be matched is an isometric part of the
other up to a scale [PBB11], [DLL*10], [SY12b], [KJSO7].
In this setting, the correspondence-less approach in [PBB11]
optimizes the region-wise similarity over the integration do-
mains relying on diffusion-based local shape descriptors,
whereas [SY 12b] introduces a novel scale-invariant isomet-
ric distortion measure to address the scale normalization
problem.

A common approach in the case of complete shape cor-
respondence is to embed input shapes into spectral domain
where the scaling problem is implicitly handled [JZ06],
[MHK*08], [SY12a], [CHO3]. These methods however treat
the scale problem globally, hence cannot be applied to par-
tial correspondence. A better alternative for partial match-
ing is based on the Mobius transformation which is used
for conformal embedding of the given shapes into a canoni-
cal coordinate frame on the complex plane where deviations
from isometry are approximated based on mutually closest
points [LF09]. This shape correspondence method is basi-
cally a voting technique (M6bius Voting), which aims to find
a reliable but sparse matching between two partially iso-
metric shapes. The algorithm iteratively samples a random
triplet from each of the shape surfaces. The triplet pair then
defines two Mobius transformations that embed the given
shapes (after mid-edge flattening) into a canonical coordi-
nate frame on the complex plane. Mutually closest points on
this plane are considered as candidates for correspondence
and voted based on the distances in between. The final out-
put of the algorithm is a set of correspondences each asso-
ciated with a confidence value. The Mobius Voting (MV)
method is capable of producing a small number of reliable
correspondences, but usually fails to achieve a reliable dense
matching. Although good triplets of surface points can bring
the accommodating parts of the given shapes to the same
pose and scale successfully, the same transformation ap-
plied to other parts that do not necessarily expect the same
transformation may easily distract the global voting process.
The experiments conducted in [LF09] actually show that the
method becomes unstable when the input shapes exhibit less
than approximately 40% similarity.
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Following [LF09], several methods that use Mobius trans-
form for shape matching have then been proposed, though
not in the context of partial correspondence [ZWW™*10],
[KLCF10], [KLF11], [LAADI11]. In particular, the Blended
Intrinsic Maps (BIM) method of [KLF11] can be considered
as an extension of MYV, specifically designed to address the
complete dense correspondence problem. Instead of a vot-
ing approach, the BIM method uses blending: It generates
many complete maps between shapes via Mobius transform
based on triplets of extremal points, weights these maps at
every surface point by distortion and then blends them into
a final map by computing an approximate geodesic cen-
troid for every mapped point. BIM works very well in the
case of complete shape matching, but does not support par-
tial matching since it is essentially based on generation of
complete candidate maps. Such complete maps do not ac-
tually exist when the shapes to be matched have dissimilar
parts that constrain the distortion estimate. Theoretically one
could envisage using BIM to find partial correspondences
since it blends the generated complete maps by weighting.
This would however yield robustness problems similarly as
MV (in fact more severely than MV), as we will demon-
strate by experiments in this paper. In contrast to these two
methods, our method explicitly explores the space of partial
maps defined over shape extremities. These partial maps are
populated via region of interest sampling and used to accu-
mulate partial isometric clues (distortions) into a vote ma-
trix. Hence we use voting to match shape extremities and
blending to extend the obtained sparse correspondence to
a dense one. We note that, for the case of complete dense
correspondence, the BIM method has been outperformed by
several recent works based on functional representation of
correspondences [OBCS™12], [PBB*13], [ROA*13], which
however lack partial shape matching support.

Another state of the art correspondence method is the
deformation-driven technique of [ZSCO*08], which can
handle non-isometric shape variations (up to a certain de-
gree) as well as partial isometries. In this method, an op-
timal correspondence is sought between shape extremities
via priority-based combinatorial tree traversal by pruning
the search space according to some criteria based on local
shape similarity and geodesic consistency. For each candi-
date correspondence set, the source shape is deformed to the
target based on these small number of landmarks (anchor
points), and the correspondence with the smallest distortion
gives the best matching. The major drawback of this scheme
is the extensive computational load due to the process of re-
peated deformations. Another shortcoming is the need for
error threshold parameters employed in tree pruning, which
are usually data dependent. Hence it is often very difficult
to set these parameters correctly and the combinatorial tree
traversal may easily miss some of the correct feature pair-
ings. Moreover, the geodesic information which is used to
prune the combinatorial search tree is normalized based on
some global instrinsics, which is problematic for matching
arbitrarily scaled shape parts as discussed before.
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2.1. Contributions and advantages

In our previous work [SY12b], we have addressed the part
matching problem (not the partial correspondence problem
in the most general setting) and described a method that
also relies on shape extremities. However the framework de-
scribed in that work is completely different than our current
solution and actually very simplistic, aiming to introduce a
novel scale-invariant isometric distortion measure. Its focus
is on promoting this novel distortion measure, not a par-
tial matching algorithm. The method simply assumes that
the top M shape extremities of one shape are all included in
the other shape as well and runs a combinatorial search over
all possible permutations to match these extremities with M
extremities of the other, minimizing the proposed novel dis-
tortion measure. The method that we present in this current
paper does not use this distortion metric and does not either
employ such a simplistic combinatorial search, rather it ac-
cumulates partial isometric clues by traversing all possible
partial maps, employing more sophisticated algorithms for
ranking, voting and combining.

There are few methods in the literature, that are capable of
addressing the partial correspondence problem in the most
general setting where shapes may have multiple common
parts at arbitrary scales as well as parts that are not sim-
ilar [LF09], [FS06], [TBW*09], [ACOT*10], [ZSCO*08].
All these methods mainly rely on scale-invariant local shape
descriptors except for the MV method [LF09]. Note also that
the methods in [TBW*09], [ACOT* 10], [ZSCO™*08] enforce
geodesic consistency in addition to local shape similarity,
and hence resort to global intrinsic properties for shape nor-
malization. When compared to MV, our method has several
advantages. First, we handle the scale problem inherent to
partial correspondence directly in the 3D Euclidean space
wherein isometry is originally defined, hence as free of em-
bedding errors. Second, our method can produce reliable
dense correspondences between partially isometric shapes.
Third, we impose no restriction on shape topology. Last,
our method generates more reliable and accurate correspon-
dences, especially at shape extremities, and can handle shape
pairs with less similarity overlap.

In view of the above discussion, the main contribution of
this work is a computationally efficient and robust method
that can accumulate partial isometric clues into a vote matrix
and thereby computes partial shape correspondences which
can be dense or sparse. We note that the focus of this work
is on partial correspondence, though the proposed algorithm
can also generate complete correspondences.

3. Sampling

We pick shape extremities of the given shapes by using
local extrema of the integral geodesic distance function
[HSKKO1]. Let u(v) denote the integral geodesic distance
at vertex v. Prior to computation of u, we apply Laplacian
smoothing to each shape model to prevent samples at noisy
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bumps. We then initialize the sample sets with local max-
ima and minima of u. The local maxima are expected to
be on the tips of a given shape whereas local minima cor-
respond to surface points which lie near the center of the
shape [ZSCO*08]. The initial sample sets are then exposed
to two steps of pruning, first of which clusters geodesi-
cally close samples into the most extreme ones where the
closeness threshold is determined based on the maximum
geodesic distance gmax on the surface. In our experiments,
we have used the value obtained by dividing gmax With a
factor h € [10,20] depending on the dataset. The parameter
h basically determines the scale of sampling, which we set
manually by experimenting. The second step of pruning re-
moves a local maximum (minimum) v from the sample set
if u(v) is less (greater) than the average u to cancel out re-
dundant extremities that are not on tips (central region). The
vertices resulting from this sparse sampling process consti-
tute the sets S (source) and 7 (target) to be matched (Fig. 1).

4. Ranking

In the ranking phase, we rank all possible pairs of correspon-
dences between extremities based on their deviations from
isometry. We estimate the deviation for each pair, hence the
isometric distortion, using a heuristic based on pairs of -
tuples with similar average normalized geodesic distances
on the source and target. We describe the ranking process in
detail in the sequel (see also the pseudocode of the overall
correspondence algorithm given at the end of this section).

4.1. Distortion estimate

Given a mapping § : S — T, i.e., a set of correspondence
pairs, we measure the isometric distortion Djy, as follows:

1
Y diso(sitj.§) )

Dy, = Tar
© 181 (si,tj) €8

where digo(5i,1;, §') is the contribution of the individual cor-
respondence (s;,;) to the overall isometric distortion:

diso(si,1,8 )= — Y

1
T |8(siys0) = &(tj,tm)| ()
(s1,tm) €S’

where g(.,.) is the geodesic distance between two vertices
on a given surface. The traversal list §', which is by default
§ — {(si,2j)}, includes the correspondence pairs to be tra-
versed in order to compute the distortion of a given individ-
ual correspondence pair (s;,7;). Note that variants of the iso-
metric distortion function defined by (1) can also be found
in [BBKO6] as well as in most of our previous work [SY11],
[SY12a], [SY13].

An important issue in computation of the isometric dis-
tortion is how to normalize the scale of the geodesic dis-
tance function g involved in Eq. 2 since, in the case of par-
tial matching, there are no agreed maximum geodesic dis-
tances on the source and target due to possible local scale
differences. The key observation here is that the individual
isometric distortion of a queried match (s;,#;) can safely be

evaluated via Eq. 2 in the absence of globally normalized
geodesics by using a traversal list consisting of matches from
the shape part where the pair s; and ¢; itself resides in. The
geodesic distances for this query can be normalized by us-
ing the maximum geodesic distance within this shape part.
However since the corresponding shape parts are not known
in advance, we estimate the individual isometric distortion
by traversing over all possible one-to-one mappings of car-
dinalities 2 to 5. Note that these mappings do not include the
query (s;,t;) and the cardinality of a mapping is defined as
the number of pairs in it. We do not check beyond 5 due to
efficiency reasons as well as the fact that 5 extremities (plus
s; or t;) are usually sufficient to represent any given shape
part, e. g., large-scale limbs in humans and animals. The es-
timate, digo(si,t;), of the individual isometric distortion of
the correspondence (s;,t;) is then computed by

1 .
diso(sis17) = 7 Y rrllln{diso(sivtj7§[<k))} 3
kER.S]

where {§§k>| [ =1,2,...,L;} is the set of all maps of size &,
not including (s;,z;), and Ly = (|S|,:1) (‘Tlljl)(k!). We de-
note this set by S ) While computing the distortion via
Eq. 3, the geodesic distance function g is normalized for
each shape with the maximum geodesic distance between
the k samples of the given mapping. Taking the minimum in
(3) guarantees that if (s;,7;) is a good match and traverses a
list of matches from the same shape part it resides in, then
this is appreciated by selecting the lowest distortion. We then
average over sets of maps with different cardinalities since
maps of small size, e.g., with k = 2 or 3, are likely to fall in
the same part as (s;,7;) but may exhibit symmetric flip prob-
lems, whereas mappings with large cardinalities, e.g., k = 4
or 5, are unlikely to be confused by flips but have the risk of
including irrelevant samples from a distinct part.

4.2. Safe map generators

In Eq. 3, each (s;,t;) traverses all possible one-to-one map-
pings to compute the minimum distortion over S ®) To re-
duce computation, we prune S *) 50 as to keep only the po-
tentially safe maps, i.e., the maps between k source samples
and k target samples which are expected to be from similar
shape parts (see Fig. 1).

To this end, for each k, we define a set of safe map genera-
tors, g(k>, which contains all pairs of k-tuples, one tuple from
the source sample set and the other from the target, such
that any map between these tuples is potentially safe. We de-
note each of these pairs of sample tuples by G,gf ) €g *) for
me (1, |g<k> |]. A pair of k-tuples is identified as a safe map
generator if it satisfies the geodesic consistency condition
that the average of pairwise normalized geodesics between
source samples is close to that of between target samples.
We normalize the geodesics with the maximum geodesic
distance between the samples of the given tuple. Note that
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Figure 1: Samples (green spheres) on two different shape
pairs. A safe map generator GS,P is expected to choose k
samples from each common shape part (red regions).
although all k! mappings generated from a given GS,If ) are re-
ferred to as potentially safe, only a small portion of them are
actually correct mappings between two similar parts. Hence
while evaluating a query match (s;,#;) via Eq. 3, taking the
minimum helps eliminating the contribution of the irrelevant
partial maps.

We create the generator sets gW incrementally for k =
3,4,5 (no pruning is applicable for k = 2). For k = 3, each
triplet of source samples is tested with each triplet of tar-
get samples to meet the geodesic consistency condition.
Among (lgl)(@) pairwise triplet combinations, typically
20% — 30% make into 9(3) in our experiments, where the
closeness threshold is manually set as 0.15 by experiment-
ing. For k = 4,5, we incrementally build G ®) from g (k=1),
In each case, a pair of source and target samples appended
to an existing generator Gg,f ) triggers a new geodesic con-
sistency test and typically 2% — 4% of all possible pairwise
combinations are selected. Some safe map generators from
g () are demonstrated in Fig. 2.

Figure 2: Three different triplet pairs (safe map generators)
from G are indicated with large green spheres on three
different views of the same shape pair. Blue spheres represent
the remaining samples.

By replacing S *) in Eq. 3 with the potentially safe one-
to-one maps based on G%. we not only reduce the search
space significantly but also increase the accuracy by exclud-
ing unexpected distortion values. These unexpected high dis-
tortions are due to evaluation of (s;,7;) via (unsafe) maps
that accommodates samples from irrelevant shape parts.
Once the individual distortions are computed via Eq. 3, for
each source sample s;, we rank the pairs (s;,7;) based on
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Input: Extremity sample sets S and T’
Output: One-to-one mapping §* : § — T
Ranking
GW for k = 3,4,5: safe map generators, i.e., all pairs of k-tuples of
extremities from the source and target with similar intrinsics;
Foreachs; € §
Estimate dig, (si,tj) Vt; € T based on {g(">} via (3);
Qualify the match (s;,#;) for voting if diso (si, %) appears
before the first significant jump in the sorted distortion plot of s;;
Voting
I': Vote matrix with all entries v;; initialized to 0;
Form =1to0|G®)|
16 Gy = (51,510,503 (1 1o 153)) € G generates
5

= {(si,»1j,), (8iy,15), (8i5,1j3) } where all pairs are qualified
Bring meshes to the same scale by multiplying target with
8(siySiy) | 8lsipsig) | 8(siySiy) )/3;
gl tiy) ety dys) T oaljy )
Set Sy = {si,, iy, 8,y and Tp = {1, 1j,,1j3 }
Compute regions of interest, S; and 7}, on source and target;
Spread ~100 dense samples, Sl and Tl on regions of interest;
Find the dense map §:8 =T
Vote up confidence of extremity match (s;,¢;) € §§3) via
Yij = Yij + exp(—diso(si,17,61)):
Combining
Set the cost matrix C* = oo;
¢y = 1 —v;j for high-confidence matches (s;,t;);
Repeat
§* = minimum-weight perfect matching on C*
Let (s4,1) be the least-confident match in §*;
Cap = 003
Until there is no jump in confidences of the matches in §*

K=

Figure 3: The overall RAVAC Algorithm.

their individual distortions: We sort all possible |T | different
matches with respect to afiso(s,-,tj) in ascending order and
qualify only the ones with a distortion value that appears be-
fore the first significant jump in the corresponding distortion
plot. We assume that a significant jump occurs where the
difference between two consecutive values becomes larger
than the sum of the first two distortion differences, i.e., the
sum of the difference between the first and the second val-
ues, and the difference between the second and the third val-
ues in the sorted list. A similar jump thresholding heuristic
is employed also in other shape correspondence works such
as in [ZSCO*08] for determining the optimal feature size
and in [SY13] for tracking symmetric flips. With the qual-
ified matches, the voting module is then ready to start, as
described next (see also the pseudocode in Fig. 3).

5. Voting

With the ranking of possible matches in hand, one possibil-
ity to solve the correspondence problem is to select the least
distorted match for each source sample. This straightforward
solution would give a (possibly many-to-one) mapping that
would however suffer from symmetric flips and mismatches
due to low number of extremities being matched. We there-
fore consult to a voting procedure which is more robust, that
relies on the ranking obtained in the previous section. The
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Figure 4: An example of the voting process for a generating pair of sample triplets from G () q ) Two steps that decide regions
of interest (painted red), b) evenly-spaced dense samples (yellow spheres), and c) one-to-one map between them (lines) to be

used for computation of confidence votes.

basic idea is as follows. We accumulate confidence votes
for all possible pairs of correspondences between extremi-
ties into a vote matrix. These confidence votes are collected
based on the isometric distortions of the pairs. The distor-
tions are computed over many part segmentations gener-
ated using triplets of extremities on the source and target.
Hence the voting process considers only the generator set
g® (the others are discarded simply due to computational
reasons). Among 3! potentially safe maps generated from

each GS,? ) €eg (3>, only those containing the matches quali-
fied in the ranking phase are taken into account. Each such

safe map §l(3) defines two regions of interest, hence two part
segmentations, on the given two shapes (as will be explained
next), which are resampled and matched at a denser level
(see Fig. 4). The resulting isometric distortion is then used to
vote for the three matches contained in this potentially safe
map. This is repeated for all qualified safe maps and the re-
sulting votes are accumulated into a vote matrix where each
entry represents the confidence of a potential match between
two shape extremities. In the sequel, we describe the voting
algorithm in detail.

5.1. Finding regions of interest

Let §l(3) be a potentially safe map generated

(3)

from G,’ = ((S,'l »Sizs Si3), (tjl 71‘]'271‘]'3)) such  that

§l(3) = {(si,,1},),(8ir,1j,), (8i5,2j,) }. The voting algorithm
first brings the shapes to the same scale by scaling the target
gsipsiy) | 80siysiy) | 8(siysi) )/3
8ltjtiy) T &ltity) 8ty tys)
based on the geodesic distance ratios between the ordered
sample points, and then finds the regions of interest that
these shape extremities determine (see Fig. 4a). Let the ex-
tremity sample sets {s;,,s;,,5;, } and {z;,,¢;,,;,} be denoted
by S; and 7;, respectively. The region of interest on the
source shape includes the source mesh vertices that are close
to S; and distant to S — S;. To implement this, we mark a
vertex v as a region vertex if g(s,v) < g/ max VS € ], where
&1.max 18 the maximum geodesic between extremity samples
in S; (see Fig. 4a-left). To meet the second requirement, for
each maximal extremity s' € § — S;, we unmark the region

mesh with a factor x = (

vertices that are at most g(s,s”)/2 apart from 5" where s € S;
is the closest extremity to s” (see Fig. 4a-right). The region
of interest on the target shape defined by the extremity set
T; is computed likewise.

5.2. Dense region sampling

Next, we distribute evenly-spaced dense samples in the re-
gions of interest (see Fig. 4b). We resample and populate the
region of interest on the source shape by first selecting the
corresponding extremities as the first three dense samples.
Given the region area A, we use the ad-hoc formula to com-
pute the radius r = 0.17,/A /7 that ensures evenly sampling
of about 100 dense samples [SY11]. The sampling procedure
is as follows. When an arbitrary region vertex is selected as a
dense sample, all the region vertices lying within its patch of
radius r are marked. The next dense sample is then selected
arbitrarily from the unmarked region vertices. When this is
repeated until no unmarked region vertex is left, we obtain
a partitioning of the region into dense samples that are at
least r apart from each other [HSKKO1]. A similar evenly-
spaced sampling on the regions of interest of the scaled tar-
get mesh using the same r makes the dense samples as con-
sistent as possible on the two surfaces. This joint sampling
process yields consistent samples, especially if source and
target regions correspond to similar shape parts. We denote
the dense sample sets on regions due to S; and 7; by $; and
T}, respectively.

5.3. Dense region matching

We match $; and T} by using a fast minimum-weight per-
fect matching algorithm [Kol09], and denote the resulting
dense map by §/. To feed the algorithm, we build a cost
matrix C where each entry cp, is the isometric distortion
of matching a source sample §, € $; to a target sample
fq € T;. We compute each cpq based on the three correspon-

dences available in the qualified safe map §l(3) by setting
cpg = diso(8p,1q, §§3)) via (2), which is expected to map S;

to 7; with low distortion if §l(3) is correct. Since the cardinal-
ities of the disjoint sets must match for a perfect matching,
if |S;| # |T;|, we introduce virtual vertices with connector
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Figure 5: Confidence vote assignment to the matches be-
tween the extremity samples (colored bold lines) for two dif-
ferent safe maps. Confidence votes are computed by travers-
ing a pair (s;,t;) over the dense matching displayed with thin
black lines.

edges of oo weights. We also enforce the three correspon-

dences available in the map §l(3> to be preserved in the re-
sulting dense map by setting the corresponding entries of

the cost matrix to —oo. Hence we guarantee that §§3> C §l~
5.4. Vote matrix

The dense region matching process described previously is

)

repeated for each qualified safe map §§3 generated from

G,(n3), and each such matching process produces a confidence
vote Y;(s;,2;) for each pair (s;,;) € §l(3). This confidence
vote is computed based on the individual isometric distor-
tion that the dense matching yields:

Yi(si,tj) = exp(—diso (51,1, §1)) “
which produces a value in [0, 1].

The confidence votes resulting from all dense mappings
are then accumulated into the vote matrix I', where each en-
try ¥;; eventually represents the confidence of matching a
source extremity s; € S to a target extremity ¢; € T. More
specifically, each entry v;; is given by the average of all con-
fidence votes that the pair (s;,7;) gets. We note that, to im-
prove robustness, we discard a qualified safe map from the
voting process if the target region of interest is significantly
larger or smaller than the source region after scale normal-
ization since this definitely implies a bad configuration, e.g.,
three source samples from finger tips of a hand vs. a tar-
get triplet consisting of two hands and a head on a pair of
human shapes. In our experiments, we have discarded the
cases where the target region is twice larger or smaller than
the source. We have manually selected this setting so as to
keep good configurations while eliminating those which are
definitely bad.

6. Combining

We use the vote matrix I to find an optimal mapping, §* :
S — T, from the set of source extremities to the set of tar-
get extremities. We first convert the vote matrix into a cost
matrix and then apply the minimum-weight perfect match-
ing algorithm in [Kol09], that gives us an optimal one-to-
one mapping which respects confidence values globally. The
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cost matrix C* is formed by replacing the high confidence
entries in I" with c}kj = 1 —v;; and others with oo. Note that
virtual vertices are introduced if |S| # |T, as in Section 5.3.
High-confidence entries are determined automatically using
a procedure that is similar to the jump detection algorithm
described in Section 4.2. Given a sample s;, we sort all con-
fidences in row I to infer the average difference {; between
the consecutive sorted confidences. We then mark the en-
tries appearing before the first significant jump, which we
set to 1.5C;, as high-confidence entries. Taking into account
only high confidence entries improves the robustness of the
matching algorithm. We note that the choice 1.5; is set man-
ually by experimenting, which is a quite stable setting for
thresholding confidence values.

The above perfect matching algorithm produces a one-to-
one mapping that associates every source extremity with one
target extremity sample. This is a desirable solution in the
case of complete shape correspondence as well as for the
problem of part matching. However, when the shapes are
partially isometric both with parts that are not similar, some
of the matches in the resulting map will clearly be outliers
which distract the optimization process itself. Also, when the
structural dissimilarity between the shapes is large, there is
the danger of occupying a nice spot on the target shape with
an irrelevant match which originates from a source sample
whose counterpart does not actually exist on the target. To
address this problem, we iterate the perfect matching algo-
rithm each time removing one of the outliers. Since an out-
lier match is expected to have small confidence, at each it-
eration, we remove the least-confident match by setting the
corresponding entry in C* to co and solving the new C*
again and repeating these removals until convergence, i.e.,
until there is no jump in the confidences of the matches in
the resulting one-to-one map, i.e., all differences between
consecutive sorted confidences are less than 3¢, where { is
the average of all these differences (we choose the setting 3¢
manually by experimenting). Hence the final map that our
algorithm produces is always one-to-one, but does not nec-
essarily associate every extremity sample on the source (or
target) shape with an extremity on the other.

7. Extension to Dense Map

The optimal coarse correspondence §* that our RAVAC al-
gorithm produces between sparse shape extremities can be
extended to a dense map. For each mapping with cardinal-
ity three, which is a subset of §*, we densely resample and
match the corresponding regions of interest. This process
is repeated for all §§3) C §", and then the resulting dense
matchings are blended into one dense map, that we denote
by §*.

The process of resampling and matching the regions is the
same as described in Section 5 except that this time the re-
sampling algorithm takes into account the other overlapping
regions of interest while populating its samples. The regions
of interest are enforced to include the same samples in the
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parts where they overlap. Hence while resampling a region
(Section 5.2), the dense sample set is initialized to include
all the dense samples that have been so far included by some
other regions of interest. This enables to accumulate a set
of candidate matches on the target, F'(§;), for a given dense
source sample §; as regions of interest are matched. Let t 1
be the coordinate vector for the target dense sample 7;. The
blended coordinate

1 X
bi = t 5)
|F(5;)] fje%fi) !
then approximates the geodesic centroid of the candidate
matches for §; and provides (§;,7;) as the blended dense
match, where 7 is the target vertex closest to b; in L, sense.
The main computational load of this dense extension comes
from the minimum-weight perfect matching phase, which is
negligible when the number of dense samples is less than
500.
8. Computational Complexity

Sampling N initial extremities on the input mesh with V ver-
tices takes O(VlogV) time. The ranking module demands
O(N*) operations as each of N samples is tested with all
O(N3) triplets to traverse a map of constant size. The vot-
ing procedure, for each qualified triplet (O(N 3)), generates
a potentially safe map, defines regions of interest around the
map (O(V)) and distributes ~100 dense samples on them
(O(V1ogV)), which are then matched for confidence com-
putations. The voting complexity is hence O(N>VlogV).
The final combining phase performs minimum-weight per-
fect matching of O(NlogN) work about at most 10 times
until convergence. The dense map extension comes without
any additional complexity as the blended coordinates com-
puted in O(NVlogV) time provide the closest mesh ver-
tices in O(NV) time. The overall worst case complexity is
therefore O(N*V logV') assuming N < V.

Compared to O(VZlogV + N*logN) complexity of the
MYV method, our method is considered to be fast since it uses
a much smaller N, e.g., 10 vs. 250. The BIM method, on
the other hand, has the same algorithmic complexity as our
method, yet not addressing the partial matching problem.

9. Experimental Results

We test the performance of our method on several shape
benchmarks for partial, complete, sparse, and dense corre-
spondence problems in the presence of isometric (or nearly
isometric) deformations and scale differences. We mainly
compare our method with the Mobius Voting (MV) method
of [LF09] since our focus is on the partial correspondence
problem. We also conduct experiments for comparison with
the Blended Intrinsic Maps (BIM) method of [KLF11] in the
case of complete dense correspondence.

The first dataset that we use is a subset of the Non-rigid
World benchmark [BBKO06], which consists of uniformly-
sampled meshes representing articulated motions of 17
horses, 6 centaurs, 6 seahorse, 21 gorillas, 4 males, and 4

females, each with ~3.4K vertices and arbitrary connectiv-
ity. We have also created 4 partial horse models by man-
ually cropping the original complete models. The second
dataset is a part of the SHREC 11 benchmark [BBB*11].
A high-resolution mesh of a null reference male model in
T-pose (SHREC-null), its 5 different poses that have un-
dergone isometric deformations (SHREC-iso), one isomet-
ric pose in 5 different scales (SHREC-sca), and 5 cropped
models (SHREC-part) are represented with ~50K uniformly
spaced and arbitrarily connected vertices. The third dataset
is the SCAPE benchmark [ASK*05], which is reconstructed
from a real scene, representing the real motion of a hu-
man actor in 71 meshes each with ~ 12.5K vertices. Finally
we use high-resolution TOSCA shape benchmark [BBKO0S]
with full ground-truth correspondence information for our
dense matching experiments in comparison to BIM and MV.

Beside visual evaluations, we assess the performance us-
ing the distortion measure Dgrq which quantifies the devia-
tion of a given correspondence § from the ground-truth cor-
respondence:

Dea(®) = 5 L a1, ©
(si,t5)€8

where f(s;) stands for the ground-truth correspondence of s;
on the target shape, and g(.,.) is the geodesic distance func-
tion. The maximum geodesic distance on the target model
is normalized to 1.0 to simplify the interpretation of this
measure. We note that dense ground-truth correspondences
are available with SCAPE and TOSCA datasets whereas for
SHREC’11 and Non-rigid World benchmarks we obtain the
coarse ground-truth correspondences between shape extrem-
ities by hand.

9.1. Sparse Extremity Matching

We consider three possible sparse matching scenarios: com-
plete matching, partial matching and part matching. Fig-
ures 6-10 display various examples from our sparse corre-
spondence results. In these figures, we give the most confi-
dent 6 extremity matches in red, green, blue, black, cyan,
and magenta colors, respectively, and for the subsequent
matches, if exist, we use dashed black lines with spherical
endpoints scaled with a radius proportional to the confidence
of the correspondence pair. Unmatched samples, if exist, are
represented by small red spheres.

In Table 1, we provide the quantitative performance re-
sults obtained on various benchmarks, in comparison to the
MYV method. For selection of the shape pairs in each test
suit given in this table, we employ a randomized proto-
col which is similar to the one used in [KLF11]. For the
complete matching tests between the Non-rigid World horse
models, each complete model is mapped to a random com-
plete model, whereas the part matching performance is eval-
uated by finding maps between each cropped model and
4 random complete models, hence a total of 33 pairs (see
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Extremities 5-matches
(MV, Our method) | (MV-top5,
Our counterparts)

Dataset (Dgrd; Dgra) (Dgrd; Dgra)
Horse<>Horse (.189, .028) (.014, .066)
Horse<«>Horse-part (.281, .045) (.039, .089)
Centaur<+Horse (.348, .046) (.025, .133)
Seahorse<>Horse (n/a, .071) (n/a, n/a)
Centaur<»Human (n/a, .078) (n/a, n/a)
SHREC-iso<+»SHREC-iso |(.053,.003) (.002, .044)
SHREC-part<>SHREC-iso | (n/a, .049) (n/a, n/a)
SHREC-part«<>SHREC-sca | (n/a, .051) (n/a, n/a)
Gorilla<+SHREC-null (n/a, .065) (n/a, n/a)
SCAPE«+SCAPE (.182, .004) (.007, .045)

Table 1: Quantitative evaluation of our method in compari-
son with Mobius Voting (MV) [LF09].

also Fig. 6). The remaining tests conducted on the Non-
rigid World benchmark seek partial correspondences in the
presence of uncommon parts, that complicates the prob-
lem further. In these experiments, we pick 6 centaurs and
match each of them with 4 random models from horse,
male, and female classes, hence a total of 72 pairs. Simi-
larly, each seahorse is matched to 4 random horse models
for another 24 pairs (see also Fig. 7). The SHREC’11 com-
plete matching tests are performed by mapping each isome-
try class model to a random model from the same class. As
far as the partial correspondence is concerned, each model
in the partial class is matched with 3 random models from
the isometry and scaling classes, hence a total of 35 pairs
(see also Fig. 8). Finally, the quantitative performance values
for SCAPE dataset are computed over 10 randomly selected
shape pairs.

For comparison tests, we have run the publicly available
code of MV with its default settings of 100 samples and
IM votes. In Table 1, we evaluate the performance of MV
based on the samples that are closest to the extremity sam-
ples used by our algorithm. We also compare the correspon-
dence formed by the top (most confident) 5 MV matches
with our 5 corresponding matches. For the former case con-
cerning extremity matches, our method significantly outper-
forms MV whereas, for the latter 5 matches that tend to be
on non-extremities such as shape centers, we are almost on
a par with (only slightly worse than) it. We note that our ini-
tial sparse correspondence between extremity samples needs
to be extended to a denser one, as described in Section 7,
in order to find our closest counterparts to the top 5 MV
matches. The missing entries in the table for the rows in-
cluding SHREC-part meshes with holes are due to sphere
topology restriction of MV. The entry for Centaur<>Human
pair is also missing since the similarity between the shapes
is required to be more than 40% in the case of MV [LF09].
Note also that gorilla and seahorse meshes crash the public
MV code due to its sphere topology requirement.

We observe in Table 1 that the performance of MV on
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Figure 6: Complete shape matching between the extremities
of two horse models from Non-rigid World (left). Part match-
ing between a horse and a cropped model (right).

SCAPE models, which contain much more non-delaunay tri-
angles than SHREC meshes, is inferior to its performance
on SHREC although the object types and isometric defor-
mations applied are quite similar for these two datasets. This
decrease in performance is not observed in the case of our
method which is insensitive to peculiarities of a given par-
ticular triangulation.

Several visual examples for comparison with MV are
demonstrated in Fig. 9. The top 5 MV matches are high-
lighted by large spheres whereas their extremity matches
that are closest to ours are indicated by large spheres with
connecting lines. All other small spheres of matching col-
ors represent the remaining correspondences. A similar vi-
sualization is performed for our results as well except that
only 5 of our dense matches, which correspond to the top
5 MV matches, are shown. We observe that whenever the
dissimilarity between shapes increases, MV shows instabili-
ties especially at the extremity matches as the mutual closest
point matches in their embedding domain starts to confuse
on these regions of small area. Our results, on the other hand,
rely on the dense matchings obtained in the neighborhoods
of the extremities, which are hence less likely to get nega-
tively affected by irrelevant data.

As we observe in Fig. 7, our algorithm mostly rules out
the samples representing the uncommon parts without caus-
ing any confusions on the matches concerning samples of
interest from the common parts. However we note that some
of the correct matches, such as those between the heads of
Seahorse<+>Horse, may erroneously be removed by the iter-
ative perfect matching process in the combining phase (Sec-
tion 6) due to the consistent setting of the jump threshold
value over all datasets, that is 3C.

We also experiment on a low-resolution gorilla and a
high-resolution male from two different benchmarks to
demonstrate the endurance of our algorithm not only to the
difference and size of the triangulations but also to complete
matching of shapes that exhibit local similarities but large
deviations from global isometry (Fig. 10). With 21 pairs ob-
tained by matching the null shape to all gorillas, we obtain
successful results (see Table 1). Since we isolate each poten-
tially compatible triplet pair from all other samples during
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Figure 7: Examples of partial matching on shape pairs from
Sfour shape classes of Non-rigid World (Horse, Centaur, Sea-
horse, and Human).

Figure 8: Example matchings on SHREC’11 between two
complete shapes from isometry class (left). Partial model
mapped to scaling model (middle) and to isometry model
(right). Note the arbitrary number of samples on fingers.

the voting process, the male hands can be matched to the
elongated gorilla hands successfully.

9.2. Dense matching

We evaluate our dense matching extension described in Sec-
tion 7 in comparison to MV and BIM. For these tests, we use
8 Horse pairs from TOSCA and 12 pairs from SCAPE, all
randomly selected. In this case, we can thoroughly evaluate
Dg;q over all matches, rather than on just 5 matches, thanks
to the ground-truth dense correspondence information avail-
able.

Fig. 11 visualizes an example from our dense map of
size ~250, obtained on SCAPE dataset along with the cor-
responding MV map of the same size. The figure demon-
strates our much smoother correspondence flow as compared
to MV, where the yellow bold lines represent the worst indi-
vidual matches, exemplifying the poor performance of MV
around shape extremities. The quantitative evaluation also
favors our method as given in Table 2. We also note that

Figure 9: Mobius Voting (left) vs. our method (right) on dif-
ferent shape classes: Horse-Horse, Horse-Horse part, and
Centaur-Horse, for complete, part, and partial matching.

Figure 10: Two examples of complete shape matching be-
tween male (SHREC’11) and gorilla (Non-Rigid World)
meshes that exhibit local similarities but large deviations
from global isometry.

the worst distortions for the dense correspondences obtained
on the 12 SCAPE pairs are .952 and .257 in our favor, and
that the performance difference is higher on SCAPE meshes
which contain more non-delaunay triangles than TOSCA
horse models. Although our method does not in general yield
very large errors as in MV, it is possible to have locally in-
correct matches due to inconsistent sampling, such as nose
to ear matching demonstrated in Fig. 12-top.

As for comparison with BIM, we have used the publicly
available BIM code which produces a full dense map be-
tween input meshes. Hence for a fair comparison we inter-
polate our dense correspondence to a full map between all
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Extremities Dense map (~250)
(MYV, Our method) | (MYV, Our method)

Dataset (Dgrd > Dgrd) (Dgrd , Dgrd)
Horse<+Horse (TOSCA)|(.111, .024) (.060, .031)
SCAPE<«+»SCAPE (.223,.017) (.203, .043)

Table 2: Quantitative evaluation of our method in compari-
son with Mébius Voting method of [LF09].

Figure 11: Dense complete maps computed on a SCAPE
pair by Mobius Voting (left) and our method (right). Some
MYV matches that correspond to our extremity matches are
marked with circles. Yellow lines show the worst matches.

vertices using the same procedure described in [KLF11] (see
Fig. 12). In Table 3, we provide the extremity and full dense
matching performances of BIM in comparison to ours. For
extremity matching comparison, we follow the same strategy
that we have used for MV comparisons given in Section 9.1.
We observe that BIM is slightly better than our method in
extremity matching, mainly because we enforce three ex-
tremity correspondences in the generating partial maps to
be preserved in the resulting dense maps to be blended. The
BIM method, on the other hand, blends unrestricted match
candidates for a given extreme sample, that renders it more
flexible as exemplified via nose matches in Fig. 12-top. Full
dense maps of BIM are again slightly better than our inter-
polated counterparts. This performance difference in favor of
BIM during these complete correspondence tests is actually
as expected since our main concern is the more challenging
partial correspondence problem that cannot be handled by
the BIM method as we demonstrate next.

We emphasize that BIM has been designed specifically
for complete shape matching; yet one could envisage using
it for partial matching since it blends the generated complete
maps by confidence weighting. Hence as a final set of ex-
periments, we have tested BIM for its possible use in partial
and part matching, as shown in Fig. 13. We have used the
same publicly available BIM code with the same settings as
we have used in the complete correspondence experiments.
We observe that BIM is unstable in these scenarios and can
generate incorrect pairings. This is mainly due to uncom-
mon or dissimilar parts that constrain the distortion estimate
and hence the weights of the blending process. Note also in
Fig. 13 that the output is severely dependent on the choice
that assigns one shape as source and the other as target. For
the part matching scenario for instance, we do not require
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Figure 12: Blended Intrinsic Maps (left) vs. our method
(right) for complete correspondence on two different shape
classes, (top row) TOSCA-Horse and (bottom row) SCAPE.
The color of each source vertex is transferred to the corre-
sponding target vertex where unmatched vertices are painted
in grey. Our dense map used in interpolation is shown as
spheres of matching colors.

Extremities Full dense map
(BIM, Our method) |(BIM, Our method)

Dataset (D, ords D, grd) (D, ord s D, grd)
Horse<+Horse (TOSCA)|(.007, .024) (.019, .037)
SCAPE<«+SCAPE (.012, .017) (.042, .051)

Table 3: Quantitative evaluation of our method in compari-
son with Blended Intrinsic Maps (BIM) [KLF11].

to know the small or cropped mesh in advance since our
method first establishes one-to-one maps between subsets of
extremities, each of which then points to regions of inter-
est to be densely matched in many-to-one fashion. The BIM
method however directly seeks a many-to-one mapping from
source mesh to target mesh, hence requiring a priori knowl-
edge of the smaller shape to be used as the source before
performing any partial matching if that is the intention.

9.3. Timing

The execution times of our shape correspondence algorithm
(including dense matching) on a 2.53GHz PC are about 150,
175, 145, 91, 557, 1216, and 22 seconds for Horse<+>Horse,
Centaur<+Horse, Seahorse<+Horse, Centaur<+Human,
SHREC-iso<+SHREC-iso, Gorilla<+»Human, and
SCAPE<«+SCAPE, respectively. The relatively high ex-
ecution time on Gorilla<>Human is mainly due to 15
samples in matching as opposed to the typical 10 samples
for the others. The fastest runs are on SCAPE«++SCAPE
pairs, dealing with only ~6 samples. The percentage of the
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Figure 13: Blended Intrinsic Maps with different source (S)
choices (top two rows) vs. our method (bottom row), for
partial matching on two different shape pairs from TOSCA
(Horse<>Horse-part and Centaur<>Human). Same display
format as Fig. 12.

execution time devoted to each specific step of the algo-
rithm, respectively for sampling, ranking, voting, combining
and dense matching, is 11.1%, 0.9%, 85.4%, 0.4% and
2.2% on a SCAPE pair with 6 samples and ~12.5K vertices;
0.4%, 9.6%, 89.1%, 0.8% and 0.1% on a Centaur-Horse
pair with 11 vs. 9 samples and ~3.4K vertices. We see that
the execution times are dominated by the voting module
which creates and samples regions of interests whereas the
fast ranking phase just demands shortest path distances
between few number of extremity samples.

9.4. Validation of the RAVAC algorithm

‘We now show by experiments the benefit of each additional
step of our correspondence algorithm in terms of quantitative
improvement. Specifically, we compare our original RAVAC
algorithm with six modified versions as described below:

e Version 1 excludes both the voting and combining steps
from the original algorithm (Version 0) by directly blend-
ing the partial dense maps {§1} as described in Section 7.
Recall also from Section 5.3 that {§;} are originally de-
signed to accumulate confidence values for the coarse ex-
tremity matches in the vote matrix (see Eq. 4).

e Version 2 excludes from the original algorithm the prun-
ing step involved in ranking; it uses all possible one-to-
one maps S ®) for traversal in Eq. 3. Thus this version
keeps ranking but without pruning.

Figure 14: Comparison of our original algorithm (left) to
Version 1 (right) for Centaur-Horse partial matching.

e Version 3 excludes the pruning step from Version 1 in a
similar way as in Version 2.

e Version 4 excludes the ranking step altogether from the
original algorithm. Hence all possible partial maps be-
tween triplets of extremities vote for matching pairs.

We perform the tests on SCAPE as well as the Horse and
the Centaur classes from TOSCA, hence for the complete
shape correspondence scenario, for which dense ground-
truth correspondence information is available. The result-
ing ground-truth distortions (computed using the same ran-
domized protocol as in Section 9.1 to select pairs from each
class) are shown in Table 4 where we observe that the best
performance is obtained using the original RAVAC algo-
rithm.

The superior performance of RAVAC over direct blend-
ing versions (Versions 1 and 3) is mainly due to two rea-
sons. The first one is the iterative outlier removal process
involved in the combining step, that keeps only the reliable
extremity matches to be used in blending. The second rea-
son is the voting step that eliminates some of the (poten-
tially safe) partial maps which may be incorrect or symmet-
rically flipped. Also note that the results given in Table 4 are
obtained for the complete correspondence scenario. If the
shapes to be matched contain uncommon surface parts, then
the relative performance of the direct blending approaches
becomes even worse since the outlier matches from uncom-
mon parts cause much more error in overall extremity match-
ing as well as in blending. We demonstrate this visually in
Fig. 14 on an example where we compare the performance
of Version 1 to our original algorithm in partial matching.
We observe that, in the case of Version 1, outlier matches
distract the whole correspondence process, resulting in an
unsmooth and erroneous dense map.

Another important observation (Versions 2 and 3) is that
the pruning step involved in the ranking phase not only re-
duces the computational load, but also increases the per-
formance by pre-filtering a significant portion of the par-
tial maps based on a simple geodesic consistency constraint.
When the ranking step is omitted totally (Version 4), we see
that the performance drop becomes very severe. This is as
expected since the number of incorrect partial maps in con-
sideration becomes significantly high in this case and so is
the resulting distortion.
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Dense map of size ~250

vO | vl v2 [ v3 | v4
Dataset Dgrd Dgrd Dgrd Dgrd Dgrd
Horse<>Horse .042 | .049 | .051 | .054 | .203
Centaur<>Centaur | .059 | .063 | .070 | .075 | .227
SCAPE«+SCAPE | .053 | .056 | .066 | .071 | .224

Table 4: Quantitative evaluation of our method in compar-
ison with its modified versions (v.0 represents the original
RAVAC algorithm).

9.5. Limitations

The most obvious limitation of the RAVAC algorithm is the
approximate isometry requirement. Our method can be used
to match shapes which contain surface parts that are approx-
imately isometric, but fails to handle severe non-isometries.

Another limitation is that our method can confuse small-
scale features that are close to each other, due to distrac-
tion of spurious samples as well as uncommon parts and lo-
cal non-isometries, such as the nose-to-ear matching in Fig-
ures 6 and 12-top. In Fig. 15-right, we display a more severe
failure case that occurs mainly due to the local non-isometry
on the tails and imprecise setting of the jump threshold in
the outlier removal process. As the jump threshold value, we
currently use the same setting (3() for all datasets, that may
sometimes lead to incorrect removal of some matches such
as those between the heads of Seahorse<+»Horse in Fig. 7 as
well as failures in detecting mismatches as in Fig. 15-right.
Note that the mismatch in Fig. 15 is displayed in magenta
color, meaning that it is the least confident match of the re-
sulting map, hence it would be the first to be removed if the
jump threshold were fine-tuned over the specific dataset. The
blue leg-to-tail matching would then probably be corrected
at the next iteration of the outlier removal process.

The use of geodesic distance metric for distortion com-
putations can also be viewed as a limitation. Although our
method generally performs well for shapes with holes such
as SHREC-part meshes employed in our experiments with
no restriction on shape topology, it may not be possible to
compute geodesics reliably in the case of severe topologi-
cal noise, and the algorithm may fail to generate accurate
matchings.

The last limitation is due to the classical symmetrical flip
problem which is actually inherent to all purely isometric
correspondence techniques. We may hence occasionally end
up with flipped results (see Fig. 15-left) for the cases where
the dense analysis with ~100 samples (see Section 5.2) re-
mains insufficient to resolve intrinsic symmetries.

10. Conclusion
The basic assumption in our RAVAC algorithm is that two
shapes can be matched based on their extremities. As long as

this assumption holds, which is the case for partially isomet-
ric shapes, and these extremities can reliably be extracted,
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Figure 15: A symmetrically flipped dense map (left) and an
example to failure in detecting matches (right).

our algorithm produces correct matchings, which can then
be extended to dense correspondence. This assumption can
however also be seen as a restraining factor for the generality
of our method to handle non-isometries as well as a possible
source of inaccuracies since it makes our method sensitive
to the performance of the extremity extraction process. Nev-
ertheless, the experiments that we have conducted on vari-
ous datasets show that our method performs reasonably well
in the case of approximate isometries, and even for shapes
with holes, such as SHREC-part meshes, with no restriction
on shape topology. Some spurious extremities may appear in
such cases but they are mostly handled thanks to our reliable
voting approach and outlier elimination procedure. Provided
that isometrically similar parts are represented by sufficient
number of extremities (which is 3 at least), our method can
match shapes exhibiting large deviations from global isom-
etry, such as the Gorilla-Human pair from our experiments,
or partially isometric shapes with quite small similarity over-
lap, such as the Centaur-Human pair.

The experiments that we have conducted show that our
method outperforms the MV method of [LF09], the best per-
formant algorithm available in the literature for partial shape
correspondence. We once again iterate that the focus of this
work is on partial correspondence, though the proposed al-
gorithm can also generate complete correspondences. In the
case of complete shape correspondence, the performance
of our method is found to be worse than the BIM method
of [KLF11], yet better than MV.

One possible way of further improving the results ob-
tained by our method is to incorporate local shape descrip-
tors, into the extremity sampling process in order to increase
the precision and consistency of the samples, and/or into the
cost (vote) matrix in order to increase the accuracy of the
matching process. Another direction is to address the trade-
off between the accuracy of the geodesic distortion metric
currently in use and the topological noise robustness of the
diffusion-based metrics as an alternative.
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