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Abstract
We address the scale problem inherent to isometric shape correspondence in a combinatorial matching frame-
work. We consider a particular setting of the general correspondence problem where one of the two shapes to
be matched is an isometric (or nearly isometric) part of the other up to an arbitrary scale. We resolve the scale
ambiguity by finding a coarse matching between shape extremities based on a novel scale-invariant isometric
distortion measure. The proposed algorithm also supports (partial) dense matching, that alleviates the symmetric
flip problem due to initial coarse sampling. We test the performance of our matching algorithm on several shape
datasets in comparison to state of the art. Our method proves useful, not only for partial matching, but also for
complete matching of semantically similar hybrid shape pairs whose maximum geodesic distances may not be
compatible, a case that would fail most of the conventional isometric shape matchers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling[Matching]

1. Introduction

Shape correspondence is a fundamental problem in both
computer vision and graphics with various applications such
as deformation transfer, statistical shape analysis, shape re-
trieval and spatio-temporal shape modeling [BBK08]. 3D
shape correspondence methods seek on two given shapes
for pairs of surface points that are similar or semantically
equivalent. Isometry is an important clue in achieving this
goal since similar shape parts usually have similar metric
structures. Although shape matching can be achieved by en-
forcing geodesic consistencies or by searching for mappings
with minimum isometric distortion, the arbitrary scale of
shapes usually poses an important challenge to overcome for
partial or complete shape correspondence, as we address in
this paper.

There are different ways of dealing with the scale problem
in the partial and/or complete shape correspondence litera-
ture. Some methods simply assume that the shapes come in
compatible scales, which is rather a very strong assumption,
but that might sometimes prove useful especially in the case
of matching 3D scan data [BBK06, GMGP05, HAWG08,
TBW∗09]. Other methods are feature-based and rely solely
on local shape descriptors which are usually designed to be
scale-invariant [FS06,ZBVH09,BK10]. Local shape similar-
ity is an important clue for shape correspondence, especially

in the case of non-isometric deformations, but otherwise it
is considered as less reliable than global shape information
such as isometry. They may not perform well for example
when the shapes to be matched exhibit large variations in
their local geometry, or when there are many points that are
locally similar.

If two shapes are isometric (perfectly, nearly, or partially)
and come in different scales, in order to be able to incorpo-
rate metric similarities, the shapes have to be normalized into
the same scale prior to the matching process. There exist two
different approaches to achieve this. The first and simpler ap-
proach is to scale the original geometry with respect to some
global intrinsic property such as maximum geodesic distance
[SY10, ZSCO∗08], maximum centricity [ACOT∗10], or to-
tal surface area [OMMG10]. This strategy may work satis-
factorily in the case of complete shape correspondence but
otherwise for partial matching its success depends highly on
the global similarity between the shapes. Even in the case of
complete correspondence, if the given shapes are only nearly
isometric, it is indeed possible that global intrinsic properties
significantly deviate from one shape to the other, yielding
inaccurate normalization. The second approach is to trans-
form input shapes into a different domain where the scaling
problem is implicitly handled. Euclidean embedding is one
such transform which is commonly used for isometric shape
correspondence, but it is rather a global technique and does
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not well apply to partial correspondence [JZ06,MHK∗08]. A
better alternative for partial matching is based on the Möbius
transformation that can be used for conformal embedding
of the given shapes into a canonical coordinate frame on
the complex plane [LF09,ZWW∗10], where deviations from
isometry can approximately be computed based on mutu-
ally closest points. The Möbius Voting method in [LF09]
considers the most general setting of the partial correspon-
dence problem where shapes to be matched can also have
uncommon (non-similar) parts. This voting-based approach
can generate reliable but sparse correspondences, suffering
mainly from spurious votes of the extra uncommon parts in
the shape models, and hence performs poorly in terms of
dense and shape extremity matching. We also note that the
Möbius Voting approach is restricted to sphere topology and
prone to errors due to embedding approximation.

An alternative to geodesic metric is the diffusion metric
which is less accurate for measuring isometric distortion but
generally considered as more robust to topological noise.
Local scale differences are however difficult to handle using
diffusion-based metrics. The commute-time metric for ex-
ample addresses the scale problem only globally [WBBP11],
hence cannot be used for the partial matching problem, i.e.,
in a setting where one of the shapes to be matched includes
a scaled part of the other. In [PBB11], a scale-invariant ver-
sion of the heat kernel signature is used to address the part
matching problem, which however requires setting a time
scale parameter that itself depends on the shape scale.

In the most general setting of the correspondence prob-
lem, the ambiguity of shape scale is a local issue that can-
not be resolved relying on some global shape intrinsics. This
is demonstrated in Fig. 1. While two completely isometric
shapes can be brought to the same scale trivially by nor-
malizing their maximum geodesic distances (Fig. 1a), scale
normalization for partially overlapping shapes (and even for
hybrid shapes which are nearly isometric) is not that straight-
forward (Fig. 1b). In the latter case, the scale ambiguity can
be resolved based on local geodesic distances computed on
a sparse set of trusted correspondences (Fig. 1c), which is
the approach that we follow in this paper. Alternatively, a
small set of trusted correspondences can be used to define
an Euclidean embedding, such as Möbius transformation in
the extended complex plane [LF09], that implicitly handles
the scale problem (Fig. 1d).

In this paper, we consider the shape correspondence prob-
lem in the particular setting where one of the shapes to be
matched is an isometric part of the other up to an arbitrary
scale (note that this setting also includes the problem of com-
plete shape matching). We address the scale problem in a
combinatorial framework that minimizes a scale-invariant
isometric distortion function in the 3D Euclidean space. We
first sample shape extremities from the mesh representations
of the given shape pair and then find a coarse map in between
via combinatorial search, that also extends to dense match-
ing. The output of the proposed method is hence a sparse or

Figure 1: (a) Scale normalization of perfectly isomet-
ric shapes based on maximum geodesic distances (yellow
paths), which does not apply to partially isometric shapes,
e.g., normalized distances (red paths) are not the same on
both shapes (b). Scale normalization for partial matching
can be achieved based on trusted correspondences, either
by normalizing (green) geodesic paths (c) or by defining an
Euclidean embedding (d).

dense optimal set of correspondences between the surfaces
of the given partially or completely isometric shapes.

We note that the source code and the executables for the
method that we present in this paper are publicly available
in http://home.ku.edu.tr/∼yyemez/scalenormalization.

2. Isometric distortion

We describe two different isometric distortion measures in
the sequel, D(1)

iso and D(2)
iso , that can be used interchangeably

in our combinatorial shape matching framework. The first
measure can be considered as the one that we propose as a
novel measure whereas the latter rather serves as a baseline
measure to compare with the former. These measures will be
compared experimentally later in Section 7.

2.1. Scale-invariant isometric distortion

Let S and T represent two sets of points sampled from the
given source and target shapes, respectively. Suppose also
that a mapping § : S→ T (a relation in the most general set-
ting) is given. Then the isometric distortion of this mapping
can be measured by the scale-invariant function D(1)

iso (§) as
follows:

D(1)
iso (§) =

1
|§| ∑

(si,t j)

d(1)
iso (si, t j), (1)

where d(1)
iso (si, t j) is the contribution of the individual corre-

spondence (si, t j) to the overall isometric distortion:

d(1)
iso (si, t j)=

1(|§′|
2

) ∑
((sa,tb),(sc,td))∈C(§′)

|ρ(si, t j;sa, tb)−ρ(si, t j;sc.td)|

(2)
with §′ = §−{(si, t j)} and C(§′) denoting the set of all pair-
wise combinations from §′. The ratio function ρ(si, t j;sk, tl)
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is then written in terms of geodesic distances, for a given
(sk, tl) ∈ §:

ρ(si, t j;sk, tl) = max
(g(si,sk)

g(t j, tl)
,

g(t j, tl)
g(si,sk)

)
(3)

where g(., .) is the geodesic distance between two surface
points. This definition of isometric distortion is based on the
observation that the ratios between geodesic distances on a
surface remain unchanged under scaling and isometric de-
formations. Hence if T and S are sampled consistently from
the given arbitrarily scaled (partially) isometric shapes, then
one can find an optimal mapping §∗ in between such that
D(1)

iso (§
∗) = 0. This is illustrated in Fig. 2.

Figure 2: Demonstration of the scale-invariant distortion
measure defined in (1). The ratios between geodesic dis-
tances remain invariant under scaling and isometric defor-
mation: ρ(si, t j;sa, tb) = ρ(si, t j;sc, td).

2.2. Isometric distortion with normalized geodesics

The isometric distortion D(2)
iso (§) for a given map § : S→ T

between point sets S and T is computed as follows:

D(2)
iso (§) =

1
|§| ∑

(si,t j)∈§
d(2)

iso (si, t j) (4)

where d(2)
iso (si, t j) is the contribution of the individual corre-

spondence (si, t j) to the overall isometric distortion:

d(2)
iso (si, t j) =

1
|§′| ∑

(sl ,tm)∈§′
|gn(si,sl)−gn(t j, tm)| (5)

where §′ is the list of correspondences to be traversed, which
is set to be as §′ = §−{(si, t j)} unless stated otherwise. The
function gn(., .) is the geodesic distance between two sam-
ples, normalized by the local maximum geodesic distance,
that is, the distance between the two farthest points in S (or
T ). Note that this definition of isometric distortion requires a
consistent joint-sampling between S and T to enable reliable
normalization of pairwise geodesics (see also Fig. 3).

Unlike D(1)
iso (§) that averages over all

(|§|−1
2

)
pairs of

available correspondences in § for each individual isomet-
ric distortion computation of a constituent match, D(2)

iso (§)
relies only on two farthest points to obtain locally normal-
ized geodesics. Although this suggests a saving in the order
of |§| for the time complexity of isometric distortion com-
putation, the use of the latter measure may easily induce a

Figure 3: Demonstration of the distortion measure with nor-
malized geodesics defined in (4). Suppose that sample sets S
and T each contains three surface points to be matched. The
geodesics used in computation of d(2)

iso (si, t j) (red paths on
the right) are normalized w.r.t. the local maximum geodesics
(yellow paths on the left).

failure: If the two farthest point pair in one sample set does
not align well with the pair in the other, the normalization
of geodesics becomes inconsistent, and the distortion mea-
sure cannot be computed reliably. Although this is less of a
problem in the case of complete shape matching (when com-
pared to partial matching), complete matching of semanti-
cally similar shapes may still be problematic since farthest
point pairs defining maximum geodesics are not necessarily
consistent for nearly isometric shapes, such as for Cat vs.
Wolf with long and short tails, and for Gorilla vs. Human
with long and short arms, being two specific examples from
our experiments.

3. Feature point selection

We use shape extremities as feature points since they are the
most salient points of a surface, which are easy to identify
while searching for a sparse set of correspondences. To find
shape extremities on a given shape, we first compute the in-
tegral geodesic distance function [HSKK01] for every ver-
tex of the mesh representation and mark the one yielding the
maximum function value which is expected to be at the most
prominent tip of the shape. The farthest point sampling pro-
cedure of [ELPZ97] started from this marked vertex then se-
lects a number of samples on the surface. We set the number
of samples large enough to provide sufficient coverage on
the surface, and small enough for computational efficiency
of the combinatorial framework that will be described in the
next section. The feature vertices resulting from this sparse
sampling process constitute the sets S (source) and T (target)
to be matched (see Fig. 4).

Figure 4: Feature vertices on two models (10 samples).
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4. Combinatorial matching

Once we have the feature sets, S and T , extracted from the
source and target shapes, we search for an optimal partial
mapping §∗ from S to T with minimum distortion. In our
setting, one of the shapes, say S, is an isometric part of T
up to a scale factor. However, since two shapes are never
perfectly isometric, even partly, due to imperfections of the
modeling process and geometry discretization errors, it is not
usually possible to find a zero distortion mapping, hence the
goal rather becomes minimization of the isometric distortion
function, that is either D(1)

iso (§) defined in (1) or D(2)
iso (§) in

(4). We also note that when matching a shape part with a
complete model, the geodesics may slightly differ between
similar surface points from one shape to the other due to the
cut regions.

We minimize the isometric distortion function via com-
binatorial search over all possible mappings § between S
and T . In order to make this combinatorial search prob-
lem tractable and to reduce the search space, we consider
M = 5 evenly-spaced vertices from S. Since, in our setting,
the shape S is assumed to be a part of T , these extreme ver-
tices are expected to match (at least roughly) with a subset
of T . Hence we need to compute the isometric distortion for
M!

(|T |
M

)
different possible (one-to-one) mappings, and the

mapping that yields the minimum distortion is selected as
the optimal mapping §∗ (see Fig. 5).

Figure 5: Overview of the combinatorial matching process.
M extreme vertices of the source shape are matched with |T |
extremities from the target. Hence M! possible permutations
of

(|T |
M

)
different combinations are tested with the source,

and the one with minimum distortion gives the optimal map-
ping §∗ (right).

5. Extension to dense correspondence

We now extend the sparse correspondence §∗ : S→ T be-
tween matched shape extremities to a denser map. This
support for dense correspondence also allows us to allevi-
ate the symmetric flip problem that isometric coarse corre-
spondence methods usually suffer from (e.g., left arm/leg is
matched to right arm/leg between two human shapes due to
sparse sampling).

The first step towards dense matching is to bring the
shapes to the same scale using the trusted §∗ that provides

us with the factor κ to scale the target mesh:

κ =
1(|§∗|
2

) ∑
((sa,tb),(sc,td))∈C(§∗)

g(sa,sc)

g(tb, td)
(6)

With both shapes at the same scale, in the second step, we
take evenly-spaced dense samples on each with consistent
spacing. The dense sampling algorithm that we use is very
similar to the one described in [SY10]. We set the sampling
radius to r = 0.17

√
A/π, where A is the surface area of the

target shape, that ensures sampling of about 100 dense sam-
ples. An arbitrary vertex is selected as the initial sample, and
all the vertices lying within its patch of radius r are marked.
The next sample is then selected arbitrarily from the set of
unmarked vertices. When this is repeated until no unmarked
vertex is left, we obtain a partitioning of the shape surface
into samples that are at least r apart from each other. We de-
note the dense sample sets on source and target shapes by Ŝ
and T̂ , respectively, to which we also append S and T them-
selves since they cover the salient extreme points. Note that
the number of samples on the source shape can be signifi-
cantly less than the number of samples on the target since
the former is assumed to be an isometric part of the latter in
our setting.

The third and last step begins with filling in a cost ma-
trix C where each entry ci j represents the cost of matching
a sample ŝi in Ŝ to a sample t̂ j in T̂ . We build C by set-

ting ci, j = d(2)
iso (ŝi, t̂ j) via (5), based on the trusted correspon-

dences in §∗, hence §′ = §∗. We then perform minimum-
weight perfect matching [Kol09] on C, that reveals the de-
sired dense map §̂∗. Since the cardinalities of the disjoint sets
must match for a perfect matching, if |Ŝ| ̸= |T̂ |, we introduce
virtual vertices with connector edges of∞ weights.

To address the symmetric flip problem, we iterate the third
step above K times, each time setting §′ to one of the best K
sparse correspondences. Note that our combinatorial match-
ing framework allows us to sort out the K least distorted
sparse maps, §1,§2, ..,§K , where §1 = §∗. Hence we com-
pute K dense maps §̂1, §̂2, .., §̂K . We then promote the sparse
map among the best K, which generates the dense correspon-
dence with minimum distortion, as our final sparse corre-
spondence output:

§∗← arg min
§1,§2,..,§K

D̂iso(§̂) (7)

where D̂iso is similar to D(2)
iso except that it uses geodesics

normalized by the same overall maximum geodesic over the
shapes, which is the maximum geodesic of the target. In this
way, the coarse correspondences with similar distortion val-
ues, which are possibly symmetrically flipped, are compared
at a finer resolution where their isometric distortions can be
more accurately computed. We use K = 5 in all our exper-
iments, which is sufficient to differentiate the true mapping
most of the time.
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6. Computational Complexity

We analyze the computational complexity of D(1)
iso (§) and

D(2)
iso (§) computations, and the combinatorial part match-

ing algorithm separately. Given a mapping § of size N, it
takes N·

(N−1
2

)
iterations of constant work to compute each

d(1)
iso (si, t j), and hence O(N3) time for D(1)

iso (§) computation.

Similarly, D(2)
iso (§) is achieved in O(N2) time as N · (N− 1)

iterations are required.

The partial matching algorithm, on the other hand, when
fed with two original meshes having VS and VT vertices,
starts with feature point selection of O(V logV ) time, where
V = max(VS,VT ). The combinatorial search algorithm then
demands

(|T |
M

)
M! evaluations of the function D(1)

iso (§) or

D(2)
iso (§), where M is the size of the sought mapping, i.e., the

size of the reduced source feature set. Hence the overall al-
gorithmic complexity is O(

(|T |
M

)
M!M3) or O(

(|T |
M

)
M!M2),

which gives reasonable computation time in practice thanks
to the feature sampling that leads to small |T | values as well
as the choice M = 5.

Establishing a dense map of size U adds another
O(V logV ) for dense sampling plus O(U2 logU) time for
minimum-weight perfect matching, both of which are dom-
inated by the preceding combinatorial part matching algo-
rithm (we set U = 100 in our experiments).

7. Experimental results

We have tested the performance of our shape correspon-
dence algorithm on several shape datasets. The first three
datasets are uniformly sampled fixed-connectivity mesh
sequences, each representing the motion of an articu-
lated object, which we refer to as Horse, Dog, Wolf, Cat
(from TOSCA shape benchmark [BBK08]), Jumping Man
[SMP03], and Dancing Man [dAST∗08]. The fourth dataset
is a reconstructed pose sequence of a human actor from the
SCAPE benchmark [ASK∗05], which contains 71 different
non-uniformly sampled fixed-connectivity models. We have
created partial models from some of these datasets by man-
ually cropping and arbitrarily rescaling the original com-
plete models. Representative partial models can be observed
throughout the figures.

The last dataset is from the SHREC’11 shape benchmark
[BBB∗11]. The part that we use from this dataset includes
a null (reference) shape (Human) plus three classes named
as isometry, partial, and scaling, each containing 5 uniform
high-resolution human models with arbitrary connectivity.
The isometry class contains isometric deformations of the
null shape and the scaling class includes models from the
isometry class in different scales, whereas the partial class is
composed by parts of the complete models from the isome-
try class. We have also used the female class from TOSCA,
which contains 10 models, to match with the partial class of
SHREC’11 to expand our experiments on nearly isometric

shape pairs. Besides, we match Gorilla from TOSCA with
Human, which verifies, along with Cat vs. Wolf, the accu-
racy of our algorithm on semantically similar hybrid shape
pairs whose maximum geodesic distances do not coincide, a
case that would fail most of the conventional isometric shape
matchers.

We evaluate the quality of the obtained sparse mappings
by using the distortion measure D(1)

iso or D(2)
iso , depending

on which measure is employed to find the given mapping.
We use the distortion measure D̂iso to evaluate the dense
mappings. We also define the following ground-truth distor-
tion Dgrd to measure deviation from ground-truth correspon-
dences:

Dgrd(§) =
1
|§| ∑

(si,t j)∈§
g(ϑ(si), t j), (8)

where ϑ(si) stands for the ground-truth correspondence of si
on target as either known a priori or computed automatically
by aligning the cropped model with its complete version.
The maximum geodesic on the target model is normalized
to 1 in order to simplify the interpretation of this measure.

We have compared our algorithm with the Möbius Voting
(MV) method of [LF09]. For comparison tests, we have run
the publicly available code of MV with its default settings
of 100 samples and 1M votes, and evaluated its performance
based on the M = 5 samples that are closest to the shape
extremity samples used for our algorithm. We also com-
pare the full dense correspondences obtained by MV to our
dense correspondences. In the visualization of our results,
we highlight the generating/trusted coarse correspondences
with larger spheres and bold lines, and the generated dense
maps with smaller spheres. Yellow lines represent the worst
matches w.r.t. ground-truth distortion (or isometric distortion
in case the former is not available).

Figures 6-9 display various examples from our partial cor-
respondence results obtained by using the isometric distor-
tion measure D(1)

iso , whereas in Fig. 10, we visually com-
pare the performance of our algorithm with the MV method.
Since Möbius Voting algorithm is restricted to sphere topol-
ogy, while our method is not, for the sake of comparison,
we have patched up all the partial models at their cut regions
except for standard SHREC’11 shapes. Whether cut regions
are patched up or not, the geodesic information on a partial
surface slightly changes with respect to its complete version,
introducing some extra imperfection to the correspondence
problem; yet we observe that the correspondences that we
obtain using our method are very satisfactory, and generally
more accurate especially at shape extremities when com-
pared to MV (see Fig. 10). The MV algorithm can actually
generate accurate correspondences only for a small number
of correspondence pairs, those with high confidence values.
However the vertices corresponding to these pairs are not
generally well distributed on the surface, being arbitrarily
located, as can also be observed from Fig. 10. We also ob-
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serve that the matching results of MV at shape extremities
may be very inaccurate.

We provide quantitative performance evaluation of our
method for dense and extremity-based sparse matching in
comparison to MV in Table 1, where we also compare the
two isometric distortion functions that we have employed
for scale normalization. We note that in addition to partial
matching (first 4 rows), both methods naturally support com-
plete matching (last 4 rows). Note also that the computation
of dense distortion D̂iso, as used in Eq. 7, is based on trusted
coarse correspondences obtained either by using the distor-
tion measure D(1)

iso (column named as "with D(1)
iso ") or D(2)

iso

(column named as "with D(2)
iso ").

For part matching experiments (Figures 6-8), we have re-
spectively 6, 7, 7, and 5 partial models for Jumping Man,
Dancing Man, Horse, and SHREC11 sequences. In the test
suite for each dataset, each of the C complete models is
matched with P random partial models from the same class,
where the pair (C,P) is (18,2), (9,3), (7,3), and (11,5),
respectively. For SHREC11 evaluation, in addition to match-
ing the 11 models from the null shape, isometry, and scaling
classes to all 5 models from the partial class, we also com-
pute the mapping from each of the 10 female models from
TOSCA to a random partial class model in SHREC11. In
all cases, we exclude from evaluation, the shape pairs that
result in symmetric flips when matched using our method
and/or Möbius Voting. As a result, the performance mea-
sures given in Table 1 are computed over 19, 22, 15, and 39
pairs, respectively on four datasets. Note that, a denser map
that captures more intrinsic geometry of the shapes tends to
overcome the symmetric flip problems observed at a coarser
resolution, which in turn corrects the symmetric flip between
the initial extreme samples as well (Fig. 7-bottom).

Figure 6: Partial correspondences between two different
Jumping Man pairs at different scales (left half), and sim-
ilarly for Dancing Man pairs (right half). S and T denote
the partial and complete models, respectively, which applies
to all subsequent figures that involve partial models.

As for complete matching experiments (Fig. 9), each of
the 9 and 10 complete models is matched with a random
complete model from the same class for Dog and SCAPE
sequences, respectively. We also perform complete match-
ing across classes to address the incompatible maximum
geodesic issue with 5 Cat-Wolf and 4 Gorilla-Human pairs.

Figure 7: (Left) Partial correspondences obtained on two
different Horse pairs. (Framed) The sparse partial mapping
obtained on a Horse pair initially has a symmetric flip prob-
lem (left), which is resolved at a denser resolution (right).

Figure 8: Partial correspondence on SHREC11: Mappings
to a partial class model S from a null shape, a scaling class
shape, and two female class shapes in TOSCA (left to right).

In Table 1, we observe that the distortion measure D(1)
iso

outperforms D(2)
iso especially for the part matching problem

(first 4 rows). The performance difference here is mostly due
to the inconsistency of trusted farthest point pairs used for
geodesic normalization with the latter measure, which is not
likely to occur in complete matching where D(2)

iso performs

as good as D(1)
iso for shapes with perfectly compatible max-

imum geodesic distances (rows 5− 6) but falls behind for
hybrid pairs (rows 7− 8). We also observe that our method
outperforms the MV method in sparse extremity matching as
well as dense matching. Note that MV cannot be evaluated

Figure 9: Complete correspondences between a Dog pair
(top left) and two SCAPE pairs (second column) as well
as between a Cat-Wolf pair (bottom left) and two Gorilla-
Human pairs (third column).

c⃝ 2012 The Author(s)
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Our extremity matching Our dense matching MV extremity matching MV dense matching

with D(2)
iso with D(1)

iso

Pair D(2)
iso ,Dgrd D(1)

iso ,Dgrd D̂iso,Dgrd D̂iso,Dgrd D(1)
iso ,Dgrd D̂iso,Dgrd

Jumping Man (partial) .030, .083 .219, .072 .019, .139 .017, .089 2.465, .253 .051, .140
Dancing Man (partial) .025, .068 .159, .037 .011, .082 .011, .055 1.965, .428 .068, .241
Horse (partial) .027, .056 .114, .028 .012, .055 .011, .048 2.463, .244 .051, .121
SHREC11 (partial) .044, n/a .207, n/a .038, n/a .034, n/a n/a, n/a n/a, n/a
Dog (complete) .038, .032 .191, .032 .013, .037 .013, .037 2.530, .210 .044, .101
SCAPE (complete) .032, .026 .143, .026 .010, .058 .010, .058 2.744, .348 .069, .139
Cat-Wolf (complete) .077, n/a .372, n/a .039, n/a .027, n/a 3.367, n/a .101, n/a
Gorilla-Human (complete) .079, n/a .376, n/a .041, n/a .021, n/a 3.879, n/a .091, n/a

Table 1: Quantitative performance analysis of our method in comparison with Möbius Voting (MV) as bold vs. bold and
underlined bold vs. underlined bold.

Figure 10: Partial correspondences obtained by our method
and by MV respectively on the left and right hand sides of
each box for four different datasets. MV matches correspond
ing to our sparse matches are shown with larger spheres,
whereas smaller spheres represent the remaining matches.

on SHREC11 since the models in the partial class contain
holes on the surface. The ground-truth correspondence in-
formation is not available for hybrid pairs and SHREC11.

The execution times of our isometric part matching algo-
rithm on a 2.53GHz PC is, for the highest-resolution dataset
SHREC11 of 50K vertices, 30 seconds for feature selection,
followed by 0.6 seconds combinatorial matching of M = 5
samples and then 0.4 seconds dense matching of U = 100
samples. The respective seconds for the lowest-resolution
dataset SCAPE of 12.5K vertices are 3.6, 0.3, and 0.3. Note
that the cubic complexity of the promoted scale-invariant
measure D(1)

iso becomes negligible compared to the quadratic

D(2)
iso with M = 5.

When we investigate how the choice of M, i.e., the size
of the sought coarse mapping, affects the output, we observe
that small values, e.g., M = 3, may cause unstable results
as the individual distortions making up D(1)

iso (§) become less
reliable, whereas with relatively high values such as M = 7,
other than computational load concerns, inaccuracies may
arise due to joint sampling that starts to produce incompat-

ible point pairs to be matched. In Fig. 11, we see that al-
though the initial samples which may contain some inconsis-
tent points are matched as accurately as possible in all cases,
the quality of the final dense correspondences may degrade
due to these inconsistencies with Dgrd = .201, .058, and .107
values on average over SCAPE dataset for M = 3, 5, and 7,
respectively. We note that the proper choice of M can also
be considered as model or database dependent. On the Dog
dataset for example, which contains shapes with more ex-
tremities, the choice of M = 5 or M = 7 does not affect the
performance with Dgrd = .037 and .038 values on average,
respectively (for the complete matching scenario).

Figure 11: Different choices of M in creation of the initial
coarse mapping on a SCAPE shape pair.

8. Conclusion

We have introduced a novel scale normalization method, in
comparison with a state of the art method, that proves use-
ful for partial/complete shape correspondence under a par-
ticular setting where one of the shapes to be matched is a
scaled and isometric part of the other. Our method uses an
isometric distortion measure in a combinatorial framework
to establish a trusted coarse correspondence based on which
the shapes are brought to the same scale, hence handling the
scale problem. Dense matching then enables comparison of
our approach with state of the art as well as alleviates the
symmetric flip problem due to initial coarse sampling. Our
isometric matching solution naturally covers the complete
matching problem, where the novel distortion measure has
proved to be very effective while matching hybrid pairs of
semantically similar shapes whose maximum geodesic dis-
tances do not necessarily coincide, a case that would fail
most conventional isometric shape matchers.

c⃝ 2012 The Author(s)
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As a partial shape matcher, there is still room for improve-
ment in this framework. We assume that the sample set on
the partial model is (approximately) a subset of the com-
plete model sample set which currently has a cardinality of
10. While this setting is sufficient when the partial model is
at least the half of the complete model, as in general and in
all examples of this work, the assumption breaks when the
part is too small, e.g., Hand vs. Human, since in this case
the complete model will probably lack most of the samples
featured in the partial model. A simple solution is just to
populate the target samples to cover all extremities, instead
of only 10 evenly-spaced ones, which would work up to 20
samples due to combinatorial complexity.

As a scale normalization tool, we see the work com-
plete after thorough comparisons and experiments. The most
straightforward example to an application for which our
method can be used in its current form is part retrieval,
i.e., searching a 3D database for shapes containing a surface
part given as query. We also note that the proposed scale-
invariant isometric distortion measure can be embedded into
other frameworks that address the partial shape correspon-
dence problem in a more general setting, such as matching
shape pairs which are partially isometric but both having
parts which are not in common. That would however require
the envisagement of a mechanism to eliminate the shape out-
liers (the uncommon parts) from the global pool of shape
vertices, such as the voting approach employed in [LF09],
which will be the topic of our further research.
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