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Three-dimensional shape retrieval is an ac-
tive area of research with many practical 
applications. Sketches serve as natural and 

exceptionally powerful means for expressing visual 
information. This property makes sketch-based 
queries a suitable and superior alternative to tradi-
tional text-based queries for 3D shape retrieval. Ar-
ticulated 3D shape retrieval specifically facilitates 
the efficient exploration of large repositories that 
accommodate a growing number and variety of 3D 

models.1 For this reason, we de-
veloped a method that uses 2D 
sketches to retrieve 3D articu-
lated shapes. Because articulated 
shapes are a superset of nonartic-
ulated rigid shapes, our method 
can be compared with the view-
based methods that handle only 
rigid transformation.

The most basic retrieval sys-
tems use text-based queries, 
which require the tedious task of 
annotating each database model 
with metadata. More recently, 
retrieval systems have evolved to 
support query-by-example (QbE) 
schemes, in which the query ob-
ject is of the same type as the 

database models. Although QbE is much easier to 
use than the text-based queries, there is a more in-
tuitive and even simpler hybrid approach that fa-
cilitates 2D sketch queries for 3D shape retrieval.

In this article, we focus on the query-by-sketch 
approach for 3D shape retrieval from a novel per-
spective. We enable articulated 3D shape retrieval 

from sketches, which to the best of our knowledge, 
has yet to be investigated.

Attempting to query articulated shapes using 
2D sketches gives rise to certain challenges as 
well as opportunities that are specific to this prob-
lem. Unlike existing approaches to sketch-based 
retrieval that typically adopt an articulation-
variant view-based setup, we cast the problem in a 
purely geometry-based framework that computes 
articulation-invariant pairwise distances over 2D 
sketches and 3D models. To this effect, we use the 
well-defined geodesic distances on the surfaces of 
3D models. For 2D sketches, on the other hand, 
we apply a good continuation rule2 to construct a 
query graph that enables geodesic distance com-
putations with respect to depth. We demonstrate 
the benefit of employing a good continuation rule 
by comparing our method with a baseline method 
that lacks such a rule. We also show superior 
performance over the state of the art in sketch-
based retrieval of shapes with no articulation. It is 
easy to test our algorithm with the public offline 
sketch repositories because we do not require any 
information other than 2D sketch point locations, 
which are readily available in bitmap images. This 
feature also shows the potential of our algorithm 
for future interesting applications, such as com-
posing a 3D scene from a single 2D bitmap image.

The source code, executables, and query sketches 
for the method we present here are available at 
www.ceng.metu.edu.tr/~ys/pubs.

Background in Shape Retrieval
Shape retrieval problem can be investigated under 
three categories based on the query specification 
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method: keyword-based retrieval, example-based 
retrieval, and sketch-based retrieval. Each category 
can then be further analyzed based on the similar-
ity measure considered while matching the query 
with the database models—namely, rigid matching 
and articulated matching.

Keyword-based retrieval is trivial, but it requires 
tedious annotation work to facilitate the compari-
son of strings describing the query and the database 
models. Example-based retrieval methods, which 
are much more intriguing, have received great deal 
of attention in the graphics and vision communi-
ties. These methods count on the availability of full 
models to serve as queries, however. This require-
ment renders these methods relatively impractical 
because a good example is rarely available.

To overcome this problem, shape retrieval re-
search is shifting toward sketch-based applications, 
starting with the early works that used sketches 
in combination with keywords, going all the way 
to the most recent purely sketch-based method.3 
In this article, we propose another purely sketch-
based method, but unlike the previous approach3 
that supports only rigid matching, we allow ar-
ticulated matching, which is a superset handling 
rigid transformations and bending deformation. 
To the best of our knowledge, our work is the first 
attempt to address articulated shape matching us-
ing sketch queries.

In rigid shape retrieval, the query and the data-
base models are typically represented with global 
shape descriptors that are invariant to rigid trans-
formations—that is, rotation, translation, and 
uniform scaling.4 The retrieval task then reduces 
to the efficient comparison of low-dimensional 
descriptors, such as statistical moments, spherical 
harmonics, wavelets, shape contexts, spin images, 
shape distributions, and lightfield descriptor. Note 
that some researchers5 do allow sketch queries as 
part of their example-based retrieval engines for 
rigid shapes.

As for articulated shape retrieval, there are two 
popular approaches explored thus far. The first is 
the descriptor-based approach, which works in the 
same way as the rigid retrieval case, except the de-
scriptors are invariant to both rigid transforma-
tions and articulations. For instance, one approach 
uses heat kernel signatures as descriptors.6 Other 
choices include eigenvalues of the Laplace-Beltrami 
differential operator, a histogram of gradients, and 
multiresolution wavelet-based shape signatures.

The second approach to articulated shape re-
trieval is the use of geodesic distances that are 
invariant to articulations, or equivalently isomet-
ric deformations. Recall that if two shapes are 

perfectly isometric—that is, one is the articulated 
version of the other—then the geodesic distance 
between any two points on one shape is exactly 
the same as the geodesic distance between the cor-
responding points on the other. One approach ex-
ploited this fact by creating canonical forms based 
on the preservation of geodesic distances under 
articulation (bending).7 These canonical forms, 
representing the intrinsic geometry of shapes in 
a low-dimensional Euclidean space, can then be 
aligned efficiently with iterative closest point like 
algorithms for comparison purposes. Zhouhui 
Lian and his colleagues improved the retrieval 
accuracy by computing and comparing detail-
preserving canonical forms in a framework where 
near-rigid mesh segments are deformed toward 
the corresponding components on the distorted 
least-squares multidimensional scaling (MDS) 

canonical pose.8 Reeb graphs defined by geodesic 
distances are also suited for the retrieval of the 
articulated objects.7 One common problem for 
all geodesic-based methods is their sensitivity to 
slight topological shape changes, such as connect-
ing a human’s toes with one edge, may alter most 
of the pairwise distances drastically. To alleviate 
this problem, Juan Zhang and his colleagues han-
dled shape articulation via skeletal graphs based 
on medial erosions,9 whereas Alexander Bronstein 
and his colleagues used diffusion distances.6 

Sketching is the most intuitive and conve-
nient querying scheme for novice users of shape 
retrieval applications.3 The challenges in sketch-
based shape retrieval applications are to infer the 
intent of the user who has limited drawing skills 
and to establish a connection between the 2D 
sketch data and the 3D model data to facilitate 
similarity comparisons. The former relates to the 
sketch-recognition problem, which has been stud-
ied extensively.2,10 These recognizers differ from 
our sketch interpretation scheme in that we do 
not use any time or stroke information during 
the process, which makes our algorithm workable 
with offline binary sketch images, such as the ones 
in the benchmark developed by Mathias Eitz and 
his colleagues.3 The latter challenge, on the other 
hand, is thus far addressed with the view-based 
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similarity methods,3,5,11 all of which compare non-
photorealistically rendered multiple views of 3D da-
tabase models with the 2D sketch data using image 
matching techniques such as bag of features.3

Our method takes the opposite approach by 
implicitly lifting the 2D sketches to 2.5D in-
stead of lowering the 3D models to 2D. In other 
words, we perform 3D matching by inferring 3D 
depth information from possibly self-intersecting 
sketches using a rule that is based on Gestalt’s 
principle of good continuation.2 This approach 
not only avoids information loss or distortion in 
projections but also allows articulated retrieval 
using geodesic-driven 3D isometric shape corre-
spondence methods.12–14

Once a robust sketch-based shape retrieval sys-
tem is built, an intriguing application would be the 
composition or modification of 3D scenes from 2D 
sketches or images. Existing techniques15 rely on 
the fact that each scene object is already available 
as a separate sketch, opting out of the possibility of 
using offline 2D images as input. We believe that 
our offline sketch-based retrieval system, coupled 
with edge detection and sketch recognition algo-
rithms, may realize this difficult, yet equivalently 
interesting scenario.

Overview
To perform a pose-independent 3D model retrieval 
using an offline 2D sketch query, we consider two 
metric spaces: (S, g) for the sketch and (M, g) for 
the database model, where S and M are sets and g 
is a notion of the distance between the elements 
in each set for which we use a geodesic distance 
that is invariant to articulated (isometric) shapes.

We discretize the sets to the points at the shape 
extremities—that is, S and M represent the tips and 
center of shapes that can be computed efficiently 
via farthest-point sampling based on geodesic dis-
tances g (Figure 1). We then launch our matching 
algorithm, which consists of the following steps:

1.	 Achieve scale invariance between S and M by 
normalizing their maximum geodesic distances 
to the same value of 1 (Figure 2). Update g 
such that it stores these normalized distances.

2.	 Search for an optimal mapping φ* : S → M 
with minimum distortion. To this end, mini-
mize the isometric distortion function Diso via 
combinatorial search over all possible map-
pings. We use the following isometric distor-
tion function, which can be seen as a variant 
of the various distortion functions from the 
3D shape correspondence literature12,13:
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Using Equation 1, we can measure and quan-
tify the deviation of any given mapping from 
isometry.

3.	 Quantify the similarity between S and M with 
Diso(φ*) as the sort key and decide whether M 
should be retrieved from the database.

Geodesic Distances with Good 
Continuation
The key to our algorithm’s success—that is, sam-
pling (Figure 1) and matching (Equation 1) of the 
shape extremities—is the accurate computation of 
pairwise geodesic distances g on the query S and 
model M. Thanks to the available 3D geometry, 
g for M is computed robustly using the standard 
Dijkstra’s shortest-paths algorithm. The real chal-

S M S M

Figure 1. Sampling of 2D and 3D shape extremities (spheres) using the 
same farthest-point sampling framework. S and M represent the tips 
and center of shapes that can be computed efficiently via farthest-point 
sampling based on geodesic distances.

Figure 2. 2D query sketch and 3D database model brought to the same 
scale. We achieve scale invariance between sets by normalizing their 
maximum geodesic distances to the same value of 1.
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lenge is to obtain g for a hand-drawn S, for which 
we construct a sparse graph from scratch and fol-
low a good continuation rule on it.

Sparse Graph Generation
Given a set of dense unorganized 2D points form-
ing our offline sketch input, we first resample 
evenly spaced points S′ for both efficiency and ac-
curacy reasons. The spacing s here is one-fourth 
of the diagonal of the bounding box, as suggested 
in earlier work.16 Our resampling algorithm ar-
bitrarily selects an unseen point from the initial 
dense set, adds it to S′, marks all points that are at 
a distance less than s, and repeats the process until 
no available vertex is left (see Figure 3a).

We construct our sparse graph G = (S′, E) on 
vertices S′ with the closest-point connections E in 
the next-best manner as follows. For each sample 
s′i, we create an edge between s′i and the closest 
point s′j subject to two constraints on s′j: edge (s′i, 
s′j) in E does not already exist, and ||s′i – s′j|| < 2s. 
The first constraint makes s′j the next-best can-
didate to be connected with s′i. The first closest 
point may already have been connected to s′i in a 
previous iteration, in which case s′i gets an addi-
tional neighbor in the other direction like a chain 
(Figure 3b). The second condition simply prevents 
unrealistic pairings between distant vertices. 

Stroke Generation
Given G, we want to extract rigid strokes with 
good continuations. That is, we want to cluster 
a set of connected vertices into a line as long as 
they respect the good continuation rule we em-
ploy. This rule is based on the Gestalt’s principle 

of good continuation stating that we are less likely 
to group elements with sharp abrupt directional 
changes as being one object, or one stroke in our 
context.2 These rigid strokes are important be-
cause they will later be used as the edges in the 
Dijkstra’s shortest-paths algorithm.

For stroke generation, we initially unmark all 
samples. We select a sample s′i of degree 1 as the 
starting point of stroke Ra. By constructing G, s′i is 
guaranteed to land at the tip of an object extrem-
ity, which makes it a good starting point. We then 
add the first neighbor s′j of s′i to Ra and run our 
main loop that extends Ra = {s′i, s′j} with good con-
tinuation as follows. We select the next unmarked 
neighbor of s′j (say, s′k) and check the linearity ratio
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which is close to 1 if the path from s′i to s′k is close 
to a line, or in other words, there is no bending as 
we are move from s′i to s′k. With that, we add s′k 

to Ra if ratio p < t. Then we repeat the main loop 
with the following shift: s′i = s′j and s′j = s′k. We 
empirically set threshold t = 1.05 and stop the ex-
tension of Ra when there is no unmarked neighbor 
of the new s′j. Note that a similar window search 
process is used in the polyline simplification algo-
rithm in earlier work.16 The main advantage of our 
algorithm is that we do not require any polyline 
setup in the input.
There are some details that complete our stroke 
generation mechanism. First, we start the next 
stroke Rb with the next unmarked s′i of degree 

S′0
S′1

S′2
S′3S′4

S′5
S′7

S′8 S′9S′6

Figure 3. Sparse graph generation. (a) Initial dense sketch points (green) are resampled (red spheres). (b) The 
resampling process is illustrated in the zoomed-in region within the box. For s′0, s′1 is selected as the neighbor. 
For s′1, because the closest point s′0 is already paired, the next-best s′2 is selected as the second neighbor, 
which in turn grows the edge list like a chain. Later on, s′4 is processed, creating the edge (s′5, s′4). When s′5 is 
processed next, (s′5, s′8) is created, and then when s′7 is processed (s′5, s′7) is created. In the end, the degree of 
s′5 becomes 3.
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1. When we run out of unmarked samples of de-
gree 1, we start the new stroke with an unmarked 
sample of degree d, with the assumption that high-
degree samples fall on the sketch’s joint locations, 
such as the beginning of a torso that connects the 
head and arms. We generously set d = 10 and de-
crease it by 1 until there are no more unmarked 
samples left to be added to a new stroke. Note that 
the strokes generated with this incremental algo-
rithm are stored as polylines.

As the second extension, we apply the Douglas-
Peucker polyline simplification algorithm17 to seg-
ment our strokes further, if necessary. The purpose 
is to benefit from that algorithm’s global perspec-
tive compared with our relatively local triplet-
based decider in Equation 3, which might miss 
some difficult bends. We store the final strokes in 
E′ = {Ra}, where each stroke is represented as an 
edge with the two endpoints of the polyline—that 
is, Ra = (s′i, s′j). The endpoints of these disjoint 
strokes constitute the vertex set V′ (subset of S′) 
of our reduced graph G′ that abstracts the input 
sketch, where |V′| = 2|E′|.

The red lines in Figure 4 illustrate the set of 
strokes E′ produced by the algorithm in this sec-
tion. All these strokes respect the good continua-
tion rule we employ. That is, there is no bending 
on the red lines despite the self-intersections on 
the input sketches (human and chair).

Stroke Connections
We connect strokes with endpoints that are close 
to each other in order to facilitate further geode-

sic distance computations on G′. To this end, we 
conservatively initialize our closeness threshold k 
= s (spacing) and add a virtual edge (s′i, s′k) to our 
virtual stroke set E″ if ||s′i, s′k|| < k, where s′i, is an 
endpoint of a stroke Ra in E′ and s′k is one of the 
endpoints of another stroke Rb in E′. We then test 
if the set of all edges E′ and E″ are sufficient to 
connect all vertices in V′.

To realize this, we launch Dijkstra’s shortest-paths 
algorithm for each s′i in V′ and check whether this 
traversal reaches all other points {s′i} in V′. If the 
result is affirmative, then we are satisfied with our 
current virtual stroke set E″ with the conservative 
value. If not, then we recompute E″ from scratch 
using a larger threshold of k = k + 0.5s.

The important threshold is computed as automat-
ically as possible with this connection algorithm. It 
is also selected conservatively in order to minimize 
the risk of connecting irrelevant strokes. The blue 
lines in Figure 4 illustrates the set of virtual strokes 
E″ produced by the algorithm in this section.

Distance Computation
The graph G′ = (V′, E′ union E″) describes the reduced 
graph abstracting the sketch with a few prominent 
vertices and sparse continuation-friendly edges. The 
computation of geodesic distances on the sketch boils 
down to the standard shortest-paths problem on G′ 
with edges that are weighted by the Euclidean dis-
tances between their endpoints. Namely, we run Di-
jkstra’s shortest-paths algorithm from each vertex {s′i} 
in V′, which sets the desired pairwise geodesic dis-
tances g to be used in farthest-point sampling and 
matching (Equation 1).

Results
We conducted sketch-based articulated 3D shape 
retrieval experiments on three articulated, one 
nonarticulated, and one hybrid 3D model data-
base—namely, the SHREC (3D Shape Retrieval 
Contest) Watertight database,18 McGill articu-
lated 3D shape benchmark,19 TOSCA (Tools for 
Nonrigid Shape Comparison and Analysis) data-
set,12 Princeton Shape Benchmark (PSB),4 and our 
Global database. The SHREC Watertight database 
consists of 3D human, cup, glasses, airplane, ant, 
chair, octopus, table, teddy, hand, pliers, fish, bird, 
spring, armadillo, bust, mechanics, bearing, vase, 
and four-legged classes, each containing 20 in-
stances. We used all the instances from each class 
to create a database of 400 models. We also used 
all 255 models in 10 different categories from the 
McGill set. This set enables a fair comparison.8 
The number of vertices in the Watertight and Mc-
Gill database models range from 1,000 to 25,000.

(a) (b)

Figure 4. Abstraction of sketches with a set of lines, namely strokes (red) 
and virtual strokes (blue). Geodesic distances based on these lines lead 
to successful farthest-point sampling (big spheres). There is no bending 
on the red lines despite the self-intersections on the input sketches: (a) 
human and (b) chair.
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We also used the full TOSCA database consist-
ing of 35 four-legged animals, 39 humans, and 
six centaurs, for a total of 80 objects, each with 
approximately 50,000 vertices. For comparison 
purposes, part of the PSB was used.3 Many of the 
models in the PSB are not connected, which makes 
them unsuitable for our geodesic distance compu-
tations. We therefore manually connected and 
used 100 models that we selected uniformly over 
the categories of the whole collection.

Finally, we put all 835 models from these four 
databases into our Global database to test our 
algorithm’s retrieval performance on a large 3D 
shape set.

Hand-Drawn Sketch Database
For each database, the retrieval system requires 
a hand-drawn sketch of an articulated/isometric 
pose of the target object that we wish to retrieve. 
To evaluate the retrieval system, we compiled a da-
tabase of hand-drawn sketches. These sketches were 
not constrained to a particular pose because we 
would like to retrieve any and all poses representing 
the isometrically deformed versions of the target.

To collect the sketches, we gathered a group of 
15 undergraduate and graduate students who had 
recently taken the Digital Geometry Processing 
course at the Middle East Technical University. 
The students, who had already been exposed to 
the articulation concept during the course, were 
nevertheless shown a representative set of 3D 
shapes from our databases to offer them a glimpse 
of what we expected.

The students were then provided with a 10.1-
inch 1,280 × 800 Windows tablet PC along with 
a Wacom Stylus digital pen to create their sketch 
drawings. Our canvas software recorded the stroke 
information in real time into an XML file. The 
same software also produced the bitmap image 
of the final drawing. No representative 3D shapes 
were shown to the students in an effort to mini-
mize any biases in the drawings.

We collected a total of 132 sketches from the 
group. Only two of the students were left-handed. 
The hand-drawn sketches are considered more rep-
resentative than mouse-painted sketches. We pro-
vide some of the hand-drawn sketches throughout 
the figures and all of them in our public sketch 
database, which we cast as a side contribution of 
this research.

Quantitative Results
Tables 1 through 4 report quantitative results sum-
marizing our algorithm’s retrieval performance. 
We also visually evaluate our retrieval quality in 

Table 1. Quantitative evaluation of our shape retrieval method 
compared with the baseline method.*

Method

Correctness of the top-ranked item (%)

Watertight database

A B C D E F G H I J

Ours 70 91 65 66 87 86 75 64 69 70

Base 46 75 45 38 60 37 51 44 46 42

McGill database

K L M N O P R S T U

Ours 71 70 83 77 70 75 98 95 68 70

Base 48 43 68 46 44 50 80 79 41 45

TOSCA database

Four legged Human Centaur

Ours 89 92 96

Base 66 66 72

Global database

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Ours 80 72 81 84 65 79 71 70 64 61

Base 59 44 54 60 42 68 46 49 40 39

*Sketch queries from A to J are human, glasses, airplane, ant, chair, table, fish, bird, 
armadillo, and four legged. Queries K to U are ant, crab, hand, human, octopus, pliers, 
snake, spectacles, spider, and teddy. Queries G1 to G10 are centaur, human, chair, glasses, 
ant, table, four legged, hand, pliers, and teddy. We provide, in percentages, the correctness 
of the top-ranked item when the database is queried 10 times with the isometrically 
deformed sketches.

Table 2. Quantitative comparison of our shape retrieval method with a 
state-of-the-art method.8

Method
Nearest 

neighbor (NN) First tier Second tier

Ours 86.1 78.4 89.1

State-of-the-art query-
by-example method

99.6 86.6 95.3

Table 3. Quantitative comparison of our shape retrieval method with the 
Mahoney-Fromherz nonarticulated method.3

Database Our method Mahoney-Fromherz method

NN First tier Second tier NN First tier Second tier

Watertight 80.2 71.7 82.8 51.4 49.4 55.1

McGill 86.1 78.4 89.1 56.7 52.3 59.9

TOSCA 96.0 89.5 97.2 63.6 60.3 67.9

Global 75.9 70.1 79.8 49.1 45.2 52.3

Table 4. Quantitative evaluation of our shape retrieval method for 
different human query types on the McGill database.

Query Type NN One tier Two tier Time (sec)*

With face 85.1 73.5 85.2 (3.9, 9.1)

With head shape 85.2 73.7 85.5 (3.4, 9)

Skeleton-like 85.4 74 85.9 (2.5, 3.7)

Contour 30.7 23.1 31.8 (8.2, 13.1)

*The last column depicts the average time required for our participants to draw their 
human and centaur sketches.
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Figures 5 through 9, where we display the best match 
between the query and the database model (with 
lines and spheres) as well as the matching scores 
(text) that are used to sort the retrieval result set. 
Note that the best mappings may deviate from the 
ground truth due to the symmetric flip problem in-
herent to coarse isometric matching (for example, 
see Figure 10a) and inconsistent sampling (see the 
chair in Figure 6). This is because close isometric 
distortions (matching scores) among top mappings 
may be confused easily, as Figure 10 illustrates. 
Although this confusion might be remedied by 
adopting ideas from the 3D shape correspondence 
domain,20 it is not a problem for a shape retrieval 
application, as our result sets verify. Our advantage 
of being a nonview-based method is made apparent 
with, for instance, the chair examples in Figure 6, 

where the extra lines on the back side of the query 
chair may easily confuse a view-based method, yet 
our results are robust.

The execution time for our algorithm on a 2.53-
GHz PC with 8-Gbyte RAM was 101 seconds, 
without preprocessing on the Watertight database. 
If samples, along with the geodesic distances in be-
tween, are known a priori on the database models, 
the whole search takes only 0.05 second. Similar 
timing was achieved on the McGill database. The 
TOSCA dataset, which is one-quarter of the size of 
the Watertight, was queried in 30 seconds without 
any preprocessing and in 0.01 second with pre-
computed samples and geodesic distances.

For the high-resolution models in the TOSCA 
database, our algorithm remained quite fast be-
cause it exploits geodesic distances between a small 

0.0675 0.0704 0.0726 0.0736

0.1333 0.1346 0.1437 0.1488

0.1489 0.1873 0.1919 0.1942
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0.2159 0.2169 0.2224 0.2254
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Figure 5. Top 
four retrieval 
results for the 
query human 
sketch on the 
Watertight 
database of 
400 models 
(first row). 
The remaining 
rows show 
interaction 
of the same 
sketch with 
the other 19 
classes of the 
database, in a 
sorted order 
with respect to 
the matching 
scores. These 
scores are 
given below 
each pair. A 
small matching 
score indicates 
high similarity
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set of samples. All the models used six extremity 
samples, except for the centaur model, which used 
eight samples. Finally, one query on the largest 
Global database of size 835 took approximately 
206 seconds, which was reduces to merely 1.03 
second when the geodesics were computed a priori.

We also note our abstraction performance by 
reporting that the initial human sketch of 1,639 

unconnected points in Figure 9 is reduced to our 
abstract graph consisting of 18 vertices and 15 
edges, six of which are virtual strokes. Similarly, 
1,173 points for the hand sketch in Figure 6 is ab-
stracted by 20 vertices and 24 strokes.

Comparison with a Baseline Method
Although articulated 3D shape retrieval based on 

0.0596 0.0714 0.0728 0.0730

0.0709 0.0714 0.0844 0.0987

0.0938 0.1037 0.1076 0.1077

0.0914 0.1271 0.1313 0.1520

0.0719 0.0791 0.1067 0.1146

0.0482 0.0500 0.0507

0.1189 0.1227 0.1368

0.0504 0.0541 0.0595 0.0674

Figure 6. 
Top three or 
four retrieval 
results for 
various query 
sketches on 
the Watertight 
database. 
Matching 
scores used as 
sort keys are 
given below 
each pair.



22	 November/December 2017

Feature Article

3D model queries has received a great deal of at-
tention in the past few years,6–8 to the best of our 
knowledge, no hybrid approach exists that uses 2D 
sketch queries for this purpose. Note that existing 
sketch-based 3D retrieval applications do not ad-
dress articulated queries.3,11 

We therefore designed an intuitive baseline 
method to compare our results. In this baseline 
method, we disable the good continuation rule in 
the geodesic distance computations by discarding 
Equation 3. Specifically, we add the next arbitrary 
sample s′k to the growing stroke Ra. The retrieval 
results in Table 1 show the benefit of applying the 
good continuation rule, as our original algorithm 
that makes use of this rule outperforms the base-
line method.

Comparison with an Articulated Method
In addition to the baseline method that performs 
query-by-sketch, we also compared our method 
with the current state of the art in articulated 
3D shape retrieval that is based on the query-by-
example paradigm.8 This method outperforms the 
existing work on the example-based articulated 3D 
shape retrieval because they distinguish the shapes 
better by maintaining details on articulation-
invariant canonical representations of the models. 
Canonical-based retrieval methods are more prom-
ising than descriptor-based counterparts because 
the canonical form can easily be integrated into a 
simpler and well-studied rigid shape retrieval pro-
cess. The disadvantage of this method, however, 
is the need to supply an example 3D query model 
for the search. Our simple and natural sketch que-
ries remove this difficulty and render our method 
valuable as we achieve only slightly worse perfor-
mance, with less complex input than the state-of-
the-art method (see Table 2).

We used the same database (McGill) and the 
same performance metrics as the state-of-the-art 
method8 to make the comparison fair. The met-
rics are the nearest neighbor (NN), which is the 
percentage of the first-closest matches that belong 
to the query class, and the first-tier metric is the 
ratio of the relevant matches to the size of the 
query class C when the number of retrieved mod-
els (top K matches) is |C|. We relaxed K = 2|C| to 
obtain the second-tier metric. Our high NN value 
indicates the potential of our algorithm in a clas-
sification application.

Other than increasing the reliability of these 
performance metrics, the large McGill database 
of 255 models is also useful for the computation 
of precision-recall curves (see Figure 11). Precision 
is the ratio of the relevant matches to the num-

0.1241 0.1363 0.1394

0.0831 0.0884 0.1103

0.0781 0.1012 0.1153

0.0432 0.0861 0.1440

0.0431 0.0482 0.0954

0.0912 0.1190 0.1261

0.0281 0.0610 0.1614

0.0221 0.1513 0.1563

0.1042 0.1141 0.1320

0.0943 0.1001 0.1682

Figure 7. Top three retrieval results for various query sketches on the 
McGill articulated 3D shape benchmark. Matching scores used as sort 
keys are given below each pair.
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ber of retrieved models, whereas recall is the ratio 
of relevant matches to the size of the query class. 
Ideally, this curve should be a horizontal line at 
unit precision. In addition to the plot associated 
with our method, we provide plots for the other 
canonical-based retrieval methods: the detail-
preserving method8 and its detail-distorting ver-
sion (least-squares MDS).7 Figure 11 also shows 
the results for a descriptor-based method, which 
directly compares the low-dimensional heat-kernel 
signatures of the query and database models, as 
done in earlier work.6 The lower performance of the 
descriptor-based approach supports our claim that 
favors canonical-based methods over descriptor-
based counterparts. Note that all plots except ours 
in Figure 11 and the second row in Table 2 were 
copied directly from earlier work.8 Figure 11 also 
includes the precision-recall results of our method 
on the larger Global database of size 835.

The performance of the state-of-the-art method8 
is better because its input is more complicated, 
harder-to-obtain 3D models, whereas we use sim-
ple, easier-to-obtain sketch queries. Thanks to this 
simplicity, our execution time is much faster. And 
despite this simplicity, we do not perform much 
worse than the state-of-the-art method.8

Comparison with a Nonarticulated 
Method
One recent robust sketch-based 3D shape retrieval 
method was designed to support merely nonar-
ticulated/rigid transformations,3 meaning that 
the query is expected to represent a rigidly trans-
formed, (globally rotated and translated) version 
of the target model. Our method supports isomet-
ric transformations, a superset of the rigid trans-
formations, and thus can be applied to the same 
database used in the Mahoney-Fromherz study3 
(PSB). In fact, Figure 12 shows that our method 
retrieves more accurate models up to articula-
tions. Our method treats sketches as pure bitmap 

objects (sets of 2D coordinates without any addi-
tional time and stroke information), so it directly 
uses the offline sketches copied from the author’s 
website. In other words, we ran our algorithm 
with the query sketches available from the earlier 
study3 and still obtained a better performance on 
the common categories such as humans, glasses, 
and fishes (see Figure 12). Note also that we had 

0.0715 0.0771

0.0849 0.0976

0.0993 0.1009

0.1093 0.1121

Figure 8. Top eight retrieval results for the centaur query on the TOSCA 
dataset (from left to right, top to bottom). Matching scores used as sort 
keys are given below each pair.

Figure 9. Top retrievals for three different sketch queries from our Global database. The initial human sketch of 
1,639 unconnected points is reduced to our abstract graph consisting of 18 vertices and 15 edges, six of which 
are virtual strokes.
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to manually repair the disconnected PSB meshes 
to operate, whereas the Mahoney-Fromherz view-
based approach3 performs the retrieval without 
such a preprocessing. Also, the Mahoney-Fromherz 
method supports partial matching, making online 
querying for an interactive system possible, whereas 
our geodesic-based method requires the complete 
sketch to be present. We finally note that our main 
focus is on the articulated shape retrieval.

To show the need for designing an articulated 
retrieval algorithm, we extended our comparisons 
with the rigid Mahoney-Fromherz method on ar-
ticulated databases such as the Watertight, Mc-
Gill, TOSCA, and Global databases. Because our 
work is the first method addressing articulated 
shape matching using sketch queries, we are re-
stricted to comparing it to a nonarticulated state-
of-the-art sketch-based method.3 This comparison 
is still valuable, however, in that it emphasizes the 
benefits of developing an articulated method.

The results in Table 3 reveal that our articulated 
method is more capable of finding the correct 
query class than the nonarticulated method.3 This 
is not surprising because the chances of an articu-

lated query having the exact same shape as one 
of the examples in the articulated object database 
is practically zero. Subsequently, the Mahoney-
Fromherz approach3 could not find any instances 
of a human class for a crouched pose query, 
whereas our method could. Furthermore, even if 
a match occurred (for example, the database con-
tained the exact crouched pose), the match would 
be virtually useless because the point is to retrieve 
the class of objects that have the same articulated 
structure, not an instance with the exact rigid 
shape as the query input.

Finally, if we consider the case where the user 
wants to retrieve the class of humans from a rigid 
database, such as the PSB, a rigid method would 
tediously have to query every simple pose and ori-
entation that the database accommodates, whereas 
an articulated method such as ours would require 
only one pose from the human class.

Query Drawing Style
Our algorithm is robust to different drawing styles 
as long as the resulting sketch does not deviate 
significantly from the object’s skeleton (see Figure 
13). It is also robust to unnecessary details in the 
sketch that act as outliers or noise, such as when 
the face information on a human is not valuable 
and should be discarded as noise when matching 
humans to a database of various objects (see Fig-
ure 13a). Similarly, the shape of the head might 
also be irrelevant for the purposes of the match we 
are looking for (see Figure 13b). We consequently 
argue that although a skeleton-like query sketch is 
always safe with our system, the retrieval perfor-
mance of a contour-like query sketch depends on 
the object to be retrieved. For example, this works 
for spectacles (Figure 10) or a table (Figure 6), but 
it fails for a human (Figure 13d).

In addition to the results in Figure 13, this ar-
gument is further supported by the close values 
of the performance metrics in Table 4, which are 

0.0387(a) (b) (c)0.0419 0.3946

Figure 10. Matching scores of (a) symmetrically flipped, (b) ground-truth, and (c) highly distorted maps. Note 
the similarity of the first two scores, which are almost one-tenth of the high score. Either of the low scores is 
good enough to represent the compatibility between the 2D query and the 3D model.
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Figure 11. Precision-recall curves for each retrieval method. Precision is the 
ratio of the relevant matches to the number of retrieved models, whereas 
recall is the ratio of relevant matches to the size of the query class.
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obtained by querying the McGill articulated 3D 
shape database using human sketches similar to 
those in Figure 13a (with face), Figure 13b (with 
head shape), and Figure 13c (skeleton-like). The last 
row in Table 4 gives the low values for the problem-
atic contour sketch. Note that there is neither skill 
nor training required to draw a skeleton-like query 
sketch (Figure 8). All the queries of different styles 
were provided by our 15 novice users. The average 
timing values of this user study given in the last 
column of Table 4 show that the skeleton-like que-
ries that we expect as input to our system are not 
only accurate but also fast to produce.

Limitations
Virtual strokes may sometimes inadvertently con-
nect endpoints that should remain disconnected, 
such as the figure’s kneecaps in Figure 14. This 
shortcoming is inevitable with our current auto-
matic stroke connection algorithm because the 
closeness threshold that makes true connections, 
such as from leg to hip in Figure 14, may also in-
correctly connect other endpoints. However, we 
believe that it is reasonable to expect the user to 
draw scenes susceptible to such ambiguities with 
particular emphasis to address this issue while 
querying the database. Our retrieval system is 
pose-independent, and there is always an articu-
lated/isometric query alternative that will yield 
the desired result set from the database. We also 
auto-select as conservatively as possible, which 
effectively minimizes the risk of generating false 
connections, even in complex sketches.

A heuristic solution to this problem would be to 
use different a closeness threshold k for different 
regions, but this would complicate the algorithm. 
Another solution could be to get users involved 
using an interactive query-specification paradigm 
that lets them check our processing results and 
use stroke-over or overtracing gestures to empha-
size good continuations in cases where they have 
been missed. 

Another limitation also concerns our automatic 
stroke connection procedure, which can miss cru-
cial connections on contour sketches. Figure 15 
demonstrates such a case, where the conservative 
value connects the yellow sphere to the black one 
via a long counterclockwise path (see the top row 
in Figures 15a through 15d). Breaking this path 
(bottom row) solves this problem easily, as in this 
case k is automatically increased to connect these 
spheres. Another simple solution is to rapidly in-
crease k—that is, (k = k + 2.5s). Using both solu-
tions, we obtain a consistent sampling between 
the sketch and the 3D hand model, which in 

turn leads to a healthier matching. Note that 
this limitation arises for contour sketches only, 
but not for skeleton-like stick figure sketches. 
Contour sketches might also cause problems if 

Figure 12. Three sketch queries and the top four retrieval results using 
the Mahoney-Fromherz method3 (blue) and our method (gray). We 
copied the sketches and blue images from the author’s public repository. 
The Mahoney-Fromherz method did not retrieve glasses in the top 20, 
and its first fish was the 15th object retrieved (not shown). 

(a)

(c)

(b)

(d)

Figure 13. Top retrievals from the McGill articulated 3D shape database 
for query sketches drawn in various styles. (a, b) Thanks to our sampling 
process that represents a region by one of its most prominent features, 
such as its extremity, some details may be ruled out. (a, c) Different 
drawing styles can even lead to correct retrievals. (d) The last example 
retrieval is wrong because the path from the foot to the head traverses 
the arm, which in turn significantly increases the corresponding 
pairwise distance.
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they introduce significantly longer paths that 
could be avoided by traversing the inner skeleton 
(see Figure 13d).

Because we do not incorporate any local features 
in our algorithm, it fails to distinguish between 
two objects if the measured geodesic distances are 
all similar across the objects. This does not mean 
that topologically similar objects will be confused, 
however. For example, although a cat and a giraffe 
have the same topological structure, a longer neck 
will allow the user to guide the retrieval toward 
giraffes, and a shorter neck will favor cats. Our 

powerful representation even allows discrimina-
tion across breeds of dogs. For example, it can 
easily distinguish between dachshunds and grey-
hounds based on distance information, despite the 
similarities among dog breeds.

Although it has been well studied under the 
query-by-example setting, the shape retrieval 

problem is yet in its infancy in query-by-sketch 
mode. Our approach is, to our knowledge, the 
first to leverage and exploit the expressive power 
of free-hand drawings for sketch-based retrieval 
of articulated 3D objects. The offline feature of 
our sketch-based retrieval algorithm may later al-
low users to synthesize scenes from single images 
with edges that are extracted with robust detec-
tion algorithms. Once the extracted edges are 
segmented into offline sketches, our algorithm fa-
cilitates retrieval of the corresponding 3D shapes 
from the database to the scene. For more stability, 
we may also consider using the stroke information 
in query sketches for synthesis purposes. Another 
interesting area of future work is to extend the 
static shape retrieval we present here to time-
varying motion retrieval based on sketches. Fi-
nally, in future work we expect to address the 
limitations we mentioned in the last section. For 
example, we could allow the user to be guided 
with real-time feedback during query specifica-
tion in order to improve the input quality. This 
also applies to bringing partial matching sup-
port for an interactive system by updating our 
scale normalization procedure.�

Figure 14. Inadvertently connected endpoints. One 
limitation of our algorithm is shortcut pairwise 
distances because of extra virtual strokes. For 
example, see the blue line between the stick figure’s 
kneecaps.

(a) (b) (c) (d) (e)

Figure 15. Automatic stroke connection. (a) Two contour sketches (green) are overlaid with an evenly spaced 
sample set S′ and (b) strokes E′ union E′. (c) We first shows the stroke separately along with two sphere 
endpoints for visual clarity and (d, e) then show the top-ranked retrievals. Note that lack of the virtual stroke 
between two spheres in the third example (top row, c) causes the hand sketch to unroll like a spring, yielding 
incorrect retrieval (top row, d). (e) A solution to this problem is to allow longer virtual strokes.
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	13.	 Y. Sahillioğlu and Y. Yemez, “Minimum-Distortion 
Isometric Shape Correspondence Using EM 
Algorithm,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 34, no. 11, 2012, pp. 2203–2215.

	14.	 Y. Sahillioğlu and Y. Yemez, “A Dynamic 
Programming Based Approximation Method for 
Multiple Shape Correspondence,” Computer Graphics 

Forum, vol. 33, no. 7, 2014, pp. 121–130.
	15.	 K. Xu et al., “Sketch2Scene: Sketch-Based Co-

retrieval and co-placement of 3D Models,” ACM 
Trans. Graphics, vol. 32, no. 4, 2013, article 123.

	16.	 A. Wolin, B. Eoff, and T. Hammond, “Shortstraw: 
A Simple and Effective Corner Finder for Polylines,” 
Proc. Eurographics 5th Ann. Workshop on Sketch-Based 
Interfaces and Modeling, 2008, pp. 33–40.

 	17.	D. Douglas and T. Peucker, “Algorithms for the 
Reduction of the Number of Points Required to 
Represent a Digitized Line or Its Caricature,” 
Cartographica: Int’l J. Geographic Information and 
Geovisualization, 1979, pp. 112–122.

 	18.	D. Giorgi, S. Biasotti, and L. Paraboschi, “SHREC: 
Shape Retrieval Contest: Watertight Models Track,” 
SHREC Competition, vol. 8, 2007.

	19.	 K. Siddiqi et al., “Retrieving Articulated 3D 
Models Using Medial Surfaces,” Machine Vision and 
Applications, vol. 19, no. 4, 2008, pp. 261–274.
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