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A B S T R A C T   

We present a new scale-adaptive ICP (Iterative Closest Point) method which aligns two objects that differ by rigid 
transformations (translations and rotations) and uniform scaling. The motivation is that input data may come in 
different scales (measurement units) which may not be known a priori, or when two range scans of the same 
object are obtained by different scanners. Classical ICP and its many variants do not handle this scale difference 
problem adequately. Our novel solution outperforms three different methods that estimate scale prior to 
alignment and a fourth method that, similar to ours, jointly optimizes for scale during the alignment.   

1. Introduction 

Scale-adaptive ICP (Iterative Closest Point) presented in this paper 
aligns a pair of objects that differ by rigid transformations (translations 
and rotations) and uniform scaling. Classical ICP [4] and its numerous 
variants [35] as well as the more recent noise-insensitive versions [26] 
do not properly handle scale differences. The naïve solution of 
pre-scaling the input pair prior to registration is generally not sufficient 
(Fig. 1). Our main contribution is to provide a principled solution to this 
problem by integrating the scale factor directly into the least-squares 
problem. This novel approach is different from the common way of 
decoupling the scaling optimization from the process via a prior scale 
estimation. Being well studied for a pair of shapes under the same 
scaling, this registration problem is yet at its infancy when arbitrary 
scaling is present. We believe that our solution can be useful for many 
computer graphics applications including the following ones:  

• Objects to be rigidly aligned, or registered, may naturally come in 
different scales, e.g., when rigid registration is used to generate the 
initialization of a non-rigid alignment [38], or when two range scans 
of the same object are obtained by different scanners.  

• Given a target unrigged mesh and multiple source rigs from different 
characters, one can register the source rigged parts to the target mesh 
and transfer their skinning information, creating a fully rigged and 
skinned character [29].  

• 3D reconstructions based on structure-from-motion algorithms [6] 
and hyperscpectral images [51] lead to inconsistent scales at 

different views and spectral bands. One consequently requires a scale 
adaptation before merging them to a complete 3D model.  

• Real-time 3D scans during a surgical operation might be required to 
be registered to a preoperative CT scan that is not necessarily at the 
same scale. 

• In order to replace a small broken part of a large 3D print, one ac-
quires the digital model of the physical object and aligns it to the 
original arbitrarily-scaled 3D model to identify the broken part for a 
re-print. 

Our goal is to transform a (moving) point set S1 towards a fixed 
(target) point set S2. We follow the original ICP framework which al-
ternates between correspondence and transformation optimizations. 
Specifically, given the correspondence according to the closest point 
matches between S1 and S2, ICP computes the optimal rotation and 
translation jointly. The transformed points imply new, and hopefully 
better, closest point correspondences that lead to an even better trans-
formation in the next iteration. We take the rotation from this frame-
work and jointly optimize for translation and uniform scaling, which 
adapts the scale of S1 to that of S2 within the process. 

In all the subsequent figures, we paint transforming S1 in green and 
fixed S2 in red. We note that the source code and the executables for the 
method that we present in this paper are publicly available at htt 
p://www.ceng.metu.edu.tr/~ys/pubs/ScaleAdaptiveICP.zip. Our sup-
plementary video also reveals animated results that show our execution 
from start to convergence: http://www.ceng.metu.edu.tr/~ys/pubs 
/sicp.mp4. 
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2. Related work 

Since the introduction of the pioneering Iterative Closest Point (ICP) 
paper for rigid shape registration [4], a vast study has been carried out in 
the literature to extend it in many aspects [10,35,41]. Despite their 
different work flows, all these studies aim to find the optimal rigid 
transformation in terms of a rotation and a translation. We compute the 
additional uniform scaling factor within this well-established frame-
work. Note that when shapes to be aligned are fully similar, as opposed 
to the more common partial similarity scenario in ICP, one can handle 
scaling issue trivially by normalizing global properties such as the di-
agonal of the bounding boxes, maximum distances (used in our paper for 
comparisons), and ratio of the root-mean-square deviations of the co-
ordinates from their centroids [19] (also used in our comparison suite). 

ICP algorithm first matches the closest points between two input 
point sets. Based on the matching it computes and applies the optimal 
rigid transformation, and repeats the process iteratively. A common 
modification to ICP suggests changing the original point matching cri-
terion from point-to-point distances to point-to-plane distances [7,8,23, 
31] and symmetrized point-to-plane distances [34], which allow faster 
tangential movement of the surfaces. Features such as integral de-
scriptors [32] and geometric descriptors [2] accelerate ICP by reducing 
the transformation search space. For the same purpose, random sample 
consensus (RANSAC) mechanism that considers three-point or 
four-point [1,27,30] tuples is also adapted to the ICP framework. 
Additional visual appearance information is also used in the registration 
of RGB-D data [14]. In this scenario, the keypoint descriptors [3,33] are 
expected to be invariant to illumination. 

A notorious problem with the ICP-based techniques is getting stuck 
in local minima of the alignment error function. Several methods that 
alleviate this problem employ multi-resolution strategies [20], genetic 
algorithms [39], branch-and-bound techniques [46], and robust dense 
objective functions [50] in order to search the entire 3D motion space in 
an efficient manner. 

ICP modifications are also affected by the recent popularization of 
deep learning techniques. Local 3D geometric structures are encoded 

using a deep neural network auto-encoder [15], a 3D fully-convolutional 
network [9], or a siamese deep learning architecture [17] instead of 
employing traditional descriptors, which in turn leads to superior results 
on challenging noisy point cloud registration datasets[21]., on the other 
hand, uses their learned compact descriptor in the framework of [50] for 
better precision. Other descriptor learning methods [47,49] cooperate 
with the RANSAC search algorithm to produce point cloud registrations. 

There exist only a few methods that aim to address the scaling issue. 
The first one [52] solves for rotation, scaling, and translation indepen-
dently in this order[13]., and its extensions by the same research group 
Du et al. [11,12,22,48], inject the scale matrix directly into the ICP 
least-squares problem with a constraint condition that the matrix is 
bounded. Although it is not demonstrated in their result sets, the reason 
of finding a scaling matrix instead of a scaling factor is to handle 
non-uniform scaling. Since matrix search complicates the process, we 
stick with the search of the uniform scale factor scalar, which already 
has many use cases as listed in Section 1. They also had to optimize the 
rotation and scaling matrices jointly, which is different and more 
complicated than our joint optimization on scaling and translation. 
Although both these methods, like our method, report execution times as 
fast as the standard ICP, they do not clearly provide the final linear 
system they solve, which makes their reproduction difficult. We, on the 
other hand, derive our linear system step by step and present it clearly in 
one equation (Eq. 6) and also share our code and executables publicly. 
Our evaluation is also more comprehensive than that of the existing 
works, e.g., we in fact fail to see partially similar cases in their entire 
result sets. As we stated previously, when shapes are fully, not partially, 
similar, much more trivial solutions arise to normalize shape scales [19]. 
More recently, combination of local descriptors at different scales [24, 
25], PCA of spin images over different scales [42], and the growing 
least-squares descriptor [28] help estimating the relative scale between 
two fully similar shapes prior to their alignment. The most recent tech-
nique in this line of work [45] decouples scale, rotation and translation 
estimation. Their initial uniform scale factor estimation based on FPFH 
correspondences [36] is made robust to outliers by an adaptive voting 
scheme. This robustness in turn renders the work as well as its 

Fig. 1. Rigid registration based on our Scale-Adaptive ICP, Classical ICP, and Classical ICP with a naïve prior scaling, which is carried out by multiplying the points of 
the first set S1 by a/b where a and b are the distances between two farthest points of S2 and S1, respectively. When shapes are only partially similar, farthest points are 
likely to be incompatible which in turn leads to normalization errors (see also Fig. 11 and the supplementary video). Coinciding red and green points are painted 
arbitrarily (z-fighting issue) in this figure and the subsequent ones. A more sophisticated pre-scaling by the current state-of-the-art [45] is shown at right. 
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preliminary study [44] suitable for the more challenging partial simi-
larity case. 

The most recent work of Du et al. [43] replaces the mean square error 
with a correntropy criterion as a new similarity measure with the main 
purpose of eliminating the interference of outliers and noises. While 
being able to estimate a scale factor after a relatively slow process that 
requires computation of the real exponential function, their method, like 
their prior work, fail to provide clear demonstrations and evaluations, e. 
g., intermediate results during iterations are missing. The method is also 
reported to be sensitive to the kernel bandwidth that defines the 
correntropy. 

3. The algorithm 

Let pi ∈ S1 be the source point to be aligned with the fixed corre-
sponding target point qi ∈ S2 for i ∈ [1, n] where n is the number of 
points on the source object. Having computed the optimal rotation R via 
the closed-form expression in [4], we have p′

i = Rpi as the ICP-rotated 
point. While the classical ICP and its variants simply apply the next 
transformation as the optimal translation u that moves the centroid of 
the rotated source points to the centroid of the fixed target points, we 
instead jointly optimize for the translation t and the uniform scale factor 
s. The optimal s and the optimal t, that is not necessarily the same as u, 
are then applied to p′

i at each iteration of the classical ICP framework, 
yielding the results in Fig. 1-second column and in Section 4. We derive s 
and t in the sequel. 

We are seeking s ∈ IR and t ∈ IR3×1 that minimize E(s, t) =
∑n

i=1‖ (sp′

i + t) − qi ‖
2. Notice that if we take s = 1 as in all other ICP 

methods, we find the optimal translation as t = q − p′ , where p′ and q 
are the centroids of the rotated source points and fixed target points, 
respectively. 

We begin by converting E(s, t) to the following form that is suitable 
for differentiation. 
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We then set the partial derivatives to zero for minimization: 
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Rewriting Eq. 2 yields 
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Rewriting Eq. 3 yields 
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The linear system of Eqs. 4 and 5 is put in the following Ax = b form 
for a fast solve. 
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where d ∈ IR3×1 =
∑n

i=1qi. 
There is a key insight to make this process work well even under 

significant scale differences. When S1 is significantly underscaled rela-
tive to S2, e.g., as in the input configurations in Fig. 2-left, closest point 
matches cluster around a specific region that is relatively small. The 
uniform scaling factor computed by our method would then shrink S1 
even more in order to respect these erroneous correspondences packed 
in a small region. To alleviate the problem, we enforce the closest point 
mapping to be one-to-one initially, which naturally spreads the target 
points to a larger region, hence preventing the scale factor from being 
unnecessarily small in the beginning. Once the displacement between 
two consecutive iterations becomes sufficiently small, we relax the one- 
to-one mapping constraint to the usual many-to-one mapping, leading to 
the improved results in Fig. 2. 

4. Experimental results 

We tested the performance of our scale-adaptive ICP algorithm for 
the pairwise alignment of four main object categories: Face, Stanford 
Bunny, Homer, and Quadruped, where the first and last ones are taken 
from [40], and the others have been released into the public domain. We 
randomly crop, rotate, and/or re-scale a point set to transform it towards 

Fig. 2. Comparison of our scale-adaptive ICP results to the classical ICP results 
at the right. Note that, scale-adaptive ICP works better if it starts with one-to- 
one closest point mapping. Green arrows point to the undesired results that 
are shrunk. 
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the original reference point set. 
One of the main motivations of performing scale-adaptive ICP is to 

register the scans of the same object captured via different scanners at 
possibly different times. In such a scenario, and many others including 
the ones listed in Section 1, scale differences are likely to arise. In the 
sequel, we provide our qualitative and quantitative results on this scale- 
difference scenario in comparison with the related work that includes 
the current state-of-the-art that considers scaling [45]. 

4.1. Comparison to correspondence-Free pre-Scaling 

It is not trivial to robustly pre-scale such partially similar objects 
before the alignment because of the lack of corresponding points that are 
supposed to guide the normalization [37]. Naïve pre-scaling approaches 
based on maximum distances (Fig. 1-fourth column, Fig. 11-bottom, and 
video) and deviation ratios [19] (Fig. 3) are also shown to be unstable. 
The latter proposes to use the root-mean-square deviations of the co-
ordinates from their centroids, i.e., 

SRMS
1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
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√
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
‖ qi − q ‖2

√

(7)  

and pre-scale the point set S1 of size n via the ratio SRMS
2 /SRMS

1 . Note that 
both the distance-based (explained in the caption of Fig. 1) and the 
deviation-based factors essentially measure the variance of the point 
distributions without requiring any correspondence information which 
is hard to obtain, especially in our arbitrary scaling scenario. 

Once pre-scaled, classical ICP [4] handles the alignment by finding 
rotations and translations iteratively. 

4.2. Comparison to correspondence-Based pre-Scaling 

The most recent pre-scaling technique called TEASER [45] produces 
satisfactory results (Fig. 1-right and Fig. 4-right) when equipped with 
sufficiently accurate keypoint detection and matching procedures [36]. 
It also requires parameter-dependent downsampling to be able to com-
plete in reasonable times (Fig. 5). The downsampling operation also 
slightly changes the coordinates of the points (in a sense that is equiv-
alent to adding noise) so that it is naturally impossible to obtain zero 
deviation. Our qualitative (Fig. 1 and Fig. 4) and quantitative (Table 1) 
results are slightly better than that of this state-of-the-art method. 

TEASER provides the state-of-the-art results for pre-scaling based 
registration because it does not simply rely on the keypoint matches 
which are likely to be erroneous in a challenging setting like this one. 

Assuming that FPFH descriptor [36], or any other descriptor, provides a 
sufficient number of good matches, TEASER adaptively votes for the best 
scale factor. The key observation in the voting process is the fact that ‖
qa − qb‖ / ‖pc − pd‖ is close to the true scale s if (pc,qa) and (pd, qb) are 
good matches. Consequently, good matches are clustered together since 
they are all close to s and hence they are all mutually close. Adaptive 
voting aims to detect the densest cluster in this context. 

Once pre-scaled, TEASER estimates rotation and translation via their 
semidefinite programming relaxation and componentwise adaptive 
voting, respectively. 

4.3. Comparison to joint scaling 

Our method, free of any error-prone pre-scaling action, performs the 
scaling within the robust ICP framework iteratively, leading to the 

Fig. 3. (Left side of the dashed line) Classical ICP runs after the distance-based 
and deviation-based pre-scaling. (Right) Deviation-based pre-scaling is per-
formed jointly during ICP iterations; 3 iterations are shown where the last one is 
the result. 

Fig. 4. Our results in comparison with the Classical ICP [4] and the state-of-the 
art [45]. For the latter, we show zoomed portions to depict the slight deviations 
from the exact overlap that we can provide. 

Fig. 5. (Top) Original input pair (left) needs to be downsampled (middle) and 
matched (right) for TEASER to work properly. (Bottom) Downsampling and 
matching on different pairs. 

Table 1 
Columns from left to right correspond to TEASER [45], classical ICP after 
pre-scaling by maximum distances, classical ICP after pre-scaling by [19], joint 
optimization by [19], and joint optimization by our method. Average spacing 
between points is 0.0002 (in order to interpret the results easily).   

M1 M2 M3 M4 M5 

Eq. 1 0.00012 0.03139 0.02647 0.00193 1e-7  
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improved results in Figs. 1–7 and in the supplementary video: 
http://www.ceng.metu.edu.tr/~ys/pubs/sicp.mp4. The only similar 
literature that integrates the scale factor directly into the least-squares 
problem is due to the group of Du et al. We, however, fail to obtain 
their results due to the lack of reproduction clarity, lack of public re-
positories, and lack of their responses to our communications. We, 
therefore, opt to modify the transformation optimization step in ICP 
with the basic deviation ratio solution proposed in [19] (Eq. 7). We 
outperform this baseline method (Fig. 3-right and Table 1) which is free 
of pre-scaling and uses joint-optimization, i.e., similar to our method, 
computes a new scale factor at each iteration based on the current 
configuration. Finally note that, we also compare with the classical ICP 
[4] which, in this context, gives the worst results as it is not designed to 
handle scaling, either via pre-scaling or joint optimization. 

Note that, our algorithm naturally supports the case where there is 
no scale difference in the beginning (Fig. 8). It also allows the fixed 
reference shape (red) to be bigger or smaller that the moving shape 
(green). The uniform scale factor computed at each iteration is mostly 
larger than 1 for the former case, and less than 1 for the latter. Signifi-
cant scaling occurs in the first few iterations and then the rate of change 
decreases as the factor converges to 1 (see Fig. 9 and the supplementary 
video). 

Another motivation for performing scale-adaptive ICP is to provide a 
good initialization for the non-rigid registration task. To this end, we 
register different quadrupeds and facial expressions (Figs. 10 and 11). 

We qualitatively evaluated our algorithm under various settings 
discussed thus far. Consistent with the visuals that show clear overlaps 
after successful alignments, the quantitative evaluation reveals an error 
(Eq. 1) of 1e-10 or less. Note that, Eq. 1 measures the dissimilarity be-
tween the transformed and fixed point sets in L2 norm. When all 20 test 

pairs are considered in each category this error averages to about 1e-7 
(see Section 5). We wrap up all the resulting errors in Table 1. We 
also show that our good performance is maintained under geometric 
noise and extended partiality where the target point set is also cropped 
(Fig. 12 and Table 2). Eq. 1 naturally increases in the latter case as the 
correspondences of some of the moving points are now cropped. 

Fig. 6. Cropped, rotated, and/or scaled version (green) of the reference shape 
(red) is registered via our method (middle) and the classical method (right). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Results on different subjects in the theme of Fig. 6.  

Fig. 8. Alignments of pairs with compatible initial scaling.  
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As another quantitative assessment, we provide timing measured on 
an 8GB 3.4GHz 64-bit PC (Table 3). Full means all points are aligned, e. 
g., Fig. 7-first row, whereas partial means a cropped version is aligned, e. 
g., Fig. 7-second row. Note that Face, Bunny, Homer, and Quadrupeds 
have 2639, 34835, 7506, and 11,062 points, respectively. When align-
ing n points towards a fixed set of m points, the time complexity of each 
scale-adaptive ICP iteration is O(nlogm) with a k-d tree being used for 
the closest point computations. Timing of TEASER [45], on the other 
hand, is obtained on a different machine, namely a MacBook Pro-with 

Fig. 9. Progress of our scale-adaptive ICP algorithm. All intermediate steps for 
these pairs and many others are available in the supplementary video. 

Fig. 10. Our alignment of non-rigid shape pairs cat-lion and camel-lion pro-
vides a better initialization for an upcoming non-rigid registration operation. 

Fig. 11. (Above the dashed line) A non-rigid shape pair is aligned with our 
scale-adaptive ICP (middle) and classical ICP (right). Initial configuration is 
given in the bottom of the shaded red shape. (Below the dashed line) Another 
non-rigid pair is aligned. For this pair, we also show the shortcoming of the 
naïve distance-based pre-scaling (described in Fig. 1) at the rows below. The 
shaded versions of the pre-scaled shapes are also given for visual convenience. 
Note that the maximum distances in orange become equal after scale normal-
ization, which, however, does not yield a proper global scaling since the most 
widely separated point pairs that define the maximum distances do not corre-
spond semantically. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 12. Our results under geometric noise (rows 1–2) and extended partiality 
where the red target also cropped (row 3). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Eq. 1 error of our results under noise and extreme partiality.   

Face Bunny Homer Quadrupeds 

Noise 0.00025 0.00021 0.00017 0.00338 
E-Partiality 0.11051 0.16526 0.13789 0.19973  

Y. Sahillioğlu and L. Kavan                                                                                                                                                                                                                  



Graphical Models 116 (2021) 101113

7

2.9 GHz 6-Core Intel Core i9, using 12 threads. In this configuration, 
TEASER requires 400 matches for partial Bunny and 300 for partial 
Homer and Face cases. This matching operation takes under a second 
and then followed by 1 second of scale, rotation, translation computa-
tion for the partial Bunny, and 0.5 seconds for the partial Homer and 
Face. Note that, TEASER can work with any robust matching algorithm. 
Currently, authors have used a parallel implementation of FPFH which is 
16x faster than a sequential implementation [16,18]. 

5. Limitations 

Out of 20 test pairs per category, failure cases occasionally arose. 
Although our algorithm completes with almost zero alignment error 
(Eq. 1) in these cases, the result might be semantically incorrect, e.g., 
shifted towards a place that is good for alignment error but bad for se-
mantic meaning (Fig. 13). This shifting problem depends on not only the 
initial scale difference but also the initial positioning of the two point 
sets. We are thus unable to provide a proper quantitative analysis that 
reveals the relationship between the relative scale and convergence 
behavior. We observed the problematic cases 4, 2, 1, and 6 times for the 
Face, Bunny, Homer, and Quadruped categories, respectively. While 
providing merely 3 ground-truth correspondences resolves all the issues, 
it would still be a strong assumption to have this information. Design of a 
scale-invariant point descriptor can lead to an automatic solution to this 
issue, an interesting future research direction to follow. 

6. Conclusion and future work 

We presented scale-adaptive iterative closest point algorithm for 
robust pairwise alignment under arbitrary scaling. To this effect, we 
jointly optimize for translation and scaling after the application of the 
optimal rotation. The proposed joint optimization boils down to a small 
linear system that is solved instantly. We demonstrated clear advantages 
of our algorithm through comparisons involving the correspondence- 
free pre-scaling methods that precede the classical ICP, the current 
state-of-the-art method that decouples scale estimation via correspon-
dences, and a baseline method that adds the scaling factor into the 
optimization. 

It can be interesting to support non-uniform scaling, which requires 
optimization of three scaling factors instead of just one. Sparse modeling 
techniques [5,26] may help dealing with significant amounts of noise 
and outliers. We also consider incorporation of a novel scale-invariant 
point descriptor to our framework (Section 5) as another future 
research direction. 
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Table 3 
Execution time of our method (seconds:#iterations). Note that timing of the 
classical ICP [4] is exactly the same since the additional linear system we solve 
has a constant size (Eq. 6).   

Face Bunny Homer Quadrupeds 

Full 1.55:33 14.18:35 3.51:26 3.65:31 
Partial 1.91:57 8.29:24 2.42:20 2.64:19  

Fig. 13. Two failure cases of the face category. Multiple views are provided for 
the second one for visual convenience. 
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