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Problem Definition & Apps

Goal: Find a mapping between two shapes.

v

Attribute transfer.

Shape registration.

Time-varying reconstruction.

Shape matching.

Statistical shape analysis.




Scope

v Correspondence algorithms for (nearly) isometric *

v' Coarse gorreﬁspondence .

\

v" Dense correspondences.




Scope

v" Correspondence algorithms for (nearly) isometric *

complete shapes collections. //not in thesis (done during post-doc).

v" Coarse correspondences:
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v' Dense correspondences.



Scope

v Correspondence algorlthms for (nearly) isometric *

Idea for multiple

shape correspondence:

suggests
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with a total distortion sum of with a total distortion sum of

061 +.063 + 069 =.193

186 <.196 ©

061 +.065 +.060=.186




Problems

v' Complete shape correspondence at
v’ coarse resolution

v' scale normalization
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All Algorithms in a Nutshell
] .,

Input seenario Output Solution paradigm Computational | Publication

resolution complexity

[sometric or nearly | Coarse Greedy optimization | O(NV log V') CVPR

isometrie

Isometric or nearly | Coarse Greedy optimization | O(NV log V') PAMI

isometric and EM algorithm

Isometric or nearly | Coarse or | Combinatorial O(ViegV) SGP/CGF
isometric dense

Isometric or nearly | Coarse or | Combinatorial (with | O(V log V) CGF
isometric dense symmetric flip care)

Isometric or nearly | Coarse or | Combinatorial (part | O((y,)M!M?) | PG/CGF
isometric or par- | dense matching)

tially isometrie

Isometric or nearly | Coarse or | Combinatorial (most | O(N*V log V) CGF

isometric or par- | dense general setting)

tially isometric

v V: # vertices in the original mesh, N: # samples at coarse resolution, M=5.



Contributions

v" Sampling algorithms.
v" COES, coarse-to-fine, and two extremity sampling methods.
Euclidean - e——

.. Spherical ¥ GMDS
& | (less distortion) ~ \{EECETAN | |(distortionless)
( ¢ embedding o=

v" Distortion minimization by well-established paradigms.
v' Graph matching, greedy optimization, EM algo, combinatorial optimization.
v Map tracking to handle the symmetric flip problem.
v Dense correspondence w/ the lowest time complexity.
v Correspondences that are partial and dense at the same time.
v" Partial correspondence in the most general setting.
v No restriction on topology and triangulation type.

v' Isometric distortion without embedding.
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Global Similarity: Isometry

v" All of our methods are purely isometric.
v Similar shapes have similar metric structures.




Local Similarity: Descriptors

v More consistent joint-sampling which helps matching.
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Scale Normalization

v Scale normalization to prepare geodesic distances for upcoming

isometric distortion computations.
) v X
- =
)

Complete shapes (scale by max geodesic) Partial shapes (max geodesic based normalization fails)

A ﬁ’t‘i b 3 f’ff\*

Partial shapes (scale by trusted matches) Partial shapes (scale by Euclidean embedding, e.g., Mdbius)




Isometric Distortion
e

v Given § : S — I, measure its isometric distortion:

§, =8 {(Shfj)} in the most general setting.
2(.,.): normalized geodesic distance b/w two vertices.

v O(N?) for a map of size N.



Isometric Distortion Illustration
“13/53)

S1utm) €S’ In action:

diso(si.1;) = >0+ 0+ >0+0

average for Dj.,(§).

dis;n(sf-!j) — .



Scale-invariant Isometric Distortion

v Given g : § — T, measure its scale-inv. isometric distortion:

Z Z p(SistisSa,ty) — p(SistiSe,ta)l

(Sz )€§ (Sa tb €§
(Sc td)€§

g(8i, 51 g(tj,tl))
g(tj t1)  g(si, sk)

ratio function p(s;,t;; sk, t;) = max (

g(.,, ) unnormalized/raw geodesic distance b/w two vertices.

v This measure based on raw geodesics provides few trusted matches to be
used in scale normalization.

v O(N3) for a map of size N.



Scale-inv. Isometric Distortion Illustration

DE) = > > p(siitjisa.ts) — p(sistyise.ta)l §: S — T
(si,t;)€8 (sa,ty)€]

(Sc)td)€§

g(si,sk) gty tr) )

ratio function p(s;,t;; Sk, 1 =max( \
P80 143 0 0 90.1) " g5

In action:



Minimizing Isometric Distortion
e O

§* — argmgin Diso(§)

v Optimization by
v' Greedy (CVPR'10).
v' EM framework (PAMI).
v" Combinatorial in C2F fashion (SGP’11, CGF'13).
v" Rank-and-vote-and-conquer (CGF'14).

* .
§ — arg m§1n Diso(§)
v Optimization by
v' Combinatorial (PG12).



Greedy Optimization
v" Initialization by spectral v Refinement by greedy optimization.

embedding & alignment.

Yusuf Sahillioglu and Yiicel Yemez, 3D Shape Correspondence by Isometry-Driven Greedy Optimization,
Proc. Computer Vision and Pattern Recognition (CVPR), pp. 453-458, 2010.



EM Framework

v Refine initial spectral correspondence even further in EM framework.

_ ¢ —al ] e
?Z—» —»z : E-Step : : " :
i EM Algorith I ' k) |

a Sampling | 9ori | ! Q() | Bipartite graph : §S

/,‘z", | "IT i , ! matching |~ One-to-one
. Distortion : | 4L (k) |
: Estimation | | 0 |

Spectral : L I Greedy __:_.; §*
Initialization | AN | ; (k) | optimization | Many-to-one

| I | I
| I

v Minimization of the isometric distortion = Maximization of the log-likelihood

function encoded in matrix Q: probability of matching source S; to target ’[j.

1 g4
v @y = Plt]s) = g Mot

v |§* = argmaxlog P(5|X, Q)

&

Yusuf Sahillioglu and Yiicel Yemez, Minimum-Distortion Isometric Shape Correspondence Using EM Algorithm, PAMI, to appear, 2012.



EM Framework (Results)

v' Initial spectral correspondence refined (one-to-one and many-to-one maps).




EM Framework (Results)




EM Framework (Comparisons)
os3f o

Our method

Spectral . worse worsts,' missing salient points.  GMDS : clustered matches, missing salient pnts.



EM Framework (Limitations)

1. Mismatches due to lack of samples.

2. No efficient extension to dense correspondence due to cubic EM framework.
3. No caution for symmetric flips.
4. No support for partially isometric shapes.

v Limitation 1 handled by adjusting sampling distance parameter or in coarse-to-
fine (C2F) fashion as proposed in SGP w/o any user interaction.

v Limitation 2 handled by SGP which is less accurate than this in achieving sparse
correspondences.

v Limitation 3 handled by CGF extension of SGP.
v Limitation 4 handled partially by PG and fully by SIGGRAPH Asia.



C2F Combinatorial Optimization

v' Optimal mapping maps nearby vertices in source to nearby vertices in target.

v' Recursively subdivide matched patches into smaller patches (C2F sampling) to
be matched (combinatorial search).

v' That is combinatorial matching in a coarse-to-fine fashion.

§ —=
Sampling Combinatorial matching
, ' of vertices to be »| of samples inside patches | |
matched at level & maltched at level -1 i
k=k+1 |
NO A
Merging
of patch based matches

Yusuf Sahillioglu and Yiicel Yemez, Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape
Correspondence, Computer Graphics Forum (SGP), Vol. 30, No. 5, pp. 1461-1470, 2011.



C2F Combinatorial Optimization

v' C2F sampling.

- : .. . " ‘ ) Y e
| ‘blacks +-greens =S¥ g S ;94
= .. . m L
Level k—1 Level &

Yusuf Sahillioglu and Yiicel Yemez, Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape
Correspondence, Computer Graphics Forum (SGP), Vol. 30, No. 5, pp. 1461-1470, 2011.



C2F Combinatorial Optimization

v Combinatorial matching.

SED veli—1 TV

M M =275
(ﬂJ)M' evaluaSK;g); OTiSO
with 8 = § U UH



C2F Combinatorial Optimization

v Merging patch-to-patch correspondences into one correspondence over the
whole surface.

S{ff] T{*’f}




C2F Combinatorial Optimization

/ Inclusion assertion for algonthm correctness




C2F Combinatorial Optimization

v" Saliency sorting.

Where N = max(|S|,|T])

v C2F sampling.
v' Restricted to the patch to be sampled, Dijkstra’s shortest paths takes:

k=K k=K—1 k=1
O():L IMI‘ Mj logy, M,‘) — O(N longI‘Eﬁ-N lowanL -+ N- chM—,m)
#patches 31zeof(patch) K = logy N
since N = M*



C2F Combinatorial Optimization

v" Patch-based combinatorial matching.

O(Zf: 1 MF . M) because each pair is matched in O(M!) time.

¥
# patches

k=K k=K-1 k=1

= O(M™ M1+ MM+ 4 MI-M!)zsince ME=N.
e

K = logMN

v Merging.
MK: size of the mapping at level K.

/
E: evenly-spaced subset of E (= 100) matches as 9 .

- i K 2 vkry —  time.
3-step merging takes O(Y7_, 3 M;,‘é) tlme

di,, computations



C2F Combinatorial Optimization

v' Overall

O(NlogN)



C2F Combinatorial Optimization (Results)

v Details captured, smooth flow.

v' Many-to-one.

Level 4 ]

red line: the worst match

w.rt. isometric distortion. v Two meshes at different resolutions.



C2F Combinatorial Optimization (Results)
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C2F Combinatorial Optimization (comparisons)

v' Comparisons.
Nonrigid world dataset




C2F Combinatorial Optimization (Limitation)

v' Symmetric flip problem.
v Purely isometry-based methods naturally fail at symmetric inputs.

v" Due to multiple local minima of non-convex distortion function, our method
initialized w/ coarse sampling may fail to find the true optimum.

v" Solution is based on map tracking.



C2F Combinatorial Optim. w/ Tracking

v" Track potential maps decided at level 0 until level 4 and maintain the best.

0.046499 0.049385

Diso(f) = 0.049398

Level 4 (~120 matched)

0.0371632 0.032291 |(to be maintainad) | 0.0329892 0.0378706

Yusuf Sahillioglu and Yiicel Yemez, Fast Dense Correspondence for Isometric Shapes,
Computer Graphics Forum (CGF), in revision cycle.



C2F Combinatorial Optim. w/ Tracking

v' Maps to be tracked are before the first jump in plot of initial distortions.
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C2F Combinatorial Optim. w/ Tracking

v In addition to addressing the symmetric problem inherent to all
multiresolution isometric shape matchers, this extension is tested with

v

v

AN

Five benchmarks (TOSCA, Watertight, SHREC'11, SCAPE, Nonrigid World), and
two state-of-the-arts (Blended Intrinsic Maps, GMDS).

Tracking is embedded in our C2F algorithm (SGP) as well as in GMDS.
Roughly speaking, 50% improvement on symmetric flips (see paper).

Final dense maps are better than or on a par with competitors regarding
isometric distortions (see paper).

Our method Our method




Complete Correspondence Done

v Complete shape correspondence at coarse (CVPR, PAMI) and dense (SGP)
resolutions with special care on symmetric flip (CGF) for the latter is done.

v' Time to match partially similar shape pairs.
v Algorithms naturally apply to complete matching.



Combinatorial Optim. for Part Matching

v" The most extreme M source vertices are matched w/ |T| target extremities
in the guidance of an isometric distortion measure.

Source Target

00000y SO WWOOO 0 (,)

N
5 \~L£l:o_w seenE ... cesew M!
X ) »p'uun Q.su,m Cwewse M|

v O(('ﬂ)ﬂf IM?) computational complexity where we set M=5 in the tests.

Yusuf Sahillioglu and Yiicel Yemez, Scale Normalization for Isometric Shape Matching,
Computer Graphics Forum (PG), submitted.



Combinatorial Optim. for Part Matching
P

v" Two isometric distortion measures in action.
v Scale-invariant isometric distortion D(§).




Combinatorial Optim. for Part Matching

v Use initial coarse correspondence §* to bring the meshes to the same scale.

2 ng\i

v' Scale the target mesh by
. L 9(Sa,sc)
“TED 2 a(th, ta)

2 ) ((sa.tn)(se.ta))EC(5")
v' Dense sampling.

100 here




Combinatorial Optim. for Part Matching

v" Dense matching.
v" Minimum-weight perfect matching on cost matrix C.

] = cost of matching S;to t; //generating §* is traversed by (S;, t;).

v Symmetric flip caring: repeat above (scaling, sampling, matching) with K-1 more
generating initial coarse correspondences that follow §*in sorted distortions list.




Combinatorial Opt. for Part Matching (resuits)
433f
v Not only for part matching v" Comparison w/ Mdbius Voting (MV).

8 a8
and for pairs w/ incompatible max geodesics.

MV: bad extremity matching, triangulation.



Combinatorial Opt. for Part Matching (wmitation)

v Presence of uncommon parts may fail this framework which forces to
match M=5 most extremes as a whole.

v' Embedding D, into a more sophisticated framework should help as it
handles arbitrary scaling of the similar parts.

v Solution is our rank-and-vote-and-combine (RAVAC) algorithm.



RAVAC Optimization

v Multiple common parts at arbitrary scales as well as uncommon parts.

v Find sparse correspondence b/w shape extremes (green spheres) which will
then be extended to a denser one.

v' Handles shape pairs w/ small similarity overlap (red regions), the smallest
indeed to the best of our knowledge.



RAVAC Optimization

v Ranking

v" Explore the space of all possible partial maps b/w shape extremities to rank
them w.r.t. the isometric distortion ;. they yield.

! 1
dso(sirty §) = r > lalsi-s0) = g(t.tm)

&1 Ry

7 1 . ¢ (k)
diso (5. 15) = i Z 111{;11{(1’.150(.9@-_‘@.gg! )}
ke(2,5]
¢ (K :
(60711 = 1.2, Ly} : set of

all maps of size K, not including (S;, ;).

v" Qualify matches w/ relatively low distortions, i.e., top-ranked.



RAVAC Optimization

v" Voting
v Qualified top-ranked matches analyzed at a denser reso to obtain confidences.
v For each triplet of samples from source & target (potentially compatible greens)

1

v' Generate a safe map §* = {(si,.t;,), (siy- ;). (sis.1;5)} Where all pairs are
qualified.

v Bring meshes to the same scale via = (57252 + S o S /3.

v Decide the regions of interests.

i we




RAVAC Optimization

v' Spread and match evenly-spaced dense samples on regions.

‘e
: - (3 :
v Add confidence votes to the generating matches ?33( 'that accumulate in T

via Vij = Vij + exp(—diso(si, 15, %E))Whel’e (si t;) € §§3) -

of sample triplets.




RAVAC Optimization

v Combining

v’ Iterate bipartite graph matching based on vote matrix T" by removing the least
confident match at the end of each iteration.

v Complete correspondence and part matching are handled naturally.




RAVAC Optimization
s/53f

v Extension to dense map

v" For each map of size 3 chosen from optimal coarse correspondence, densely
sample and match the regions as before (overlap trick in sampling).

v’ F(5;): set of matches for dense source sample si .

v Geodesic centroid of F'(5;) is then b, = b Z t; which gives the

F(5)] .
| (q)|¢jeF(§i)

dense match (3;,1;) where {;, is a target vertex closest to b; .

In comparison w/ Mobius Voting (15t and 3" pairs from the left).



RAVAC Optimization (Comparisons & Limitations)
sysgf

v More M0Obius Voting comparisons.

o o e e o e

v" Limitations

v' Each part to be matched must be represented by at least 3 samples, which is
generally the case anyway.

v Incorporate diffusion-based metrics for topological noise robustness.
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Conclusions & Future Work

Four new sampling algorithms.

Isometric distortion functions and their optimizers in 3D Euclidean space.
The fastest computational complexity on dense correspondence.
Symmetric flip handling for all multiresolution isometric shape matchers.
Partial correspondence for shapes w/ significantly small similarity overlap.
Correspondences that are partial and dense at the same time.
Insensitivity to shape topology and peculiarities of the triangulation.

Investigate tradeoff b/w the accuracy of the geodesic metric in use and
topological noise robustness of the diffusion-based metrics to be tested.

Incorporate more shapes into the process to establish or improve
correspondences (Done during post-doc: [PG'14]).
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