
Algorithms for
3D Isometric Shape Correspondence

Yusuf Sahillioğlu
Computer Eng. Dept., Koç University, Istanbul, Turkey (PhD)

Computer Eng. Dept., METU, Ankara, Turkey (Asst. Prof.)



Problem Definition & Apps
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 Shape interpolation, animation.

 Shape registration.

 Shape matching.

 Time-varying reconstruction.

 Statistical shape analysis.

Goal: Find a mapping between two shapes.

 Attribute transfer.



CGF

Scope
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 Correspondence algorithms for (nearly) isometric *

 Coarse correspondences:

complete shapes. partial shapes (part or most general).

CVPR PAMI

SGP CGF

PG

 Dense correspondences.



Scope
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 Correspondence algorithms for (nearly) isometric *

 Coarse correspondences:

complete shapes collections. //not in thesis (done during post-doc).

PG

 Dense correspondences.



Scope
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 Correspondence algorithms for (nearly) isometric *

Idea for multiple

shape correspondence:



Problems
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 Complete shape correspondence at

 coarse resolution

 joint sampling symmetric flips

 dense resolution

 timing

 Partial shape correspondence

 scale normalization outliers



All Algorithms in a Nutshell

 V: # vertices in the original mesh, N: # samples at coarse resolution, M=5.
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Contributions

 Sampling algorithms.

 COES, coarse-to-fine, and two extremity sampling methods.

 Isometric distortion without embedding.



 Distortion minimization by well-established paradigms.

 Graph matching, greedy optimization, EM algo, combinatorial optimization.

 Map tracking to handle the symmetric flip problem.

 Dense correspondence w/ the lowest time complexity.

 Correspondences that are partial and dense at the same time.

 Partial correspondence in the most general setting.

 No restriction on topology and triangulation type.
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Euclidean

embedding



Global Similarity: Isometry

 All of our methods are purely isometric.

 Similar shapes have similar metric structures.

 Metric: geodesic distance (in use) vs. diffusion-based distances.
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Local Similarity: Descriptors

 More consistent joint-sampling which helps matching.

 Gaussian curvatures and average geodesic distances in use.
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Scale Normalization

 Scale normalization to prepare geodesic distances for upcoming 
isometric distortion computations.
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Complete shapes (scale by max geodesic) Partial shapes (max geodesic based normalization fails)

Partial shapes (scale by trusted matches) Partial shapes (scale by Euclidean embedding, e.g., Möbius)



Isometric Distortion

 Given , measure its isometric distortion:
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in the most general setting.

: normalized geodesic distance b/w two vertices.

 O(N2) for a map of size N.



Isometric Distortion Illustration
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average for             .

in action:



Scale-invariant Isometric Distortion

 Given , measure its scale-inv. isometric distortion:

 This measure based on raw geodesics provides few trusted matches to be 
used in scale normalization.

 O(N3) for a map of size N.
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: unnormalized/raw geodesic distance b/w two vertices.



Scale-inv. Isometric Distortion Illustration
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in action:

average for            .



Minimizing Isometric Distortion
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 Optimization by

 Greedy (CVPR’10).

 EM framework (PAMI).

 Combinatorial in C2F fashion (SGP’11, CGF’13).

 Rank-and-vote-and-conquer (CGF’14).

 Optimization by

 Combinatorial (PG’12).



Greedy Optimization
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 Initialization by spectral

embedding & alignment.

 Refinement by greedy optimization.

Yusuf Sahillioğlu and Yücel Yemez, 3D Shape Correspondence by Isometry-Driven Greedy Optimization,

Proc. Computer Vision and Pattern Recognition (CVPR), pp. 453-458, 2010.



EM Framework
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 Refine initial spectral correspondence even further in EM framework.

 Minimization of the isometric distortion = Maximization of the log-likelihood 

function encoded in matrix Q: probability of matching source si to target tj.





Yusuf Sahillioğlu and Yücel Yemez, Minimum-Distortion Isometric Shape Correspondence Using EM Algorithm, PAMI, to appear, 2012.



EM Framework (Results)

 Initial spectral correspondence refined (one-to-one and many-to-one maps).
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EM Framework (Results)
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EM Framework (Comparisons)
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GMDS

Spectral 

Our method

GMDS : clustered matches, missing salient pnts.

Spectral 

Our method

Our method

Spectral : worse worsts, missing salient points.



EM Framework (Limitations)
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Sufficient # of 
samples.

1. Mismatches due to lack of samples.

2. No efficient extension to dense correspondence due to cubic EM framework.

3. No caution for symmetric flips.

4. No support for partially isometric shapes.

 Limitation 1 handled by adjusting sampling distance parameter or in coarse-to-
fine (C2F) fashion as proposed in SGP w/o any user interaction.

 Limitation 2 handled by SGP which is less accurate than this in achieving sparse 
correspondences.

 Limitation 3 handled by CGF extension of SGP.

 Limitation 4 handled partially by PG and fully by SIGGRAPH Asia.



C2F Combinatorial Optimization

 Optimal mapping maps nearby vertices in source to nearby vertices in target.

 Recursively subdivide matched patches into smaller patches (C2F sampling) to 
be matched (combinatorial search).

 That is combinatorial matching in a coarse-to-fine fashion.
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Yusuf Sahillioğlu and Yücel Yemez, Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape 

Correspondence, Computer Graphics Forum (SGP), Vol. 30, No. 5, pp. 1461-1470, 2011.



C2F Combinatorial Optimization

 C2F sampling.
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greens inherited from level k−1blues are all vertices (   )patches being defined (     )blacks + greens =

Yusuf Sahillioğlu and Yücel Yemez, Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape 

Correspondence, Computer Graphics Forum (SGP), Vol. 30, No. 5, pp. 1461-1470, 2011.



C2F Combinatorial Optimization

 Combinatorial matching.

25 / 53

greens inherited from level k−1

blacks + greens =



C2F Combinatorial Optimization

 Merging patch-to-patch correspondences into one correspondence over the 
whole surface.
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Multi-graph  single graph. Also, diso values made available.1st pass over source samples to keep only one match per sample, the one 

with the min diso.

2nd pass over target samples to assign one match per isolated sample, the 

one with the min diso.

Trim matches with diso > 2Diso, i.e., outliers.



C2F Combinatorial Optimization
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 Inclusion assertion for algorithm correctness.



C2F Combinatorial Optimization
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 Saliency sorting.

 C2F sampling.

 Restricted to the patch to be sampled, Dijkstra’s shortest paths takes:



C2F Combinatorial Optimization
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 Patch-based combinatorial matching.

because each pair is matched in            time.

 Merging.

Mk: size of the mapping at level k.

E: evenly-spaced subset of E (= 100) matches as     .

3-step merging takes                                         time.

diso computations



C2F Combinatorial Optimization
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 Overall



C2F Combinatorial Optimization (Results)
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 Details captured, smooth flow.
 Many-to-one.

 Two meshes at different resolutions.
red line: the worst match 

w.r.t. isometric distortion.

6K vs. 16K



C2F Combinatorial Optimization (Results)
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red line: the worst match w.r.t. isometric distortion.



C2F Combinatorial Optimization (Comparisons)
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 Comparisons.

GMDS O(N2logN) Spectral O(N2logN)

Nonrigid world dataset

Our method O(NlogN)

Our method    O(NlogN)



C2F Combinatorial Optimization (Limitation)
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 Symmetric flip problem.

 Purely isometry-based methods naturally fail at symmetric inputs.

 Due to multiple local minima of non-convex distortion function, our method 
initialized w/ coarse sampling may fail to find the true optimum.

 Solution is based on map tracking.



C2F Combinatorial Optim. w/ Tracking

 Track potential maps decided at level 0 until level 4 and maintain the best.

Yusuf Sahillioğlu and Yücel Yemez, Fast Dense Correspondence for Isometric Shapes,

Computer Graphics Forum (CGF), in revision cycle.
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C2F Combinatorial Optim. w/ Tracking

 Maps to be tracked are before the first jump in plot of initial distortions.
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C2F Combinatorial Optim. w/ Tracking

 In addition to addressing the symmetric problem inherent to all 
multiresolution isometric shape matchers, this extension is tested with

 Five benchmarks (TOSCA, Watertight, SHREC’11, SCAPE, Nonrigid World), and

two state-of-the-arts (Blended Intrinsic Maps, GMDS).

 Tracking is embedded in our C2F algorithm (SGP) as well as in GMDS.

 Roughly speaking, 50% improvement on symmetric flips (see paper).

 Final dense maps are better than or on a par with competitors regarding 
isometric distortions (see paper).
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GMDS Our methodBIM Our method



Complete Correspondence Done

 Complete shape correspondence at coarse (CVPR, PAMI) and dense (SGP) 
resolutions with special care on symmetric flip (CGF) for the latter is done.

 Time to match partially similar shape pairs.

 Algorithms naturally apply to complete matching.
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Combinatorial Optim. for Part Matching

 The most extreme M source vertices are matched w/ |T| target extremities 

in the guidance of an isometric distortion measure.

 computational complexity where we set M=5 in the tests.
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Yusuf Sahillioğlu and Yücel Yemez, Scale Normalization for Isometric Shape Matching,

Computer Graphics Forum (PG), submitted.



Combinatorial Optim. for Part Matching

 Two isometric distortion measures in action.

 Scale-invariant isometric distortion          .

 Isometric distortion w/ normalized geodesics.
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Winner



Combinatorial Optim. for Part Matching

 Use initial coarse correspondence     to bring the meshes to the same scale.

 Scale the target mesh by

 Dense sampling.
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100 here

Same radius



Combinatorial Optim. for Part Matching

 Dense matching.

 Minimum-weight perfect matching on cost matrix C.

 ci,j = cost of matching si to tj //generating      is traversed by (si, tj).

 Symmetric flip caring: repeat above (scaling, sampling, matching) with K-1 more 

generating initial coarse correspondences that follow     in sorted distortions list.
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 Not only for part matching

but also for complete matching

and for pairs w/ incompatible max geodesics.

Combinatorial Opt. for Part Matching (Results)
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 Comparison w/ Möbius Voting (MV).

MV: bad extremity matching, triangulation.
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Combinatorial Opt. for Part Matching (Limitation)

 Presence of uncommon parts may fail this framework which forces to 

match M=5 most extremes as a whole.

 Embedding          into a more sophisticated framework should help as it 
handles arbitrary scaling of the similar parts.

 Solution is our rank-and-vote-and-combine (RAVAC) algorithm.



 Multiple common parts at arbitrary scales as well as uncommon parts.

 Find sparse correspondence b/w shape extremes (green spheres) which will 
then be extended to a denser one.

 Handles shape pairs w/ small similarity overlap (red regions), the smallest 
indeed to the best of our knowledge.
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RAVAC Optimization



: set of 

all maps of size k, not including (si, tj).

 Ranking

 Explore the space of all possible partial maps b/w shape extremities to rank 
them w.r.t. the isometric distortion       they yield.

 Qualify matches w/ relatively low distortions, i.e., top-ranked.
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RAVAC Optimization



 Voting

 Qualified top-ranked matches analyzed at a denser reso to obtain confidences.

 For each triplet of samples from source & target (potentially compatible greens)

 Generate a safe map                                               where all pairs are 
qualified.

 Bring meshes to the same scale via .

 Decide the regions of interests.
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RAVAC Optimization



 Spread and match evenly-spaced dense samples on regions.

 Add confidence votes to the generating matches       that accumulate in     

via                                                      where .

 Yet another example w/ a different generating pair of sample triplets.
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RAVAC Optimization
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RAVAC Optimization

 Combining

 Iterate bipartite graph matching based on vote matrix      by removing the least 
confident match at the end of each iteration.

 Complete correspondence and part matching are handled naturally.

 The harder case with uncommon parts.  Locally similar, globally not.
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RAVAC Optimization

 Extension to dense map

 For each map of size 3 chosen from optimal coarse correspondence, densely 
sample and match the regions as before (overlap trick in sampling).

 : set of matches for dense source sample    .

 Geodesic centroid of          is then which gives the 

dense match           where     is a target vertex closest to     .

In comparison w/ Möbius Voting (1st and 3rd pairs from the left).



51 / 53

RAVAC Optimization (Comparisons & Limitations)

 Limitations

 Each part to be matched must be represented by at least 3 samples, which is 
generally the case anyway.

 Incorporate diffusion-based metrics for topological noise robustness.

 More Möbius Voting comparisons.
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Conclusions & Future Work

 Four new sampling algorithms.

 Isometric distortion functions and their optimizers in 3D Euclidean space.

 The fastest computational complexity on dense correspondence.

 Symmetric flip handling for all multiresolution isometric shape matchers.

 Partial correspondence for shapes w/ significantly small similarity overlap.

 Correspondences that are partial and dense at the same time.

 Insensitivity to shape topology and peculiarities of the triangulation.

 Investigate tradeoff b/w the accuracy of the geodesic metric in use and 
topological noise robustness of the diffusion-based metrics to be tested.

 Incorporate more shapes into the process to establish or improve 
correspondences (Done during post-doc: [PG’14]).
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