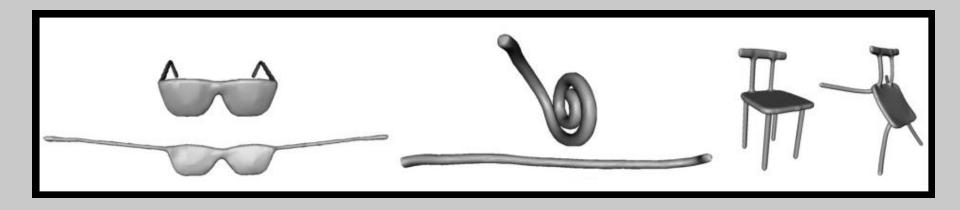
Detail-Preserving Mesh Unfolding for Nonrigid Shape Retrieval



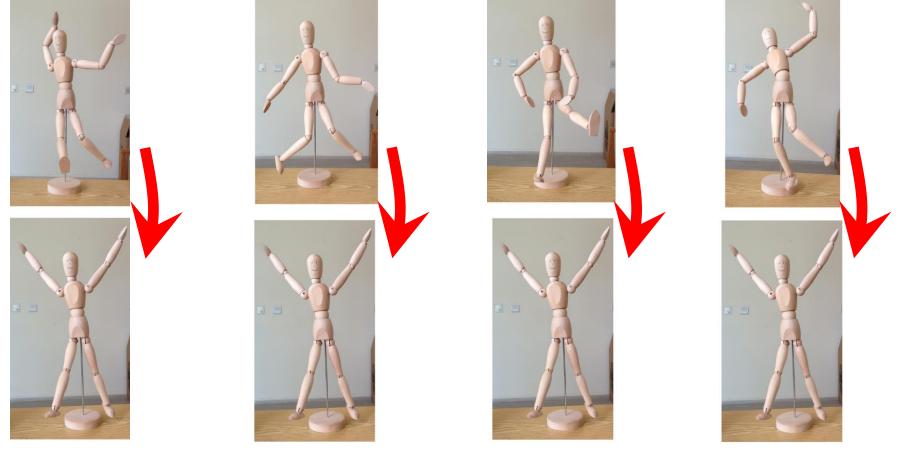
Yusuf Sahillioğlu and Ladislav Kavan

SIGGRAPH 2016

Problem Definition

2/30

Goal: Bring a 3D shape into a canonical pose that is invariant to nonrigid transformations.



Applications

3/30

Given a mesh in canonical form, we'd be able to do:

- \checkmark Shape interpolation.
- ✓ Attribute transfer.
- ✓ Shape registration.
- ✓ Time-varying recon.
- ✓ Shape retrieval.
- ✓ Statistical shape analysis.

✓ Texture mapping, geodesic distance approximation,

0.88

0.90

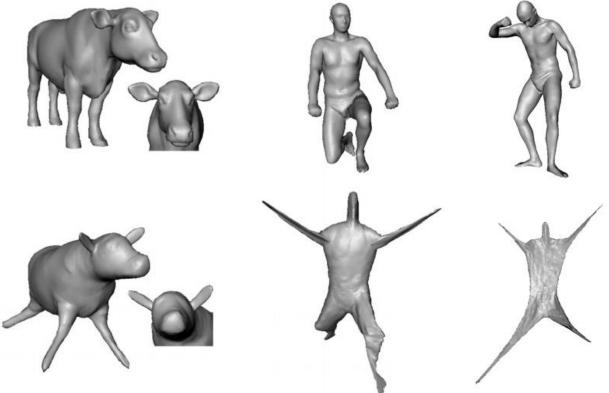
0.85

0.85

4/30

✓ Avoid geometric distortion that is introduced by classical approaches such as multidimensional scaling (MDS).

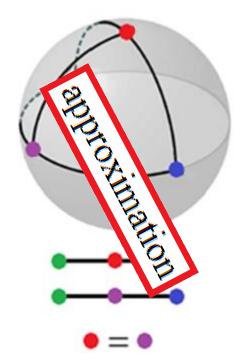
Euclidean embedding (e.g., MDS)



5/30

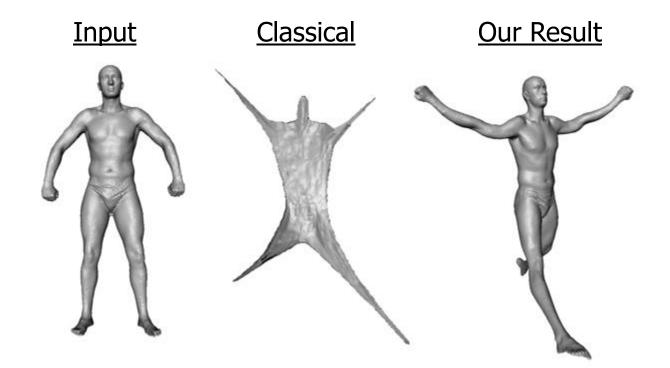
✓ Avoid geometric distortion that is introduced by classical approaches such as multidimensional scaling (MDS).

Euclidean embedding (e.g., MDS)



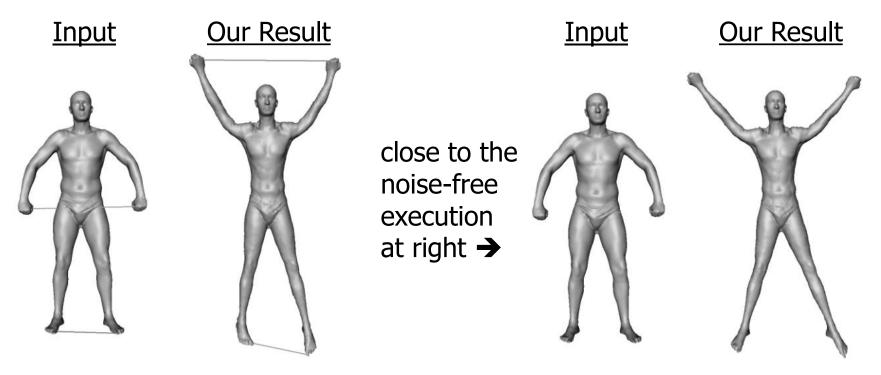
6/30

- ✓ While you are at it, put additional constraints in the minimization procedure to preserve details.
 - \checkmark This leads to a better post-processing (in, e.g., shape retrieval).



7/30

- \checkmark Insensitivity to topological noise, as the 2nd contribution.
 - \checkmark No topology-sensitive geodesic distance in our framework.



\checkmark Pre-processing.

✓ For more realistic results, use volumetric elasticity, which requires tetrahedralizing the volume of the input mesh [Jacobson et al.].

✓ Our deformation algorithm seeks optimal vertex positions:

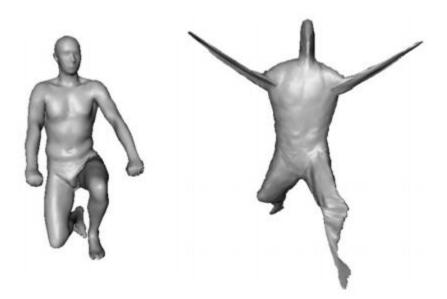
$$\mathbf{v}^* = \arg\min_{\mathbf{v}} E(\mathbf{v}).$$

- \checkmark Search space is reduced by exploiting the fact that v^{\ast} for a bending-free pose
 - \checkmark move every vertex as far away from each other,
 - \checkmark while keeping the mesh in good shape with original details.

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} E(\mathbf{v}).$$

✓ Consider $E(\mathbf{v}) = \sum_{i < j} (||\mathbf{v}_i - \mathbf{v}_j|| - g(i, j))^2$

- \checkmark move every vertex as far away from each other,
- \checkmark while keeping the mesh in good shape with original details.

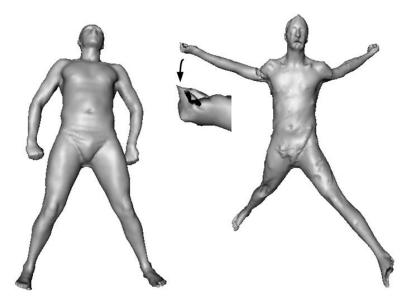


 \checkmark This mass-spring system = least-squares MDS [Elad & Kimmel 03].

11/30

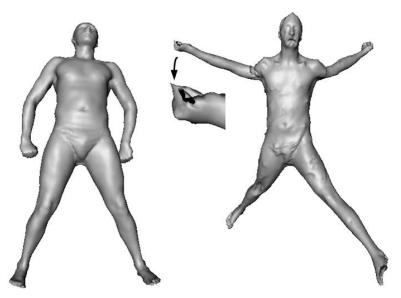
✓ Consider $E(\mathbf{v}) = \frac{1}{2} \sum_{(i,j) \in \mathcal{G} \cup \mathcal{E}} k_{ij} (||\mathbf{v}_i - \mathbf{v}_j|| - r_{ij})^2$ ✓ move every vertex as far away from each other,

- \checkmark while keeping the mesh in good shape with original details.



 \checkmark Alleviates detail problem but has serious issues.

- ✓ Consider $E(\mathbf{v}) = \frac{1}{2} \sum_{(i,j) \in \mathcal{G} \cup \mathcal{E}} k_{ij} (||\mathbf{v}_i \mathbf{v}_j|| r_{ij})^2$ ✓ Rest length r_{ij} takes the value of geodesic distance (for \mathcal{G}) or
 - original edge length (for edge springs \mathcal{E}).
 - \checkmark Issues:
 - \checkmark Geodesic distance dependence.
 - \checkmark Pure spring-based approach to capture volumetric elasticity.

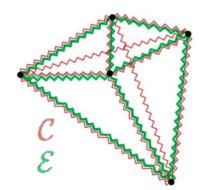


13/30

✓ Proposed energy functional:

$$E(\mathbf{v}) = \frac{1}{2} \left(\sum_{(i,j)\in\mathcal{C}} -k_{ij} ||\mathbf{v}_i - \mathbf{v}_j||^2 + \alpha \sum_{(i,j)\in\mathcal{E}} k_{ij} (||\mathbf{v}_i - \mathbf{v}_j|| - r_{ij})^2 \right)$$
Move every vertex as far Keen mesh in good shape

Move every vertex as far away from each other using charge springs (C). Here, $r_{ij} = 0$. Keep mesh in good shape with original details using edge springs (\mathcal{E}). Here, r_{ij} = original edge len.

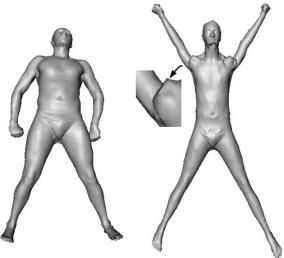


14/30

✓ Proposed energy functional:

$$E(\mathbf{v}) = \frac{1}{2} \left(\sum_{(i,j)\in\mathcal{C}} -k_{ij} ||\mathbf{v}_i - \mathbf{v}_j||^2 + \alpha \sum_{(i,j)\in\mathcal{E}} k_{ij} (||\mathbf{v}_i - \mathbf{v}_j|| - r_{ij})^2 \right)$$

 \checkmark Without any FE constraints, this energy is still not perfect.



- 15/30
- ✓ Proposed FE regularization constraints:
 - \checkmark Preserve local volume in the neighborhood of each vertex:

$$c_i(\mathbf{v}): \sum_{t \in \eta(i)} \operatorname{vol}(t) = l_i \quad \forall i \in V$$

✓ Prevent inversions:

 $c_t(\mathbf{v}): \operatorname{vol}(t) > \epsilon \quad \forall t \in T$

16/30

✓ Final nonlinear constrained optimization problem:

 $\begin{array}{ll} \underset{\mathbf{v}}{\text{minimize}} & E(\mathbf{v}) \\ \text{subject to} & c_i(\mathbf{v}), \ \forall i \in V \quad \text{and} \quad c_t(\mathbf{v}), \ \forall t \in T \end{array}$

17/30

✓ Final nonlinear constrained optimization problem:

minimize $E(\mathbf{v})$ subject to $c_i(\mathbf{v}), \forall i \in V$ and $c_t(\mathbf{v}), \forall t \in T$ <u>Input</u> Without Constraints With Constraints

18/30

✓ Final nonlinear constrained optimization problem:

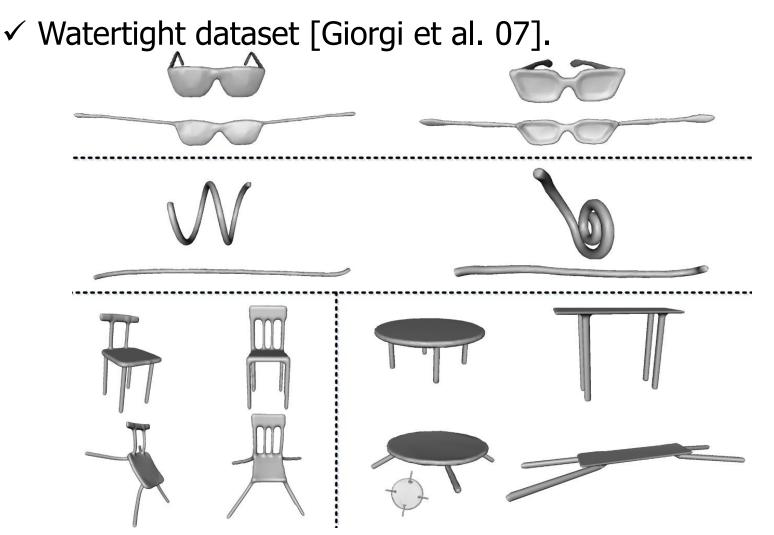
minimize $E(\mathbf{v})$ subject to $c_i(\mathbf{v}), \forall i \in V$ and $c_t(\mathbf{v}), \forall t \in T$ With Constraints <u>Input</u> Without Constraints

19/30

✓ Final nonlinear constrained optimization problem:

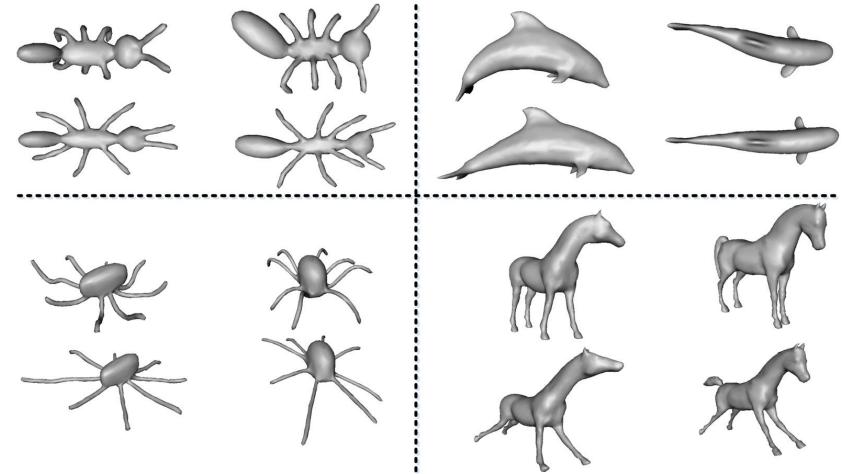
minimize $E(\mathbf{v})$ subject to $c_i(\mathbf{v}), \forall i \in V$ and $c_t(\mathbf{v}), \forall t \in T$ <u>Input</u> Without Constraints With Constraints

20/30



21/30

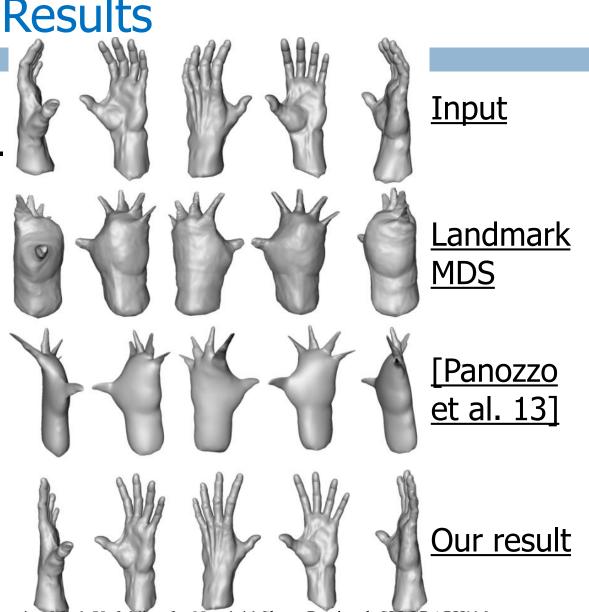
✓ Watertight dataset [Giorgi et al. 07].



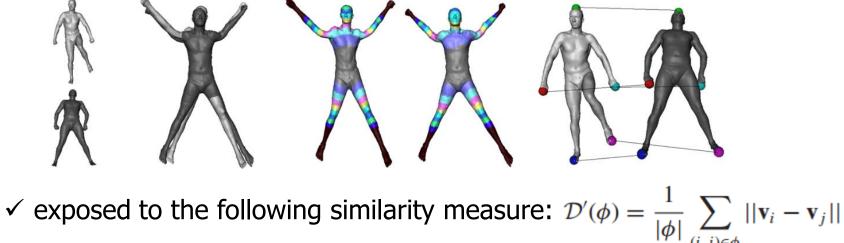
- ✓ Watertight dataset [Giorgi et al. 07].
- ✓ Timing on a 2.53GHz PC.
 - ✓ # of tets: 35K, 20K, 9K, 3K.
 - ✓ # of secs: 575, 280, 21, 4.
- ✓ Timing for SCAPE models (45K tets).
 - ✓ 985 seconds.
 - ✓ [Anguelov et al. 2005]

- \checkmark Timing for Hand model (51K tets).
 - \checkmark 1684 seconds.
 - ✓ [Panozzo et al. 2013]

✓ Hand model [Panozzo et al. 13].

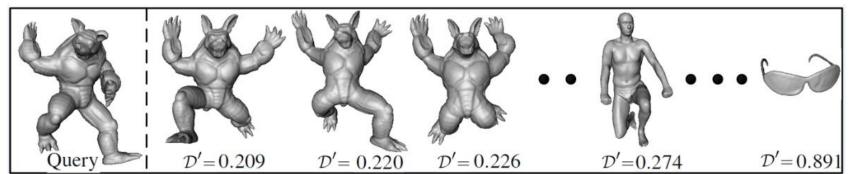


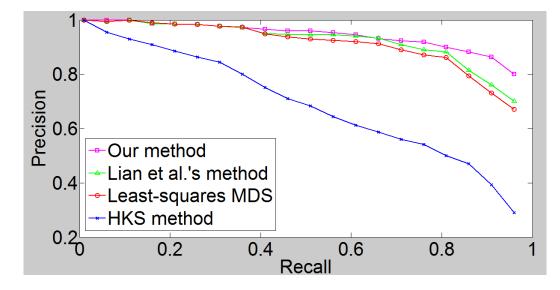
- 24/30
- \checkmark Nonrigid shape retrieval.
- ✓ Canonical poses computed by our algo are
 - \checkmark rigidly aligned (PCA followed by ICP),
 - \checkmark matched by the closest points in the aligned config, and



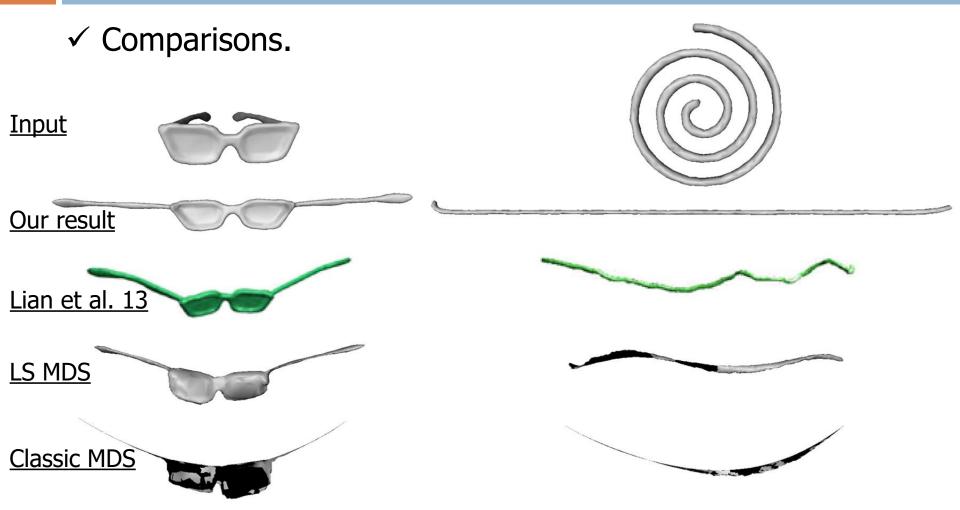
25/30

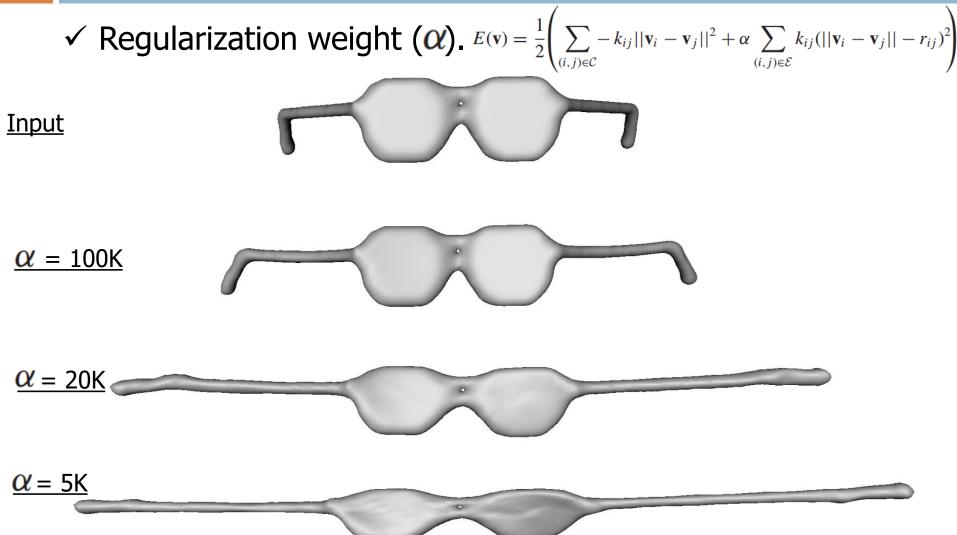
✓ Nonrigid shape retrieval.





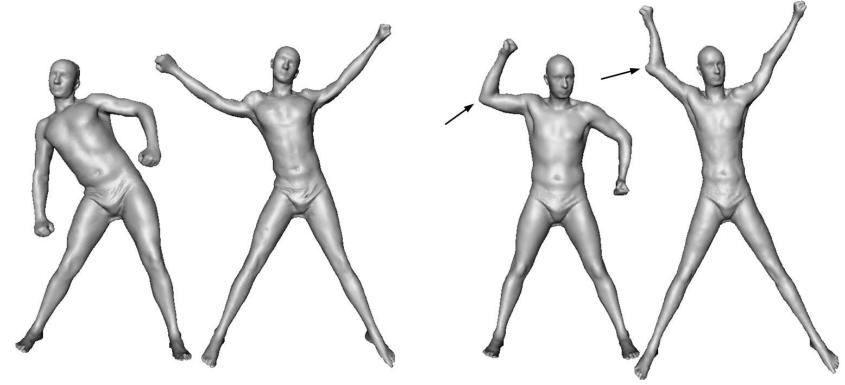
26/30





Limitations

- \checkmark Regularization slightly sensitive to the original pose.
- ✓ Decreases shape correspondence performance.
 - \checkmark Such a loose mapping still useful for nonrigid shape retrieval app.



Conclusion

- ✓ A deformation algorithm that unfolds a 3D model without distorting its geometric details.
- ✓ This detail-preserving unfolding gives a canonical pose that is suitable especially for nonrigid shape retrieval.
- ✓ No geodesics, efficient, less topological noise sensitivity, arbitrary genus.
- ✓ Outperforms state-of-the-art retrieval applications.
- ✓ Future: Incorporate semantic parameters to create more specific poses, e.g., Vitruvian Man.

Yusuf Sahillioğlu & Yücel Yemez, Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape Correspondence, SGP'11.

People

30 / 30

Yusuf Sahillioğlu, Asst. Prof.

Ladislav Kavan, Asst. Prof.