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a b s t r a c t 

Detecting objects in challenging illumination conditions is critical for autonomous driving. Existing so- 

lutions detect objects with standard or tone-mapped Low Dynamic Range (LDR) images. In this paper, 

we propose a novel adversarial approach that jointly optimizes tone-mapping (mapping High Dynamic 

Range (HDR) to LDR) and object detection. We analyze different ways to combine the feedback from 

tone-mapping quality and object detection quality for training such an adversarial network. We show that 

our deep tone-mapping operator jointly trained with an object detector achieves the best tone-mapping 

quality as well as detection quality compared to alternative approaches. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

An open problem in computer vision is detecting objects under 

dverse conditions of illumination, e.g., when entering or exiting 

 tunnel, driving towards Sun or under the headlights of an on- 

oming car - see, e.g., Fig. 1 . Existing systems generally use Low 

ynamic Range (LDR) cameras, in addition to various depth and 

adar sensors, for visual perception [5,6] . However, LDR cameras 

ay be insufficient for providing discriminative details about ob- 

ects in dark or bright regions of a scene. In such challenging sce- 

arios, the ability of a camera to capture the darkest and brightest 

reas in a scene without losing any detail, i.e., the dynamic range 

f the camera, makes a significant difference [7] . Modern cameras 

ith High Dynamic Range (HDR) capabilities can capture details 

n a scene with extremely bright and quite dark regions. How- 

ver, despite their potential, the use of HDR cameras for challeng- 

ng lighting conditions in object detection, and more importantly 

n autonomous driving, has not been explored extensively. 

A straightforward approach to benefit from HDR content in ad- 

erse illumination conditions would be to directly use HDR images 

s input for training deep object detectors. However, this is pro- 
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ibitive, as the HDR space is significantly wider than LDR space, 

nd therefore, it requires much more data to train detectors [8] . 

n alternative is to first tone-map HDR images to LDR images, and 

hen to provide tone-mapped LDR images as input to object detec- 

ion networks. 

Thanks to advances in deep generative modeling, high-quality 

one-mapping operators (TMOs) can be obtained with Generative 

dversarial Networks (GANs). Although such deep tone-mapping 

pproaches have produced perceptually remarkable LDR images, 

hey rely on classically tone-mapped LDR images for training the 

enerator. Therefore, images generated by classical TMOs or deep 

MOs are not optimized to consider performance in downstream 

ision problems, such as object detection or image classification. 

In this paper, to address these issues, we propose a novel ap- 

roach, called TMO-Det, that jointly optimizes a GAN-based TMO 

nd an object detector. We achieve this by extending a GAN- 

ased TMO with object-detection objectives to consider maximiz- 

ng detection performance while optimizing tone-mapping quality 

 Fig. 1 ). 

. Related work and background 

.1. Deep generative modeling 

Generative Adversarial Networks (GANs) [9] are a family of net- 

orks that map a latent space ( Z) to a target space based on an ad-
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Fig. 1. (a) LDR images make it difficult to detect objects in adverse illumination 

conditions. (b) TMO-Det is able to jointly tone-map and detect objects that cannot 

be detected in LDR images. Blue: detected objects. Red: Missed objects. The input 

is from the OOD dataset [2] . (c) Our method (TMO-Det ) provides the best de- 

tection performance (mAP) and HDR quality (TMQI-Q [3] ) compared to RetinaNet 

[4] trained on hand-designed or learned tone-mapping operators. The results are 

obtained on the OOD dataset [2] . 
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ersarial interplay between two components, namely the discrimi- 

ator D and the generator G : 

 GAN (G, D ) = E x ∼p data (x ) [ log D (x )] + E z∼p z (z) [ log (1 − D (G (z))] , 

(1) 

hich is maximized by D and minimized by G . GANs can be easily

xtended to generate samples that match a condition (called Con- 

itional GAN [10] ): 

 CGAN (G, D ) = E x ∼p data (x ) [ log D (x, y )] 

+ E z∼p z (z) [ log (1 − D (G (z, y ) , y )] , (2) 

here y is the additional variable on which generation and dis- 

rimination are conditioned. 

.2. Deep tone-mapping 

Conventional tone-mapping operators that generate LDR images 

rom HDR images are based on global and local characteristics of 
231 
ndividual images. With advances in deep learning, recent work 

as been using generative models (mostly GANs) to learn tone- 

apping from the data [11,12] . These approaches generally perform 

mage-to-image translation using conditional GANs, as follows: 

 CGAN (G, D ) = E x ∼p data (x ) [ log D (x, T (x ))] 

+ E x ∼p x (data ) [ log (1 − D (x, G (x ))] , (3) 

here x is an HDR image; T is a classical tone-mapping method, 

roducing the ground-truth tone-mapped image T (x ) ; G (x ) is the 

enerated image mimicking T (·) ; D is the discriminator that dis- 

riminates between the images tone-mapped by T and G . 

The objective in Eq. 3 has been extended by Rana et al. 

11] with (i) a feature-matching loss to penalize G with the dis- 

repancy between the representations of G (x ) and T (x ) in the

ntermediate layers of D , and (ii) a perceptual loss to penalize 

he discrepancy between the representations of G (x ) and T (x ) 

n the intermediate layers of a pre-trained backbone network. 

anetta et al. [12] report further improvements using an additional 

radient-profile loss between the gradient maps of G (x ) and T (x ) . 

.3. Image enhancement 

A related line of study pertains to the enhancement of badly 

lluminated LDR images without the use of HDR content. For ex- 

mple, Li et al. [13] propose a CNN architecture for such a low- 

ight image enhancement problem. Yan et al. [14] present a novel 

ulti-exposure fusion based visual quality enhancement pipeline. 

ie et al. [15] also propose a fusion-based approach but addition- 

lly makes use of the scene semantics. 

.3.1. Object detection with HDR content 

Despite the potential, only a few studies have focused on HDR 

bject Detection. One possible reason is the lack of a general 

urpose HDR detection dataset at a scale similar to, e.g., COCO 

16] or Pascal VOC [17] datasets, which were a significant resource 

or object detection methods. The few studies on object detec- 

ion/recognition from HDR images use either a limited number of 

one-mapped images [2] or synthetic data [18] . Mukherjee et al. 

2] , for example, collect their own dataset and test well-known 

bject detection networks on tone-mapped images. However, the 

uthors do not use HDR or tone-mapped LDR images for training 

he network but utilize a network pre-trained on LDR images and 

est the network only on tone-mapped LDR images. A more related 

tudy [19] generates an HDR dataset from LDR images and trains 

 detector on the generated HDR dataset. Then it tests the net- 

ork on real-world HDR images and measures its performance on 

he subset of the images where the dynamic range is larger. How- 

ver, the approach does not use real-world images for training the 

etwork, but only for testing. Furthermore, the subset it uses has 

 limited size and does not consider the analysis of the different 

anges of dynamic spectrum such as lower- or medium-dynamic 

ange scenes. 

.4. Comparative summary 

There are studies that use deep generative models for devel- 

ping better tone-mapping operators and studies that use HDR 

r tone-mapped LDR images for better object detection. However, 

here is no study that jointly optimizes a deep tone-mapping net- 

ork with an object detector. This is the topic that is addressed in 

his paper. 

. Methodology 

As illustrated in Fig. 2 , our approach augments a GAN-based 

one-mapping network with the supervision signal of an object de- 

ector. This is achieved by making the generator deliver images 
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Fig. 2. Overall architecture diagram for the proposed method that combines object 

detection and tone-mapping objectives. 
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Fig. 3. Overall diagram for the proposed generator architecture. 
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uch that visual similarity to a classical TMO result is enforced 

ith the help of a discriminator, whilst maximizing object detec- 

ion quality with the help of a detector. 

.1. TMO-Det 

In order to jointly optimize the object detection network and 

eep learning-based TMOs, we modify the objective in the condi- 

ional least squares GAN-based TMO framework as follows: 

 TMO-Det = L D + αdet L Det + αnon-det (L G + βL GPL + γL F M 

) , (4) 

here αdet , β and γ are the weights for the detection loss, gra- 

ient profile loss and feature matching loss, respectively. αnon-det 

ontrols the weight for all losses that are not directly related to 

etection. The individual loss terms are defined as follows: 

 Det = E x ∼p data 
[ L cls (F (G (x )) + λL loc (F (G (x )))] , (5)

 G = 

1 

2 

E x ∼p data 
[(1 − D (G (x ) | x )) 2 ] , (6)

 D = 

1 

2 

E x ∼p data 
[(D (T (x ) | x ) − 1) 2 ] + 

1 

2 

E x ∼p data 
[ D (G (x ) | x ) 2 ] , (7)

here x and T (x ) represent the HDR and ground-truth tone- 

apped LDR images, as illustrated in Fig. 2 . 

Note on αdet and αnon-det . To decouple the effect of the detec- 

ion loss on the generator and the detector, we apply αdet in the 

ackward pass between the detector and the generator, by scaling 

he gradients flowing from the detector to the generator. This way 

e prevent the detector getting unnecessarily large (or small) up- 

ates whilst providing strong influence to the generator from the 

etection objective. 

.1.1. Architecture details 

Generator ( G ) . The architecture of the proposed generator is il- 

ustrated in Fig. 3 . We use leaky ReLU as the activation function 

nd Instance Normalization for normalizing the activation values. 

dditionally, we augment the skip connections in the UNet archi- 

ecture with self-attention [20] . Each feature map in a single level 

f the network is carried across by a separate attention module, 

here attention queries Q 

(i ) for layer i are calculated from original 

mage while keys K 

(i ) and values V (i ) are calculated from interme- 

iate feature maps as follows: 

 

(i ) = A 

i 
q (I (i ) ) , 

K 

(i ) = A 

i 
k (G 

(i ) (I)) , 

 

(i ) = A 

i 
v (G 

(i ) (I)) , (8) 

here i represents the layer index for G ; A 

i 
q , A 

i 
k 
, A 

i 
v are 1 × 1 con-

olutional networks, and I (i ) is the original image downsampled to 
232 
he spatial size of the feature map in G 

(i ) . The resulting attention 

alues are calculated as follows: 

 

(i ) = A 

i 
o ( softmax (Q 

(i ) K 

(i ) � ) V 

(i ) ) , (9) 

here A 

i 
o is similarly a 1 × 1 convolutional layer to recover the 

nput channel size. At the innermost layer of the generator, we 

lso convolve the feature maps with multiple kernels with differ- 

nt sizes (Multiple Kernel Block); namely 3, 5, 7 and 9, and con- 

atenate the resulting feature maps. 

Discriminator ( D ) . The discriminator is a standard patch dis- 

riminator that has a 70 × 70 receptive field in the final layer [21] .

imilar to the generator, we use leaky ReLU as the activation func- 

ion and Instance Normalization for normalizing the activation val- 

es. 

Detector ( F ) . We use RetinaNet [4] , since it is a prominent and

asy-to-adapt one-stage detector (though, our approach can work 

ith any deep object detector). We follow the general architecture 

ith the ResNet50 backbone [22] and Feature Pyramid Networks 

23] . 

. Experiments and results 

.1. Tone-mapping operators and the compared approaches 

We have selected the following approaches for comparison: 

(i) Detection with LDR images : 

• LDR : The middle range of each HDR image, similar to Mukher- 

jee et al. [19] . This middle range has the same range with an

LDR image. 

• Std. LDR : Optimal exposure LDR image. We use the optimal ex- 

posure compression method proposed by [24] to achieve the 

best exposed LDR image from the HDR one, as if the scene is 

captured by a virtual LDR camera with an optimal exposure 

setup. 

ii) Detection with HDR images : 

• HDR : Raw HDR images. 

• HDR with Gamma : (i) We apply min-max normalization to 

each image, by subtracting its minimum value and dividing by 

its pixel range, (ii) we apply gamma encoding (correction) on 

the normalized image, and (iii) we scale the gamma-corrected 

image to the LDR range ([0,255]). 

iii) Detection with LDR images obtained by the classical tone- 

apping operators : 

• Ashikhmin : The tone-mapping method by Ashikhmin et al. 

[25] . 
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Table 1 

Tone-mapping quality results, comparing hand-crafted TMOs with ours and other 

deep-learning based approach proposed by Rana et al. [11] . TMQI-Q, TMQI-N and 

TMQI-S denote the scores for overall quality, naturalness and structural fidelity, re- 

spectively [3] . 

Method 

TMQI ↑ 
Q N S 

LDR 76.1 79.8 4.4 

Std. LDR 89.7 90.9 53.1 

Ashikhmin 88.4 88.8 47.9 

Durand 89.0 92.2 45.5 

Fattal 88.8 92.2 45.4 

Mantiuk 86.5 91.6 34.2 

Reinhard 89.6 85.9 71.5 

DeepTMO [11] 93.4 89.8 74.0 

TMO-GAN 94.5 90.7 79.9 
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• Reinhard : The tone-mapping method by Reinhard et al. [26] in 

local mode. 

• Durand : The tone-mapping method by Durand et al. [1] . The 

target contrast is set to 4. For the rest of the parameters, the 

default values in PFSTools [27] are used. 

• Mantiuk : The tone-mapping method by Mantiuk et al. [28] . The 

scaling factor is set to 0.7 and the saturation correction to 1.0, 

as used in the OpenCV implementation [29] . 

• Fattal : The tone mapping method by Fattal et al. [30] . All pa-

rameters are default parameters provided by PFSTools [27] . 

• Best TMQI per picture : For this method, we choose the tone- 

mapping operator that performs best in terms of the TMQI met- 

ric [3] . In this option, different pictures might be tone-mapped 

with different operators. 

iv) Detection with learning-based tone-mapping : 

• TMO-GAN : Our proposed architecture, without jointly training 

with an object detector. 

• TMO-Det : Our proposed architecture with the detector, which 

is jointly trained with TMO-GAN. TMO-GAN is pre-trained on 

the OOD (out-of-distribution) dataset without the detector, and 

the detector is pre-trained disjointly on the outputs of the 

trained and frozen TMO-GAN on top of the MS COCO pre- 

training. 

.2. Dataset 

For all experiments in this section, we use the OOD dataset 

2] which consists of HDR images with annotated labels for 20 

lasses from the Pascal VOC dataset [17] . We filter the dataset by 

emoving nearly identical frames from the videos and split the 

ataset such that we have 1491 training and 380 test images. Addi- 

ionally, we downsize the images into 1024 × 576 resolution before 

erforming the experiments. 

We form our ground-truth LDR images by selecting the best 

lassical TMO among the ones in Section 4.1 for each picture based 

n the TMQI (Tone-mapping Quality Index) metric [3] . 

.3. Implementation and training details 

Initialization. We initialize all RetinaNet architectures at least 

rom their COCO pre-trained versions. For joint training with TMO- 

AN, we employ different initializations for the detector and TMO- 

AN as mentioned in Section 4.1 . 

Data Augmentation. We perform the same data augmentation 

echniques for all experiments. We apply random cropping with 

 minimum of 0.3 scaling factor, so that the crop contains at 

east 1 ground truth object bounding box with a minimum of 0.3 

ntersection-over-Union with the original box. Furthermore, we ap- 

ly random horizontal flipping with a probability of 0.5. 

.3.1. Dataset tone-mapped by classical TMOs + detector (disjoint 

raining) 

For the detectors, we use Stochastic Gradient Descent (SGD) 

ith a learning rate of 0.001, which is decreased by a factor of 

0 at epoch 7. We also employ linear warm-up with ratio 0.1 at 

he beginning for 500 iterations. The networks are trained for 14 

pochs on a single GPU with a batch size of 8. 

.3.2. Dataset tone-mapped by TMO-GAN + detector (disjoint 

raining) 

We use Adam [31] with a learning rate of 0.0 0 02 for the gener-

tor and the discriminator. The networks are trained for 20 epochs 

n a single GPU with a batch size of 8. After 20 epochs, the learn-

ng rate is decayed linearly to 0 until the 50 th epoch. β is set to

.8 and γ is set to 10. The detector is trained in an identical way

o Section 4.3.1 . 
233
.3.3. Dataset tone-mapped by TMO-Det (joint training) 

We fine tune the pre-trained networks using Stochastic Gradi- 

nt Descent with a learning rate of 0.0 0 01. We use warm-up for 

he first 2 epochs. All networks are trained for 15 epochs jointly. 

he detection pipeline (generator + detector) is trained for 15 more 

pochs. Cosine scheduling is used for scheduling the learning rate. 

β is set to 0.8 whereas γ is set to 10, for both versions (with 

nd without joint training). αdet and αnon −det are set to 1 for all 

xperiments except the one in which we provide different weights 

or different objectives using αdet and αnon −det , and analyze the re- 

ults. 

.4. Evaluation measures 

Object Detection. We use the COCO-style mAP (mean Average 

recision) as our evaluation measure, as it is commonly used in 

he object detection benchmarks [16,17] . AP is effectively a mea- 

ure of the area under the precision-recall curve and is calculated 

ith a certain intersection-over-union (IoU) threshold. The COCO- 

tyle mAP [16] averages AP over 10 different IoU thresholds and 

lasses. 

To investigate scenarios where HDR or LDR might be advanta- 

eous, we also calculate AP by categorizing the objects with re- 

pect to the illumination in their bounding boxes. For this, we use 

ynamic range (DR) [32] , defined as the logarithm of the ratio of 

aximum luminance to the minimum luminance for the pixels in 

he box. AP for different DRs is denoted as follows: mAP L-DR for 

ow DR (0-5 th percentile), mAP L-M-DR for low-to-medium DR (5- 

0 th percentile), mAP M-H-DR for medium-to-high DR (50-95 th per- 

entile), and mAP H-DR for high DR (95-100 th percentile). 

Tone-mapping Quality. For evaluating tone-mapping quality, 

e use the Tone-mapping Quality Index (TMQI) as our measure 

3] , which outputs three different scores: (i) TMQI-Q, representing 

he overall quality, (ii) TMQI-N, representing the naturalness of the 

one-mapped image, and (iii) TMQI-S, representing the structural 

delity with respect to the original HDR image. 

.5. Experiment 1: TMO-GAN - TMO quality 

In Table 1 , we compare TMO-GAN with other TMO operators. 

e observe that TMO-GAN outperforms all other single TMOs in 

erms of overall quality (TMQI-Q) by a large margin. Additionally, 

t surpasses DeepTMO by a considerable margin in all metrics (Q, 

 and S). 

.6. Experiment 2: TMO-Det, joint training 

In these experiments, we jointly train our TMO-GAN with 

he detector. We perform the same experiments with RetinaNet. 
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Table 2 

Overall performance (mAP scores for detection, and TMQI for TMO quality) for the 

methods described in Section 4.1 , where the detector is chosen as RetinaNet. The 

best are shown in bold. 

TMO Joint Real mAP ↑ TMQI-Q ↑ 
HDR - - 26.3 - 

HDR with Gamma - - 29.8 - 

LDR - - 28.2 76.1 

Std. LDR - - 31.0 88.9 

Durand - - 30.6 89.0 

Reinhard - - 29.6 89.6 

Fattal - - 29.8 88.8 

Ashikhmin - - 30.1 88.4 

Mantiuk - - 31.3 ± 0.19 86.5 

TMO-GAN X - 29.9 ± 0.18 94.5 ± 0.16 

TMO-Det � � 32.1 ± 0.09 93.9 ± 0.08 

Fig. 4. Overall performance (mAP scores) for RetinaNet under different dynamic 

range intervals for the methods described in Section 4.1 . 
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Table 3 

Overall performance (mAP scores for detection, and TMQI for TMO quality, reported 

as the average of 5 runs) for different values of αdet and αnon-det , where the Reti- 

naNet is chosen as the detector. The best are shown in bold. 

TMO αdet αnon-det mAP ↑ TMQI-Q ↑ 
HDR with Gamma - - 29.8 - 

Mantiuk - - 31.3 86.5 

TMO-GAN - - 29.9 94.5 

TMO-Det 1.0 1.0 32.0 93.9 

TMO-Det 1.2 1.0 32.1 94.0 

TMO-Det 1.5 1.0 31.7 93.8 

TMO-Det 2.0 1.0 30.4 93.5 

TMO-Det 1.0 2 31.1 94.0 

TMO-Det 1.0 4 29.8 94.2 

TMO-Det 1.0 8 29.9 94.1 

Table 4 

Overall performance (mAP scores for detection, and TMQI for TMO quality) for dif- 

ferent values of λob j , where the RetinaNet is chosen as the detector. The best are 

shown in bold. 

TMO λob j mAP ↑ TMQI-Q ↑ 
HDR with Gamma - 29.8 - 

Mantiuk - 31.3 86.5 

TMO-Det 1.0 32.0 93.9 

TMO-Det 1.5 32.1 93.9 

TMO-Det 2.0 32.1 94.1 

TMO-Det 2.5 31.6 93.8 
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able 2 compares the detection performance and TMO quality 

f the proposed architecture with classical methods and disjoint 

raining. We report the average of 5 runs for best 3 methods 

n terms of object detection performance. Based on the result in 

able 2 , we observe the following: 

• TMO-Det achieves the best detection scores while preserving its 

high-quality tone-mapping in terms of TMQI compared to TMO- 

GAN. Detection performance is ∼0.8 mAP points higher than 

the best classical method (Mantiuk [28] ). 

• Training the detector with real images on top of thegenerated 

images simultaneously improves the performance. We hypoth- 

esize that this makes detector training more stable at the be- 

ginning, since the generated images have poorer quality in the 

initial phase of training. Additionally, using a pre-trained TMO- 

GAN together with the pre-trained detector can also further im- 

prove the detection performance. 

We also compare our joint training methodology to other meth- 

ds under different illumination conditions. Fig. 4 shows the detec- 

ion performance under four intervals of dynamic range. We ob- 

erve that TMO-Det performs similarly to other TMOs. Our anal- 

sis, using dynamic range, brings out differences amongst meth- 

ds in adverse conditions: In areas with lowest dynamic range (as 

er our definition in Section 4.4 ), the methods seem to differ the 

ost. In particular, HDR without normalization and gamma correc- 

ion performs worse in low dynamic range areas. 

.7. Experiment 3: The effect of αdet and αnon-det 

In these experiments, we try a range of values for the weights 

pplied on the two different objectives in Eq. 4 . We choose Reti- 

aNet as the detector and train it with synthetic (fake) and real 

mages together. We also equip TMO-GAN with all additional fea- 
234 
ures: hard-tanh, attention, and skip-image, and jointly train the 

verall architecture similar to Experiment 2. 

The results are listed in Table 3 . We observe that increasing the 

nfluence of the detector on the generator (i.e., higher αdet ) pro- 

ides slight improvements. Furthermore, increasing the influence 

f the discriminator-related objectives ( Eq. 4 ) via αnon-det slightly 

mproves the TMO quality but significantly deteriorates object- 

etection performance. Finally, when the discriminator-related ob- 

ectives are decreased below 0.8, the networks diverge. 

.8. Experiment 4: Object-aware patch discriminator 

In this step, we propose applying different weights for the dis- 

riminator feedback for locations with objects and without objects. 

s our primary goal is to detect objects, using this approach, we 

im to penalize the generator to produce better images in loca- 

ions that contain objects. We produce binary masks such that a 

ask pixel is set to 1 if the image pixel belongs to an object or

 otherwise. Then, we resize this mask to the output of the patch 

iscriminator by using nearest neighbor interpolation. Finally, we 

se the mask to apply increased weights to the locations that con- 

ain objects as follows: 

 G = 

∑ 

i, j 

[
λob j M i, j D (I) i, j + (1 − M i, j ) D (I) i, j 

]

∑ 

i, j 

[
λob j M i, j + 1 − M i, j 

] , (10) 

here M is the resized binary mask; and D is the discriminator; 

nd I is the input image. i and j are the coordinates of the discrim- 

nator output. λob j designates the weight applied to the locations 

hat contain objects. For the experiments, we use the same settings 

s in Experiment 2 for combining TMO-GAN and RetinaNet. 

As shown in Table 4 , we find that setting λob j = 2 gives the

ighest detection score, slightly improving over the default set- 

ings. However, we observe that higher values of λob j do not im- 

rove the performance further. 
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Table 5 

Performance of the TMO-GAN and TMO-Det with and without discriminator. 

TMO Disc.? Det.? mAP ↑ TMQI-Q ↑ 
TMO-GAN � X 29.9 94.5 

TMO-GAN X � 28.2 87.3 

TMO-Det � � 32.1 93.9 
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.9. Experiment 5: HDR vs. TMO-GAN without the discriminator 

With joint training, we effectively use a larger network (Gener- 

tor + Detector) to detect objects. Here, we design an experiment 

here we can see how much TMO-GAN + detector (joint training) 

mproves the detection performance on HDR images over just us- 

ng a larger network. To achieve this goal, we remove the discrimi- 

ator from the architecture and use only the detection loss (equiv- 

lent to setting αnon-det to zero). As we can see from Table 5 , the

aseline network without the discriminator can improve over HDR 

 Table 2 ). However, it falls behind our joint method, which shows 

he additional improvement provided by joint training (TMO-Det). 

his result is also in agreement with the results in Experiment 3 

here the decrease αnon-det also affects the performance. 

.10. Experiment 6: Detection performance vs. TMO quality 

In this experiment, we aim to examine the relation between the 

etection performance (mAP) and TMO quality metrics (TMQI-Q). 

o this end, we plot the mAP scores against the TMO quality met- 

ic in Fig. 1 , for different methods. As can be seen in the figure,

ur architectures (TMO-GAN and TMO-Det) achieve the top TMQI- 

 scores. 

. Conclusion 

In this work, we try to improve a GAN-based tone-mapping op- 

rator (TMO-GAN) by introducing a detection network into the 2- 

layer adversarial game. In our approach, called TMO-Det, we su- 

ervise the generator with the help of an object detection net- 

ork in addition to the discriminator. We compare the perfor- 

ance of TMO-Det against classical TMOs in terms of image qual- 

ty and detection performance. We showed that, by jointly training 

he detection and tone-mapping objectives, we are able to improve 

etection performance (although the difference between the sec- 

nd best is not very significant) whilst maintaining a good tone- 

apping quality in terms of the selected measure [3] . This is sig- 

ificantly better than the classical TMOs. 

Although our approach is promising, it has certain limitations, 

hich can provide opportunities for further research. One issue is 

hat it contains multiple sub-networks (i.e., a generator, a discrimi- 

ator, and a detector) for jointly optimizing tone-mapping and de- 

ection qualities. This can incur more GPU memory and time com- 

ared to a stand-alone object detector or a stand-alone deep TMO 

etwork. Future work can mitigate this limitation by employing 

ore resource efficient and faster layers in these sub-networks. 

oreover, our network has many different objectives (tasks), which 

equires carefully tuning many hyper-parameters to obtain good 

esults. Despite the significant gains we have obtained, we believe 

hat there is potential for even further improvements with multi- 

ask learning approaches. 
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