Available online at www.sciencedirect.com

* ScienceDirect

Journal of

Parallel and
Distributed
Computing

J. Parallel Distrib. Comput. 67 (2007) 1201-1217

www.elsevier.com/locate/jpdc

Accelerated regular grid traversals using extended anisotropic chessboard
distance fields on a parallel stream processor

Alphan Es?, Veysi Isler?*

ATUBITAK UZAY, METU, Turkey
bDepartment of Computer Engineering, METU, Turkey

Received 17 November 2005; received in revised form 28 February 2007; accepted 22 June 2007
Available online 19 July 2007

Abstract

Modern graphics processing units (GPUs) are an implementation of parallel stream processors. In recent years, there have been a few studies
on mapping ray tracing to the GPU. Since graphics processors are not designed to process complex data structures, it is crucial to explore data
structures and algorithms for efficient stream processing. In particular ray traversal is one of the major bottlenecks in ray tracing and direct
volume rendering methods. In this work we focus on the efficient regular grid based ray traversals on GPU. A new empty space skipping traversal
method is introduced. Our method extends the anisotropic chessboard distance structure and employs a GPU friendly traversal algorithm with
minimal dynamic branching. Additionally, several previous techniques have been redesigned and adapted to the stream processing model. We
experimentally show that our traversal method is considerably faster and better suited to the parallel stream processing than the other grid

based techniques.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Parallel stream processing; Distance fields; Ray tracing; Parallel rendering; Ray traversal

1. Introduction

Ray tracing is a well known photo realistic image synthesis
method [3,43]. It can accurately simulate reflections, refrac-
tions, shadows and other various light phenomena by tracing
ray trajectories, thus can generate high quality images of vir-
tual environments. Fast synthesis of realistic images has broad
range of application areas including virtual and mixed real-
ity, visual simulations, entertainment, etc. On the other hand,
ray tracing is computationally very expensive, and thus consid-
ered as an off-line rendering method till recently. Lately, with
the advent of more capable hardware, interactive ray tracing
research gained more popularity. Moreover, ray tracing is ex-
pected to be a viable alternative to raster based graphics render-
ing [18]. Some of the recent works focused on accelerating ray
tracing algorithmically [32,40], while some others are centered

* Corresponding author.
E-mail addresses: alphan.es@uzay.tubitak.gov.tr (A. Es),
isler@ceng.metu.edu.tr (V. Isler).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.06.011

upon specialized ray tracing processors [33,34,44]. Utilizing
graphics processors of the commodity graphic cards for ray
tracing is another research area drawing increasing amount of
attention. Originally, graphics processors are meant to rasterize
and shade simple primitives such as triangles or lines. However,
over the last decade graphics processors improved not only in
terms of speed but also in terms of flexibility and programma-
bility. Today’s graphics processors are considered as an imple-
mentation of streaming parallel processors. Huge processing
power and steep acceleration rate in speed led many researchers
to develop graphics processing unit (GPU) specific solutions
to known problems. Many graphics and non-graphics related
problems were successfully mapped to the GPU programming
model [13]. Among these, GPU based ray tracing acceleration
is relatively new. Carr et al. [5], Purcell [30] and Purcell et al.
[31] show how to use GPU for ray tracing computations. Karls-
son et al. [20] have implemented a ray tracer that runs fully
on GPU utilizing empty space skipping data structures, while
Weiskopf et al. [42] have developed a GPU based non-linear
ray tracer. Foley et al. [10] implemented kD tree acceleration
structure on GPU for ray tracing. More recently bounding

http://www.elsevier.com/locate/jpdc
mailto:alphan.es@uzay.tubitak.gov.tr
mailto:isler@ceng.metu.edu.tr

1202 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 12011217

volume hierarchy (BVH) based methods were successfully used
for ray tracing on GPU [6,38].

Ray traversal is one of the most time consuming parts
in ray tracing [19] and direct volume rendering methods
[21]. Many acceleration structures have been proposed in the
past. Havran explains and compares many of these traversal
techniques in detail [16]. Because GPUs are parallel stream
processors they favor simple localized data access, exploit-
ing instruction level parallelism and arithmetically intensive
kernels for maximum efficiency [28,29]. GPU friendly data
structures and algorithms should conform to the stream pro-
cessing model for efficient processing. Three-dimensional
regular grid based methods are ideal for hardware stream pro-
cessing, as they can be represented and accessed efficiently
using texturing facilities of the GPU. Consequently, in this
work we have chosen regular 3D grid based methods because
they can be represented naturally using 3D textures. Moreover
traversal algorithms running on them are relatively simple and
can be made fit into the GPU programming model with some
modifications. Some of the fastest known grid based traver-
sal algorithms use distance transformations to accelerate ray
traversals [7,36,45]. A number of these techniques are devel-
oped for ray casting based direct volume rendering. Essentially,
distance based methods utilize distance fields calculated dur-
ing preprocessing stage. Distances to the nearest objects are
stored in the distance field. Distances are calculated by using
a metric such as Euclidian, city block or chessboard distance.
Distance based algorithms accelerate traversals by skipping
empty macro regions with the information encoded in distance
fields. It is worth mentioning here that there are some works
not relying on distance fields yet can skip macro regions [8].

In this work we have focused on accelerating ray traversals
using regular grids and distance based techniques. The system
completely runs on the GPU and uses GPU friendly data struc-
tures and algorithms.

There are three main contributions of this paper. The first con-
tribution is the introduction of a new chessboard distance met-
ric based traversal algorithm. We have extended Sramek et al.’s
data structure [36] and devised a GPU based minimum branch-
ing traversal algorithm, which we call as extended anisotropic
chessboard distance (EACD) traversal. The second contribution
is the redesign of the previous grid based traversal algorithms.
We show how the traversals can be mapped to GPU program-
ming model efficiently. The methods presented also suit well to
the streaming SIMD model of the modern CPUs. As the third
contribution; this work is the first attempt to make efficient im-
plementations and comparisons between the GPU specific ver-
sions of the regular grid based traversal techniques.

Three of the previously known traversal methods have been
adapted to GPU. These methods include Amanatides and Woo’s
[2] digital differential analyzer (DDA) based ray traverser, Co-
hen and Sheffer’s [7] proximity clouds (PC) and Sramek and
Kaufman’s [36] anisotropic chessboard distance (ACD) based
ray traverser. We choose these techniques because firstly all of
them work on grids. Secondly, they cover both empty space
skipping and non-empty space skipping traversals. In DDA
based traversal methods, grid is traversed in a face connected

cell incremental fashion. That is one of the neighboring cells is
chosen for the next traversal step. Distance field methods (PC,
ACD) on the other hand, skip range of empty cells in big steps.
This way, a more inclusive comparison between our method
and the previous works is made possible.

In particular Amanatides and Woo’s traversal algorithm [2] is
avariant of 3D-DDA. It is simpler and requires fewer operations
than Fujimoto et al.’s original 3D-DDA traverser [11]. It does
not perform empty space skipping. On the other hand we show
that it can be implemented on GPU very efficiently using SIMD
operations and without data dependent branching inside the
traversal loop.

Cohen and Sheffer’s [7] proximity clouds utilize 3D distance
fields, which can be represented with 3D textures. The traver-
sal algorithm is not complex. The simplicity of data structure
and the traversal algorithm make it a good candidate for stream
processing. Non-synthetically generated scenes generally con-
tain empty spaces between the objects. Proximity clouds can
skip empty regions in big steps to accelerate traversals. In or-
der not to miss any possible intersections, it switches to face
connected cell incremental stepping mode, when a ray is in
close proximity to an object. The switching requirement is one
of the biggest drawbacks of this method when adapted to GPU
since it implies data dependent branching. It is possible to use
different distance metrics in proximity clouds such as chess-
board, city-block or Euclidian. We have used city-block metric
since the distance fields can be created quickly and it results
in longer traversal steps. Refer to Cohen and Sheffer [7] for a
discussion of using different distance metrics.

Sramek et al.’s [36] method, anisotropic chessboard distance
traversal, is based on chessboard distance metric. Their algo-
rithm is better than proximity clouds in some aspects, such that
switching to face connected incremental cell stepping mode is
not required and a ray can skip the whole empty region which
it resides in. The original implementation can handle not only
regular and Cartesian grids but also rectilinear grids. In our
work, we have developed a different and GPU friendly traver-
sal algorithm utilizing ACD grids.

The rest of the paper is organized as follows. In the following
section, implementation of parallel stream processing on GPUs
and the overview of our GPU based ray tracer is given. In
the third section, you can find efficient GPU based redesign
and implementation of the previous algorithms. Last part of
the third section and the fourth section gives the details of our
GPU based minimal branching chessboard distance traversal
algorithm and the underlying data structures. The test results are
presented and discussed in the fifth section. Finally, conclusion
and future work is given in the last section.

2. GPU ray tracer

Before giving details of our ray tracer, it is useful to explain
how parallel stream processing is mapped to the GPU render-
ing pipeline. Stream can be described as an ordered set of data.
Streams are processed by functions called as kernels, generally
by executing a series of instructions for each element in se-
quence. Kernels accept a number of input streams and generate

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

1203

a
INPUT STREAM OUTPUT STREAM
. KERNEL .
INPUT STREAM OUTPUT STREAM
" v Vertex Geometry
Program Program

v

Rasterization

— g —

/

Fragment

early fragment culling

Program

Fig. 1. (a) Stream processing structures (b) stream processing in the graphics pipeline. Vertex, fragment and geometry programs are the kernels run by the

programmable processors on the GPU.

one or more output streams (Fig. 1a). A number of kernels can
be chained to accomplish complex operations. Stream process-
ing favors arithmetic intensity, high compute-to-bandwidth ra-
tio, data locality, little global data access and parallelism [25].
Especially media and graphics applications are good candidates
for efficient stream processing.

Fig. 1b depicts the simplified rendering pipeline of the mod-
ern graphics processors. In case of GPU, input stream elements
may consist of vertex attributes (position, normal, color, etc.),
texture elements (i.e. texels), fragments (pixel candidates) and
the output is the stream of fragments. Most modern GPUs have
two programmable sections along the pipeline, called vertex
and fragment processors. As of today, the latest generation of
GPUs has also geometry processors located after the vertex
processors in the pipeline. These processors execute vertex,
geometry and fragment programs (kernels). Vertex programs
typically transform vertex information and send the processed
vertices thru the pipeline, while geometry processors operate
on geometric primitives such as lines or triangles. Along the
pipeline the geometry is converted to fragment stream by raster-
ization. Majority of modern GPUs allow early fragment culling
that is based on the outcome of stencil or depth tests. Utiliz-
ing early fragment culling is advantageous because it facili-
tates killing fragments before reaching the fragment processor
and thus saves processing power. On the other hand there are
some GPU specific rules to make early fragment culling work.
Later on, fragment programs operate on the rasterized fragment
stream and send the processed fragments to the raster opera-
tions units for final composition. All programmable processors
within the pipeline support instruction level parallelism. More-
over there are numerous vertex, geometry and fragment proces-
sors running in parallel. The latest generation of GPUs such as
NVidia’s GeForce 8 series, have many unified processing units
which are allocated for vertex, geometry or pixel processing on
demand [12].

Note that programmability of vertex, geometry and fragment
processors facilitates employing GPUs not only for graphics op-
erations but also for non-graphics related problems. Therefore,
GPUs are considered as general purpose parallel stream pro-
cessors. A graphics API such as OpenGL or DirectX is required
to program GPUs [23,35]. Since these APIs are tailored for
graphics programming, they incur some performance penalty
on implementations related to general purpose computation.
Moreover, these APIs make general purpose GPU programming
unintuitive and difficult. In order to alleviate such problems
new technologies are being developed providing more direct
access to GPU [1,26].

2.1. System overview

We implemented a Whitted style [43] ray tracer with full
shadow, reflection and refraction effects in order to compare
the traversal methods studied in this work. In Whitted style ray
tracing, eye rays are generated and traced. Upon a surface hit,
shadow rays for each light and reflection/refraction rays are
generated depending on material properties of the surface. Basic
constructs of our ray tracer are similar to Purcell et al.’s work
[31]. Differently, we utilize depth buffer for early fragment
culling and use a secondary grid as the acceleration structure.
Data layout and buffer semantics are designed in such a way
that memory I/O is minimized and more work is done per byte
read or written. Where required, data packing is used to save
bandwidth. The implementation of the system is done with
OpenGL and Cg [22].

Triangle meshes are used for scene description. The scene
database is stored in 2D textures. The database consists of
vertex coordinates and normals, connectivity information
and shader parameters. Two indices (2D texture space co-
ordinates) are used for indexing triangles in the database.

1204 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

Two-dimensional indexing makes sense and allows us to ad-
dress data directly without index to texture coordinate conver-
sions.

The grids are stored as 3D textures. We refer to the grid
that keeps the scene partitioning information as the partition
grid. Partition grid texture has 2-component 16-bit color format
which points to a triangle list. If a voxel of the grid is empty
(no triangles inside), it’s value which is used for indexing to
the triangle list is set to (—1, —1). Triangle lists further point
to triangle indices. Finally, triangle vertices are accessed using
the triangle indices. Aside from the partition grid, another grid
called as the acceleration grid is utilized for the traversals. Ac-
celeration grids have lower component resolution (maximum
8 bits/color channel) to reduce the memory and bandwidth re-
quirements.

An off-screen rendering context (PBuffer) with six render
buffers and a depth buffer is used during execution of the ker-
nels. Four-component 32-bit floating point color format is used
for the render buffers. The system relies on early z-culling by
means of depth bounds testing for computational masking. In
the course of tracing, rays are given states and specific ker-
nels operate only on the rays of a given specific state. Possible
states for the rays are creating, traversing, intersecting, inter-
sected or shaded and out. Ray state values are kept in the depth
buffer for efficient masking by means of early depth testing
(early fragment culling). In the GPU we used, it is required
to create and modify depth buffer with LESS, or GREATER
depth test function in order to benefit from early masking. Test
direction should not be changed for the subsequent rendering
passes. Otherwise, depth buffer optimization breaks down and
early fragment culling does not work.

As depicted in Fig. 2, the system consists of five main ker-
nels with a couple of smaller kernels for ray counting, inter-
section position/normal calculation, and depth mask modifica-
tion. Additionally, there is a kernel to fire shadow rays which
is very similar to the eye ray generator kernel. A single run of
the traversal kernel followed by the intersection kernel is called
as a trace step.

Prior to the rendering, ray states are initialized by setting
depth buffer to 1 (creating state) and depth test function is
set to LESS. Therefore, to be able to write new ray states,
monotonically decreasing values are assigned to the traversing
and intersecting states in each trace step. Only the rays with the
greatest state value are processed by the next kernel. For the
trace step n, where n > 0, the state value of ray R is calculated
as below

1 if R is being created,
0.9-20n if R is traversing,

statevalue (n)={ 0.9—20n—0o if R is intersecting,
0.1 if R is intersected or shaded,
0 if R isout.

For 6, we use 0.0001 which is sufficiently small to gener-
ate enough unique decreasing values for the traversing and in-
tersecting states. After a main kernel, another kernel is run to
write the new state values to the depth buffer, according to the
output of the previous kernel.

a b -~
Ray Generator ,-"/ - \‘.‘ cligﬂted ’:/ \\.‘
| crealing |jm—————s out |
‘ "/
— Traverser ‘out of scene

R

Intersector

non-empty 4 .

Y
voxel | intersecting

Shader/Accumulator e _____Nointersection]
b - 'y Triangle hit
i) ‘/,4 2 '\\\ /,,-" '\\

7/ ‘\ / \
{ \ shade / \
— Ray reflector | shaded { intersected |
I‘. \\j

Fig. 2. (a) Flow of main kernels and (b) ray state transition diagram. Ray
states are written to depth buffer between the main kernels for computation
masking. Dashed region in (b) constitutes the trace step.

-

~

Fig. 3 shows detailed input/output streams of the main ker-
nels. As seen in the figure, ray generator kernel creates eye
ray origins and directions as two output streams. Eye rays are
clipped against the bounding box of the scene. Since our tra-
verser kernels require voxel indices for some computations,
rays hitting the bounding box are transformed from the world
space to the grid space (with unit voxel dimensions). This way,
the integer part of the coordinates directly gives the current
voxel index. Transformed rays are stored in a different buffer.
Grid space rays are used by the traverser kernels. On the other
hand, the intersector kernel uses the world space rays since the
scene database is stored in world coordinates. After eye rays
are generated, depth is set to the out state for out-of-scene rays
and to the traversing state for remaining rays.

The second kernel, which is the main focus of this work, is the
traverser. Traversal algorithms are implemented by the traverser
kernels. Dynamic loop statements are used inside the intersector
and traversal kernels. Traversal loops are repeated until a non-
empty voxel is found or the ray gets out of the scene. There are
two variants of traverser kernels. One of them is executed in the
first trace step, while the other one is called in the subsequent
trace steps. The only difference between the two is that the first
one begins with checking if the ray starts in an empty voxel
and loops until a non-empty voxel is found. The other kernel
steps a single voxel first and then loops until a non-empty
voxel is found. The output of the traverser kernel is used by the
intersector kernel or again by the traverser kernel in the next
trace step. Output values are slightly different for each traversal
method. As is common to all kernels, the index of the current
voxel and parametric distance value to the voxel boundary (used
during intersection tests) is written to the output stream. When
the traverser kernel is done, depth buffer is modified so that
the rays in non-empty voxels are set to the intersecting state,
while the remaining rays are set to the out state. Then the rays
in the infersecting state are counted. If the count is zero the
shader kernel is called, otherwise the execution continues with
the intersector kernel.

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

ray origin

ray origin ‘
ray origin ray direction ‘
ray direction intersection normals ‘

traverse status

intersection positions ‘

shading parameters

ray direction

ray direction |
traverse status |

acceleration grid |

partition grid ‘
friangle indices

triangle vertices

shading parameters J

triangle info intersection positions

4

shadow status intersection normal

Ry Traverser Intersector Shader/ Ray
Generator Accumulator Reflector |
\ / N : / - y N » - - — -
ray origin | traverse status i intersection status shaded image ‘ ray origin ‘
ray direction ray direction ‘

Fig. 3. Input/output streams of the main kernels: (a) ray generator, (b) traverser, (c) intersector, (d) shader/accumulator and (e) ray reflector.

The third kernel is the intersector kernel, which is employed
to perform ray-triangle intersection tests for the rays in inter-
secting state. The intersector reads traverser outputs and ac-
cesses the voxel triangles from the scene database. Moller and
Trumbore’s ray-triangle intersection algorithm is used for inter-
section testing [24]. The output of the kernel is the barycentric
coordinates of the intersection point if there is a hit. Otherwise,
no output is created. The depth value is set to intersected state
for intersected rays, or traversing state for the other rays. Note
that the state value of the fraversing state is calculated by incre-
menting the trace step count by one, so that the traverser kernel
in the next step can process them. The execution continues with
the traverser kernel if there are still some non-intersected rays.

The fourth main kernel is the shader/accumulator kernel,
which performs shading calculations for the intersected rays.
Shader kernel is executed once for each light source and the re-
sulting color values are combined with the intermediate shading
results of previous passes. Prior to the shader kernel, intersec-
tion positions and normals are calculated by using the results
of the intersector kernel. A simple Phong shader is used for the
rendering, although it is possible to implement more complex
shaders. If shadowing is enabled, some extra steps are necessary
before executing the shader kernel in order to determine shad-
owed pixels. These extra steps constitute what we call as the
shadow pass. In shadow pass, secondary rays are fired (shadow
rays) from the intersection positions towards the light position.
The shadow rays are traversed to test if there is an intersection
along the path. If an intersection is found, the point in consid-
eration is not visible to the light and thus marked as shadowed
(tagged as intersected). Shadow pass is nearly identical to
casting of eye rays. Almost the same traversal and intersector
kernels with minimal modifications aimed for performance
optimizations are used for shadow pass. Ultimately, before ex-
ecuting the shader kernel all buffers keeping information about
the rays and intersection results are saved to offline buffers.
Afterwards shadow pass is realized for each light source.

At the end of the shadow pass, the pixels tagged as intersected
state are said to be in shadow with respect to the current light
source. Shader kernel gets the shadow results along with other
parameters and illuminates pixels accordingly.

The kernels described up to this point are enough to realize
a basic ray caster with shadowing. A basic ray caster considers
eye rays only. On the other hand, it is possible to extend the
system to perform full ray tracing. In full ray tracing, new rays
for reflection and refraction are generated at the intersection
points and traced recursively. However, GPU hardware does not
support recursion. In order to facilitate ray tracing, recursion
is simulated by a buffer stack class. The buffer stack operates
on a whole draw buffer instead of simple data types and has
a typical stack interface. It stores the buffer contents in tex-
tures. Buffers keeping the current ray states and the intersec-
tion results are pushed into stacks before starting a new reflec-
tion or refraction pass. When the pass is finished, old buffers
are popped from the stacks. Thus, the recursion is simulated in
buffer level instead of ray (fragment) level. Ray reflector kernel
is used to fire reflection or refraction rays. The kernel calcu-
lates the reflection or refraction directions and generates new
rays from the current intersection points towards the calculated
directions. Similar to the ray generator kernel, new rays are
tagged as traversing state. As stated before, prior to the reflec-
tor kernel, current contents of the buffers are pushed into buffer
stacks. Afterwards, reflection (or refraction) pass takes place.
At this point, as shown in Fig. 2a, tracing is continued from the
traverser kernel using the reflection (or refraction) rays instead
of the eye rays. The recursion continues until a user defined
recursion depth is reached.

3. Traverser kernels
During the implementation of the traversal algorithms we

tried to improve instruction level parallelism, minimize re-
quired intermediate states, minimize data dependent branching

1206 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

and provide balance between the memory and arithmetic oper-
ations. Firstly, efficient GPU implementations of the previous
DDA and PC traversal algorithms will be presented. Next, GPU
based minimal branching ACD and EACD traversal algorithms
and related data structures will be introduced.

3.1. DDA traversal

DDA performs face connected cell incremental stepping and
does not benefit from empty space skipping. The original algo-
rithm requires two floating point comparisons and one floating
point addition at each step. Although it is possible to port the al-
gorithm directly to the GPU, this results in under utilization of
GPU. Operations are scalar and data dependent flow control is
used heavily to avoid floating point arithmetic. CPUs are fairly
optimized for efficient flow control and branching, on the other
hand they are relatively weak on intense floating point arith-
metic compared to GPUs. We have redesigned the algorithm
to use vector operations as much as possible. We also removed
the data dependent flow control from the loop body.

In the original algorithm there are several comparison in-
structions to determine the step direction. Consequently, there
are four main code paths in the loop body. Moreover in each
path, ray is tested if it is inside the grid boundaries or not. In or-
der to eliminate flow control, vectorized conditional set instruc-
tions are used. Because most GPUs are based on SIMD archi-
tecture, making the comparisons in a single vector instruction
instead of several scalar instructions separated with different
control paths will result in more efficient operation. Moreover,
the ray-box containment tests are postponed and unified with
the loop control statement. To achieve this, border color of the
acceleration grid texture is set to a specific out value and tex-
ture wrap mode is set to CLAMP_TO_BORDER. Hence, if an
out-of-grid voxel is sampled, the sampler returns with the out
value. Mono 8-bit color format is sufficient for the acceleration
grid. We assign 1 for non-empty voxels and O for empty vox-
els. Border color (e.g., out value) is set to 0.5. As a result, box
containment tests are eliminated and traversal loop continues
until the voxel value is non-zero.

Parametric ray equations are used during the traversals.
Throughout the context, vectors are shown in uppercase, while
vector components and scalars are given in lowercase. A point
on a ray R can be calculated as: R(t) = O + Dt, where O is
the origin, D is the direction vector and ¢ >0 is the parameter
of the ray. The Cg code of the traversal loop is given in Fig.
4. Some variables should be initialized prior to the loop in the
setup phase. Among these, voxelIdx is the current voxel
the ray is in. cel1lStep is a 3-vector denoting the increment
to the next voxel in major axis directions, which is calculated
as sgn(D), where sgn is the signum function. tStep is the
vector of signed parametric distances required to cross a whole
voxel, which is calculated as sgn(D)/D. invGridSize is
the reciprocal vector of the grid dimensions. It is used to
convert integer voxel indices into [0,1] ranged texture co-
ordinates. Finally, texAccelGrid is the acceleration grid
texture. Note that 1/D may produce floating point specials
(£infinity), which can cause NAN (not-a-number) results in the

// while voxel is empty & inside the grid
while (voxel == 0)

{

// find minimum parameter distance
tmin = min(t.x, min(t.y,t.z));

// determine the step direction
incr.xyz = (t.xyz == tmin.xxx);

// advance
t.xyz += tStep*incr;
voxelIdx.xyz += cellStep *incr;

// read next voxel
voxel = tex3D(texAccelGrid, voxelIdx*invGridSize) .a;

Fig. 4. DDA traversal loop.

subsequent operations [25]. To prevent errors 1/D is clamped
to [-I', +1I'] range, where I' is a sufficiently big number.

3.2. Proximity clouds traversal

In the original algorithm distance information is stored in the
background (e.g., empty) voxels. Instead, we keep distance val-
ues in the acceleration grid. Acceleration grid has 2-component
(luminance-alpha) 8-bit texture format, capable of representing
the maximum distance value of 255. Distances are measured
using city block metric. Luminance component is set to the
distance value, while alpha keeps the voxel status (empty or
non-empty). Similarly to the DDA traversal, alpha component
is set to O for empty and 1 for non-empty voxels, while alpha
of the border color is set to 0.5. Because distances are calcu-
lated from the voxel centers, rays may miss non-empty voxels
if they advance as much as the distance value. Distance val-
ues are subtracted by 1 and stored as subtracted to prevent this
situation.

PC traversal requires switching between DDA and space
skipping. In the original algorithm traversal in skip mode con-
tinues in a loop until a ray is close to a non-empty voxel. Then
face connected traversal continues until the ray is no longer
in vicinity of a non-empty voxel. In this case two inner loops
within a bigger loop are required. We found that replacing in-
ner loops with an if statement is more efficient as it requires
less flow control. In each step the distance value is checked:
If it is O, DDA steps are taken otherwise PC stepping is per-
formed. You can see our GPU implementation of PC traversal
in Fig. 5. In the figure, invD is reciprocal of ray direction D.
invGridSize, cellStep and tStep are the same as in
DDA. tStart is the initial parametric distance to voxel bor-
ders from the origin. Calculation of t Start is explained in the
next section. Lastly C is the distance function constant as stated
in Cohen and Sheffer [7]. Note that since the texture sampler
normalizes the color values into [0, 1] range, it is required to
scale and round samples to recover the integer values, which
unfortunately results in a performance hit.

3.3. Anisotropic chessboard distance traversal

Sramek and Kaufmann [36] use chessboard metric for the
distance computations. Their chessboard distance traversal
method has a couple of advantages over the proximity clouds:

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217 1207

// while voxel is empty & inside the grid
while (voxel.a ==)

{

// If close to non-empty voxels, then DDA stepping
if (voxel.r == 0)

{

// same as DDA

tmin = min(t.x, min(t.y,t.z));
incr.xyz = (t.xyz == tmin.xxx);
t.xyz += tStep*incr;
voxelIdx.xyz += cellStep*incr;

// update ray position
pos.xyz = O+t*D;

}

else { // otherwise PC stepping

// convert distance to integer
dist = round(voxel.r * 255);

// advance
pos.xyz += C*dist;
voxellIdx.xyz = floor (pos) ;

// update ray parameter
t.xyz = tStart + cell*invD;

}

// read next voxel
voxel = tex3D(texAccelGrid, voxelldx*invGridSize) ;

Fig. 5. PC traversal loop.

Firstly, switching between the stepping modes is not neces-
sary. Secondly, empty space in a region can be skipped to the
full extent, thus it is not necessary to subtract distance values
by one. Their algorithm can also work on rectilinear grids
with some additional costs. They observed that in distance
based traversals, ray steps get shorter as the ray gets closer to
the objects, and many small steps are taken until the ray gets
far away from the close vicinity. To alleviate this problem,
they propose using anisotropic empty regions depending on
the ray directions. Rays are classified by the component sign
of their directions (+x, *y, £z) giving 8 direction octants.
Thus in ACD, instead of a single symmetric distance, 8§ empty
region distances are computed and the appropriate value to be
used is determined by the component signs of the ray direc-
tion. Anisotropic distance calculation requires applying small
masks over the grid in 8 passes (one pass for each direction
octant). Note that although these 8 macro regions around a
voxel form an anisotropic shape, each octant defines a cubic
region individually in the grid space (assuming unit voxel
dimensions).

The original algorithm divides a traversal step into slave steps
and a master step, and uses data dependent branching to choose
appropriate steps to minimize arithmetic operations. Although
this approach may be good for CPUs it decreases the intensity
of arithmetic operations, increases flow controls and ultimately
results in poor GPU utilization.

3.3.1. Minimum branching ACD traversal algorithm

In this part, we will introduce our GPU based traversal algo-
rithm for anisotropic chessboard distance transformation grids.
In essence, the traversal algorithm is similar to the DDA. For

the sake of simplicity and conciseness, the algorithm will be
explained in 2D without loss of generality. It is straightforward
to extend the operations into 3D.

The acceleration grid G has dimensions w x h € ZT. A
voxel V € G is identified by the indices i, j where i, j €
Z and 0<i < w, 0<j < h. V stores the chessboard dis-
tance to the nearest full voxel. So V (i, j) = A = (dy, 6y). If
0,= 0, distances along x and y directions are equal. The para-
metric equation of a ray R can be decomposed into x and y
components as

re(t) = ox +dxt,
and
ry(t) = oy +dyt.

We traverse macro regions in a face connected fashion.
Therefore it is required to determine the set of lines (planes)
for the region that the ray is possibly intersecting. Intersection
lines depend on the ray direction as depicted in Fig. 6. The
corner voxel inside the region which is adjacent to both inter-
section lines is called the apex voxel. Given a voxel V; ; and a
direction D, the intersection line set L is defined as

L@, j)={x=L(),y=Ly()}, (1)
where
Ly (i) =i + sat(sgn(dy)),
Ly(j) = j + sat(sgn(dy)),

where sat (saturate) function clamps values to [0,1] range. Note
that since sat can be applied as an instruction modifier on the
GPU, it can be executed without performance penalty. If the ray
is currently in voxel V; ; and the distance vector is A, the indices
of the apex voxel i, j, for the macro region are calculated as

(ias ja) = sgn(D)(A — (1, D)) + G,). 2

Substituting Eq. (2) into Eq. (1), we get the intersection line
equations for the region

x = Ly(ia) = i + 5gn(d) (3, — 1) + sar(sgn(dy)).
Y = Ly(ja) = j + sgn(dy) 3y — 1) + sar(sgn(dy)).

The parametric distances to the intersection points on the
intersection lines are

L(i,j)— 0O
(Txs ty) = %7
[i+ sgn(dy)(6y — 1)d+ sat(sgn(dy)) — ox’ 3)

it sgn(dy)(8y — 1) + sat(sgn(dy)) — oy
y = '
) dy

The parametric distance fy;, for ray’s next position

Imin = min(t)n ty)~

1208 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

N L

I:‘ Apex voxel = |Intersection lines

N

Fig. 6. Apex voxels and the intersection lines of a rectangular region depend
on the ray direction.

Then next position of the ray can be calculated as

P = R(tmin) = € + O + Diyin,
e = sgn(D) % 0.0001. @

And the voxel indices for the new position are

(@) = (Ll LpyD-

Unfortunately, current GPUs have questionable arithmetic
precision [17]. Therefore we found that adding & to position
is required to avoid floating point round-off problems. Other-
wise ray may get stuck and never advance to the next voxel
due to the precision errors. On the other hand using ¢ may re-
sult in skipping some non-empty voxels when a ray traverses
very close to voxel corners. In order to ensure that no triangles
are skipped in the intersection tests, we use slightly expanded
(£107%) voxel borders for triangle-box containment tests dur-
ing scene partitioning.

Some of the operations in above equations can be taken out
of the loop body and done in the traversal setup. In order to
avoid decrementing J,, d, by 1 each time during the traversal,
we store them pre-subtracted in the acceleration grid. The Eq.
(3) can be rewritten as:

T = Tyare + TA,

sat(sgn(dy)) — ox sat(sgn(dy)) — oy
Tstart = d s d s
x y

i Ja
Th=|—,—], 5
A (dx dy) (5)

where the apex voxel indices (i,, j,) are (assuming distance
values are pre-subtracted)

(i, Ja) = (i + sgn(dy)(0x), j + sgn(dy)(dy)) (6)

// while voxel is empty & inside the grid
while(voxel.a ==)

{
// compute signed distance
dist.xyz = round(sgnScaled*voxel.r) ;

//£find apex voxel
apexVoxel.xyz = (voxelIdx + dist);

// compute tmin
t.xyz = tStart + apexVoxel*invD;
tmin = min(t.x, min(t.y,t.z));

// advance
pos.xyz = OEps+tmin*D;

// find voxel indices
voxelldx.xyz = floor (pos) ;

// read next voxel
voxel = tex3D(texGrid, voxellIdx*invGridSize+offs);

Fig. 7. ACD traversal loop.

Tyart is computed once in the traversal setup, whereas Ty is
computed inside the loop. The Cg code for the traversal loop
is given in Fig. 7. Texture format for the acceleration grid is 2-
component 8-bit (luminance-alpha). The semantics of the com-
ponents are similar to the PC traversal. To be able to store 8 dis-
tance values per voxel, the size of the acceleration grid is twice
as big as the partition grid. It can be considered as voxels are
divided into 8 sub-voxels and each sub-voxel keeps the distance
information of a specific direction octant. A factor and an offset
is used to access to the appropriate sub-voxel. invGridSize
is the mentioned factor and o f £ s is the mentioned offset value.
offs is calculated as (invGridSize/2) x (sat(—sgn(D)).
dist is the signed distance value and apexVoxel is the in-
dices of the apex voxel as in Eq. (6). sgnScaled is calculated
in traversal setup as 255 * sgn(D). oEps is pre-calculated as
e + O of Eq. (4). Tyt is denoted by tStart.

4. Extended anisotropic chessboard distance traversal

Even though the ACD traversal reduces the number of ray
steps considerably, it is possible to improve the structure fur-
ther for faster traversals. As expressed in the previous section
ACD uses a single distance value for each direction octant. In-
stead we allow different distance values along x, y and z axes.
That is three values are defined for each octant. As illustrated
in Fig. 8 this facilitates non-cubic macro regions. As a result,
rays can traverse with greater steps especially in long thin or
narrow empty spaces or in close object vicinities. The traversal
is almost the same as the explained ACD traversal algorithm.
The only difference is instead of a single distance value for
all axes, three distance values are used representing major ax-
ial distances. A 4-component texture format (red-green-blue-
alpha) is used for the data, where red-green-blue components
store distance values and alpha component keeps the voxel type
information as before. EACD traversal code is given in Fig. 9.

The memory cost of the acceleration grid for EACD is three
times as much as the ACD. In order to reduce this cost a packed

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

1209

a b c
2[2[2[2[1 s[alal2]1 5, 4,[3,0[2,00[1,0
EERERERE 1 l' s(ala]2]1 1 l' 504,30 |20 (1] []1.1 l'
1] 1 r’ 2|1 1 l-’ 2012 [111 l-'
YARMEE Sl (]2]1 ¢ |11 ([2<]1=
\Ve KRR N 2|11} N\ 211 [
T SN ERE 11 2f2 2]2]2 0 [0,1 |0,1 |w0,2}ecrZ(@,2 |02 0,2
2tz 2 [1] | 2f2 2 [1] | 4232[22(12|
afzfz|1] slalz|1] L 4333231 L
d e f
)) 9
/ d d
¢ I ¢ I ¢
\ Ve 1|1} 3 141 =
Sk 2 i
2 2 = 2 2 - 42 -
HEEL L L

Fig. 8. (a) CD acceleration grid has single isotropic distance value per voxel (b) ACD acceleration grid stores a distance value for each direction quadrant.
The distance field of the (+x, +y) quadrant is shown here. (c¢) EACD acceleration grid stores different distance values for each primary axis. In the figure
only the (4x, +y) quadrant values are shown (first and second values are the macro distances along +x and +y axes, respectively). (d), (e) and (f) depict
example traversals based on the shown acceleration grids for CD, ACD and EACD, respectively. EACD traversal significantly reduces the number of traversal

steps in this situation.

// while voxel is empty & inside the grid
while(voxel.a 0)
{

// compute signed distance

dist.xyz = round(sgnScaled*voxel.rgb) ;

//find apex voxel
apexVoxel.xyz = (voxelIdx + dist);

// compute tmin
t.xyz = tStart + apexVoxel*invD;
tmin = min(t.x, min(t.y,t.z));

// advance

pos.xXyz = OEps+tmin*D;

// find voxel indices
voxelIldx.xyz = floor (pos) ;

// read next voxel
voxel = tex3D(texGrid, voxelldx*invGridSize+offs);

Fig. 9. EACD traversal loop.

color format (RGB5A1) is used for the grid texture. This format
can represent the distance range of up to 32 voxels along each
direction.

4.1. Construction of the acceleration grid

Construction of EACD grid can be carried out in different
ways. We use a heuristic with a simple greedy search. The

heuristic strives to find the largest empty region by extending
the ACD regions. Finding the largest non-cubic empty regions
can be a very time consuming process. Therefore, instead of
searching the largest empty spaces from scratch, we make use of
ACD acceleration grid and extend regions along the main axes.
Consequently, building the EACD grid involves two phases.

The first phase is exactly the same as creating ACD grid. The
strategy to create distance transformation is based on the idea
of propagating local distances over the grid cells [4]. Firstly the
cell contents of the distance maps are initialized to infinity for
empty voxels, and to zero for non-empty voxels. Then a mask is
overlaid onto each cell of the map in a specific direction (such
as beginning from bottom-left to top-right). Each element of
the mask is summed with the value of the corresponding cell
of the distance map. The resulting value of the cell is the min-
imum of these sums and the initial value of the cell. Genera-
tion of anisotropic chessboard distance maps involves apply-
ing eight different masks to the grid data beginning from one
of the corners towards the opposite diagonal corner (Fig. 10).
Consequently, eight masks are applied to the volumetric grid,
and one (anisotropic) distance map is created for each direc-
tion octant. These eight maps are interleaved into a single big
grid with eight times the size. The computational complexity of
ACD transformation is O(n), where n is the number of voxels.

Before the second phase we create six axial distance fields
representing distances to the nearest full voxels along the +x,
+y and £z axes directions. Similar to the ACD grid, the aux-
iliary grid distances are computed in linear time.

1210 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

N 111
01

Fig. 10. ACD grid creation in 2D. Four masks are applied in the shown
directions. Four (anisotropic) distance maps are generated as the result.

a b E
el g rem— el o \“‘—-‘- Ll g
il Al [\
1| DR |2 [S 11 L
2 |1 [S 2 |1 [Ml 22 S|
2111111 4 13|21 33411
2 1 I—-" 32 |1 r" I 4 1492 I-"
I—> —
d
Non-empty voxels —-\
Empty voxels \ -]
Ut

Macro region

Maximum axial region borders

OC0@

| 24 18

Fig. 11. Finding the EACD macro region for the lower left cell. Only (+x, +y)
direction quadrant is shown (octant for 3D). Arrows denote the orientation
of the distance values (a) is the base ACD grid. (b) and (c) are the axial
distance grids along +x and +y directions, respectively. (d) is the resulting
EACD distances.

Using the auxiliary axial distance grids we determine, in a
greedy manner, how much a cubic empty region can be ex-
tended. This operation is done for all empty voxels of ACD
grid. The extension is carried out as follows: Border voxels of
the empty region are walked and maximum possible extension
along the main axes is computed. The region is then extended
along the axis giving the maximum volume. This step is re-
peated once more, for one of the remaining two axes which
results in a larger volume. Fig. 11 depicts computing EACD
macro region for an empty grid cell (corresponds to an empty
voxel) in 2D.

5. Results and discussion

In order to test the traversal algorithms, some of SPD and
the 70K Stanford bunny models were used [15,37]. Ground
plane in some SPD models was reduced in size to make bet-
ter use of the grid space. The rendered images are shown in

Table 1
Instruction counts of the traverser kernels

EACD ACD PC DDA
Setup/write 32/4 32/4 34/4 20/2
Loop 16/1 16/1 25/1 12/1

In the cells, first number is the fragment program instruction count (including
texture lookups). Second number is the texture lookfup count.

Fig. 15. Tests were performed on a 580 MHz Nvidia GeForce
7800GTX graphics board with 512MB of memory. Release
93.71 graphics drivers and Cg toolkit 1.4 were used. The res-
olution is 512 x 512 for all of the images.

In order to collect the rendering statistics, we implemented
additional versions of the traverser kernels. The additional ver-
sions count the number of loops and the number of texture
lookups performed. The collected values are written to a sec-
ondary color buffer (by using multiple render targets), without
affecting the main rendering operation. After a fragment pro-
gram is executed, its counter values are read from the buffer.
This way, we are able to determine loop counts, the number of
texture accesses and approximate bandwidth requirements of
each kernel, per pass. Execution times, on the other hand, are
taken by the original versions of the kernels.

Among the results, the traverser kernel performances are fo-
cused in particular since we propose a new traversal algorithm.
In a ray tracer, the total rendering time also greatly depends
on the intersection testing times. On the other hand, in di-
rect volume rendering [21] there are no intersection tests and
the main determining factor of rendering performance is the
traversal part. The traversal methods explained here can be
applied to volume rendering easily as shown in our previous
work [9].

5.1. Branching vs. non-branching kernel implementation

As expressed in Section 2, data dependent branching is used
in the traverser kernels. The other way of implementing the
kernels might be to use multi-pass (non-branching) render-
ing to simulate data dependent loops. Both approaches have
some advantages and disadvantages. Note that, multi-pass ap-
proach may be the only option if the GPU does not support
dynamic branching. To compare the performances of branch-
ing and multi-pass approaches, we eliminated the dynamic loop
instructions and built non-branching versions of the traverser
kernels.

Traverser kernels include a setup phase and a write phase, in
addition to the loop body. Setup phase consists of a number of
texture lookups to reload last ray position and direction possibly
with some data unpacking. Additionally, initial values of some
variables should be computed in the setup and write phases. As
shown in Table 1 the majority of kernels consist of setup/write
phases. The number of instructions and texture fetches are
given in the table. Note that the instruction count is not
the only factor determining the performance. In a multi-pass im-
plementation, setup/write phases consume more bandwidth and

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217 1211

computational power than the looping implementation since the
kernels are called more times. This is especially true for DDA,
which has to carry out possibly many small steps, and thus
needs many rendering passes. Space skipping techniques suffer
less from this condition, as they require less number of traversal
passes. Another problem with the multi-pass implementation is
that depending on the number of passes, the overhead of API
calls (fragment program switching, state settings, etc.), modifi-
cation of depth buffer and depth queries negatively impacts the
overall performance. Especially for the latest and future gener-
ation GPUs, API overhead may be a bottleneck in a multi-pass
implementation.

However, data dependent branching is not cheap and can
easily be the bottleneck in GPUs due to deep pipelining and
SIMD style parallelism. Fragment processing units of modern
GPUs only support SIMD style branching: If some of the frag-
ments in a group take a branch while remaining fragments take
another branch, both branches are executed. Therefore all run-
ning fragments in the group should follow the same execution
path for the highest performance. The group in this context is a
rectangular block of fragments. As the block size in which all
fragments follow the same execution path grows, the branch-
ing performance increases. There is an optimal block size for
the best branching performance. The block size depends on the
GPU model. Refer to GPU Bench [14] for dynamic branching
benchmarks of different GPUs with respect to varying block
sizes. Unfortunately it is hard to make all fragments of a block
to follow the same execution path, since the neighboring rays
gradually loose coherence and tend to choose different paths
during rendering. One way to overcome this problem is to
reduce the frequency of data dependent branching. Table 2
shows the average number of branching performed by scene
rays. Clearly, empty space skipping greatly helps to reduce the
branching frequency. The table can also be interpreted as how
quickly rays completed the traversal. It is observed that EACD
has lower branching frequency and thus requires less traversal
steps compared to the other methods.

In non-branching approach, it is very costly to wait for all
rays to reach non-empty voxels before the intersection test
which results in large number of traversal passes. Instead, we
employed a simple heuristic similar to Purcell et al. [31]; if
20% of the traversing rays require intersection, traversal is in-
terrupted and the intersector kernel is run. This cuts down the
number of traversal steps and the traversal times greatly, al-
though increases the total intersection times. For best results,
this heuristic should be fine tuned for each scene and even for
different camera setups. DDA benefits largely from the fine-
tuned multi-pass approach due to high branching frequency.
EACD, on the other hand, issued slightly worse and some-
times slightly better rendering times. In order to evaluate non-
branching kernels, ray casting traversal times for all test scenes
are given in Table 3. These figures can be compared to the re-
sults of the branching kernels given in Table 4(c). Test results
demonstrate that empty space skipping techniques are better
than DDA both in multi-pass and branching approaches, and
EACD gives the best performance compared to other space
skipping techniques.

Table 2
Average data dependent branching per ray for the traversal kernels

EACD ACD PC DDA
Bunny 32 x32x 32 2.45 3.6 7.12 16.58
64 x 64 x 64 2.98 4.32 7.9 33.39
128 x 128 x 128 3.75 4.96 8.54 67.01
Tree 32 x 32 x 32 2.4 4.15 11.73 34.62
64 x 64 x 64 247 4.47 12.64 69.41
128 x 128 x 128 3.35 4.74 13.3 139.1
Jacks 32 x32x 32 391 4.77 12.36 21.99
64 x 64 x 64 4.09 5.64 14.58 442
128 x 128 x 128 4.62 6.19 14.57 88.63
Lattice 32 x 32 x 32 1.96 291 7.36 7.31
64 x 64 x 64 3.38 491 13.01 15.06
128 x 128 x 128 391 5.8 17.08 30.52
Sphereflake 32 x32x 32 2.87 441 11.08 21.21
64 x 64 x 64 32 5.08 13.15 42.84
128 x 128 x 128 3.56 5.51 14.69 86.12
Table 3

Time results (in milliseconds) of non-branching kernel implementations (grid
size: 128 x 128 x 128)

EACD ACD PC DDA
Bunny Traverse 22,15 23,05 28,13 100,58
Frame 71,08 73,43 80,04 152,69

Tree Traverse 18,25 19,2 32,01 181,7
Frame 202,59 209,09 292,68 413,85
Jacks Traverse 17,89 20,77 32,56 132,02
Frame 70,69 83,89 118,07 197,25

Lattice Traverse 25,17 29,04 39,31 53,27
Frame 94,51 106,42 154,79 198,37

Sphereflake Traverse 18,32 20,12 29,09 88,69
Frame 77,98 83,44 111,95 187,69

5.2. Fragment processor utilization

In order to benefit from the computational power of GPU,
fragment processors should be utilized as much as possible.
Crudely, utilization can be expressed as the ratio of the number
of processed fragments over the number of rasterized frag-
ments. Throughout the execution, the number of active rays
to be processed decreases in each trace step, which means
that the utilization drops in each subsequent step. Although
there is a decline in the utilization, early rejection of the frag-
ments before reaching the shader unit greatly helps to keep
the fragment processors busy with useful fragments. Con-
sequently the performance drop is not as sharp as expected
for the most of the rendering. We check this situation by

1212 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

Table 4
Ray casting time results in milliseconds

EACD ACD PC DDA
(a)
Bunny Traverse 8,43 11,79 18,38 17,86
Frame 100,31 103,76 112,73 112,22
Tree Traverse 9,02 11,84 23,43 26,01
Frame 172,29 174,37 195,45 196,81
Jacks Traverse 15,6 20,72 35,45 29,58
Frame 162,85 167,79 189,93 184,2
Lattice Traverse 14,93 19,56 24,36 17,37
Frame 258,66 262,97 276,8 269,12
Sphereflake Traverse 11,03 14,18 26,41 28,97
Frame 208,24 210,58 231,43 244,65
(b)
Bunny Traverse 12,06 18,43 30,04 40,38
Frame 62,7 70,73 84,42 93,79
Tree Traverse 10,4 21,78 38,83 60,84
Frame 182,35 186,38 215,52 233,99
Jacks Traverse 18,49 28,97 59,02 67,1
Frame 102,4 113,41 147,14 155,03
Lattice Traverse 22,36 29,05 57,62 47,28
Frame 126,36 136,62 171,01 159,12
Sphereflake Traverse 15,13 20,85 43,24 52,79
Frame 128,72 135 160,8 175,37
(©)
Bunny Traverse 21,64 36,73 62,38 114,25
Frame 70,37 86,46 149 165,2
Tree Traverse 14,96 19,89 46,8 130,38
Frame 196,61 204,68 235,35 317,18
Jacks Traverse 24,48 41,77 84,56 165,3
Frame 76,45 94,2 139,22 235,69
Lattice Traverse 29,7 40,08 106,56 126,65
Frame 95,05 105,74 173,86 193,79
Sphereflake Traverse 22,73 32,99 73,5 136
Frame 86 96,52 138,82 207,43

Frame 1is the total rendering time. Grid sizes are (a) 32 x 32 x 32 (b)
64 x 64 x 64 and (c) 128 x 128 x 128.

measuring the average traversal time per ray in each pass.
Fig. 12 depicts the per-pass results for the bunny scene. In the
graphs, as the number of active rays decreases in each step, the
processing time decreases in a similar shape. Average time per
ray is calculated for each step by dividing the total step time
to the number of active rays in that step. The “time per ray”
graph shows that for the majority of the rays (> 98%) time
spent is well below 100 nanoseconds. Especially, after around
step 20 efficiency declines quickly. In fact, this is expected be-
cause the timings include not only the kernel processing time
but also API and CPU overheads. Moreover, even if there is
just a single active ray left, a screen sized quad is rasterized.
Therefore, when the number of active rays is low enough,
the mentioned overheads devastate the fragment processing
time. However, only a small fraction of the rays suffer from
this condition.

In an animation sequence, one possible way to reduce the
overheads incurred in the later trace steps might be to cut ren-
dering when the percentage of active rays is lower than a defined

threshold. For example, in bunny scene, 99.5% of the rays are
already terminated in step 16. Our other test scenes behave sim-
ilarly. Fig. 13 shows the image rendered immediately after step
16. For this image, the partial render time is 65% of the full
rendering time (using EACD). When the camera stops mov-
ing, the rest of the image can be rendered progressively. It is
also possible to approximate the unfinished pixels of the par-
tially rendered image by applying simple image reconstruction
filters. On the other hand, this kind of rendering is reasonable
for fine grid resolutions. In low resolutions, partial rendering
saves less time and exhibits more artifacts. This is because of
the fact that the number of trace steps is already low and the
artifacts due to the unfinished parts become more apparent as
the voxel sizes are bigger.

5.3. Timing results

The traversal algorithms were tested using several grid reso-
Iutions. In order to rule out external factors affecting the mea-
surements as much as possible (such as file access, background
processes etc.); each test was run many times and the minimum
of the timing results is taken. Fig. 14 illustrates the number of
traversal steps taken by each algorithm for the bunny scene.
In the shown images, brighter pixels represent greater traversal
step counts. As clearly seen in Fig. 14, DDA requires the great-
est number of steps among all, since it steps only one voxel at
a time regardless of the empty regions. PC on the other hand
can skip isotropic macro regions in larger steps, while it be-
haves similarly to DDA in the vicinity of non-empty voxels.
ACD performs better than PC in the close proximity to the non-
empty voxels. This is because of the anisotropic macro regions
and the fact that rays can take bigger steps according to their
directions. EACD performs the best among all the other meth-
ods. The average traversal loop count (data dependent branch-
ing performed) per fragment is 34.6, 4.43, 2.56 and 1.94 for
DDA, PC, ACD and EACD, respectively, for this particular
scene. Thus, although DDA has the least expensive kernel it
should loop many more times than space skipping techniques,
resulting in much longer execution.

Table 4 shows that the ray casting speedup due to EACD
is as much as 870%, 358% and 170% compared to DDA, PC
and ACD, respectively. The speedup increases especially for
the scenes where rays have to pass through non-cubic empty
regions. Since both ACD and EACD use the same algorithm
essentially, their performances should be similar in the worst
case. On the other hand, maximum distance limit imposed by
the low precision texture format may prevent full speedup pos-
sible with EACD. This is especially apparent in tree scene with
128 x 128 x 128 grid dimensions, where there are large empty
regions around the object. It is possible to use a higher preci-
sion texture format to alleviate this problem, if GPU has enough
memory space. In sphereflake, model fills the grid space more
fully and there are many narrow, non-cubic empty spaces where
rays can pass thru. Therefore the EACD performance is better
compared to tree. As an empty space skipping technique, PC
traversal does not perform as fast as EACD and ACD. This is

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217 1213
a b
Time Per Pass Rays Per Pass
3.5 250000
34
- 200000 -
T 2.5 4
S £ 1500001
2 2 8
= >
E 151 & 100000
Q
E 14
= 50000 -
0.5 1
0 '))) 0 hd bbb b Ak kA A A kA kA Ak Ak
0 10 20 30 40 50 0 10 20 30 40 50
Pass Pass
C
Ray Time Per Pass
250000
S 200000 -
c
o
o
@
@ 150000 -
(=
©
£
o 100000 A
E
& 50000 -
0 AAAAAAAAAAAAAAAAAAAAAAA T T
0 10 20 30 40 50
Pass

Fig. 12. (a) Number of active rays per pass, (b) traversal time per pass, (c) average ray traversal time per pass.

Fig. 13. Ray casted bunny image (a) after 16 trace steps (b) after all trace steps completed. Note that 99.5% of the rays are already terminated in (a) and

most of the image is rendered. Grid resolution is 128 x 128 x 128.

largely due to the longer loop body with relatively higher data
dependent branching frequency and shorter ray steps. Despite
the fairly efficient loop body, DDA has almost always the worst
performance. Especially in finer grid resolutions DDA cannot
match the traversal speed of EACD and ACD.

We also compared ray tracing performances of the kernels
with varying number of lights and trace depths. Lattice is used

for the ray tracing tests since majority of the reflected rays
stay inside the scene and keeps bouncing. Additionally, small
surfaces inside the scene reflect rays to different directions
lowering the ray coherence rapidly. Test results are given in
Table 5. As seen in the table, reflected rays cause greater per-
formance hit than shadow rays. This is because of the fact that
reflected rays tend to loose coherence rapidly, while shadow

1214 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

Fig. 14. Tllustration of the traversal step counts for (a) DDA, (b) PC, (c) ACD and (d) EACD. Brightness of the image is set to 170% and contrast is set to
155% for better visual clarity.

Fig. 15. (a) Bunny (69451 tris), (b) Jacks (24528 tris), (c) Sphereflake (88562 tris), (d) Tree (67454 tris) and (e) Lattice (125388 tris).

rays are more coherent since they are directed to a single point as the coherency is lost. This is expected since EACD can reach
in space (position of the light source). Table reveals that the per- to non-empty voxels with less number of steps and thus requires
formance gap between EACD and other techniques broadens less data dependent branching operations.

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217 1215

Table 5
Ray tracing time results of Lattice scene in milliseconds (grid size: 128 x
128 x 128)

EACD ACD PC DDA
Ray cast Traverse 29,7 40,08 106,56 126,65
Frame 95,05 105,74 173,86 193,79
Ray cast 1SH Traverse 66,89 92,35 258,15 626,84
Frame 205 232,76 435,91 802,52
Ray cast 2SH Traverse 87,46 125,26 304,67 905,74
Frame 270,92 308,56 493,49 1096,98
Ray trace 1R Traverse 105,32 170,4 408 970,69
Frame 345,6 409,65 655,17 1219,13
Ray trace 2R Traverse 192,26 330,05 760,25 2108,27
Frame 649,02 787,97 1227,54 2590,06
Ray trace 3R Traverse 244,39 421,22 961,26 2788,76
Frame 833,21 1009,53 1562,62 3409,25
Ray trace 1R/2SH Traverse 248,41 387,05 915,503 2873,38
Frame 801,2 936,01 14743 3444,19
Ray trace 2R/2SH Traverse 424,17 684,23 1592,51 5141
Frame 1397,14 1651,37 2582,13 6151
Ray trace 3R/2SH Traverse = 545,32 888,03 2049 6741
Frame 1816,15 2149,33 332742 8051

Frame is the total rendering time. The ray tracing setups are; Ray Cast (eye
rays without shadows), Ray Cast 1-2SH (eye rays + one and two lights with
shadows), Ray Trace 1-3R (eye rays + reflections of depth 1 to 3, without
shadows), Ray Trace 1-3R/2SH (eye rays + reflections of depth 1 to 3 + two
lights with shadows).

We measured the traversal times with frame sizes of 256 x 256
and 1024 x 1024 in addition to 512 x 512. When the frame
resolution is increased 4 times (doubled along each dimension),
traversal is slowed down by around 2 times for all methods.
This is because of the fact that coherence increases as the frame
size grows.

Additionally, the stall rate of fragment processors due to wait-
ing for texture units is measured using NVPerfKit [27]. NVPer-
fKit is a tool giving access to some low level GPU performance
counters. Stalls due to texture sampling may occur if too many
incoherent texture lookups are performed. For ray traced lat-
tice, average stall rate is 1.77%, 1.20%, 0.89% and 0.24% for
EACD, ACD, PC and DDA kernels, respectively. Ultimately,
fragment processor stalls due to texture access do not cause a
bottleneck on the system.

Ray-triangle intersection testing is the most time consuming
part for EACD and ACD kernels. Increasing the grid resolu-
tion is a way to reduce the number of intersection tests and
thus the total rendering time. However for DDA, in most cases
traversal is already the most time consuming part. Therefore,
increasing the grid resolution will not improve the overall per-
formance in most of the test scenes since it will largely increase
the traversal times. Similar situation holds for the PC traver-
sal. The only exception to this observation is the tree scene.
This scene has highly non-uniform triangle distribution; most
of the triangles are grouped inside a small number of voxels
around the branch tips. This is a typical weakness of the grid
based scene partitioning structures. In case of ACD and EACD
traversals, increasing the grid resolution will help to improve
the performance for all of the test scenes. The problem for these
techniques is that, the acceleration structure is eight times as

big as it is for PC and DDA. The limit for the maximum grid
resolution for ACD and EACD is 256 x 256 x 256 in our hard-
ware. As the graphics memories enlarge, this will be less of a
concern, but a better solution to this problem may be to use
hybrid partitioning structures.

5.4. Comparison to other GPU ray tracers

Since we focused on grid based acceleration techniques in
this work, non-grid based GPU ray tracing techniques have
not been implemented. However, we rendered ray casted im-
ages of 70 K bunny with one light source on a GPU similar to
the other works for a rough comparison. Note that all methods
compared below uses the same bunny model. As reported in
Carr et al. [6], Thrane and Simonsen’s BVH implementation
[38] obtained 257 ms (GeForce6800 Ultra), while Carr et al.’s
geometry images based BVH technique [6] has an estimated
frame time of ~ 360 ms (X800 XT PE). Two kD tree based
methods as described in Foley and Sugerman [10] rendered the
scene in 690 ms using the backtrack algorithm, and 701 ms us-
ing the restart algorithm (X800 XT PE). As for the comparison,
we measured 141 ms without shadows and 216 ms with shad-
ows on the average, using EACD (GeForce 6800 Ultra, grid
size 128 x 128 x 96). From the results we conclude that grid
based empty space skipping methods, especially EACD and
ACD, is very competitive or better than other techniques for
bunny like scenes. Additionally, from the test results EACD and
ACD are also competitive at scenes with large empty spaces
and moderately even triangle density in non-empty voxels. Pur-
cell’s grid based ray tracer is similar to our non-branching DDA
implementation [31]. Our implementation has dynamic loops
for the intersection tests and use depth buffer for early frag-
ment culling; otherwise the two are almost identical. Therefore
non-branching DDA results given in Table 3 may be used for
a rough comparison to EACD.

EACD and ACD seem to be suitable for static scenes since
they require a relatively time consuming pre-processing stage.
Other techniques also suffer from this situation at varying de-
grees. Among the GPU based ray tracers, only Carr et al. [6]
focused on animated scenes. It is still possible to use grid based
methods hierarchically for non-deforming or articulated model
animations, where each model has its own grid. Rays enter-
ing the bounding volume of a model is then transformed into
the grid space of the object and traced locally. For deformable
animations, the acceleration structure should be reconstructed.
Wald et al. describe a ray tracer using similar approach [39].
Additionally, in a recent work Wald et al. showed that uniform
grids can be used for ray tracing of dynamic scenes [41]. We
think that it may be an interesting future work to study efficient
ways to create the ACD and EACD acceleration grids, either
fully or partially, for animated scenes.

6. Conclusion

It is crucial to explore efficient data structures and algorithms
conforming to the parallel stream processing model to make
best possible use of the graphics hardware. In this work we have

1216 A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217

studied regular grid based traversal techniques and introduced
a GPU based traversal algorithm using extended anisotropic
chessboard distance transformations. In order to compare the
performance, efficient GPU implementations of some of the
previously known traversal techniques have been given. It is
shown that the introduced traversal algorithm is several times
faster than DDA, and considerably faster than other regular grid
based empty space skipping methods. In addition, our algorithm
suits well to the modern pipelined superscalar CPU architec-
tures which support streaming parallel instructions. Therefore,
presented methods can be ported to SIMD capable CPUs with
some minor modifications.

As demonstrated by the results the traversal part is not the
bottleneck in most cases when empty space skipping is used. In
general, especially for EACD and ACD, the main determining
factor of the performance is the time spent for intersection tests.
The time required for intersection tests can be reduced by using
finer grid subdivisions. In contrast, size of the graphics memory
defines a limit on the maximum grid dimensions. Hence, huge
memory requirement of the acceleration grids is currently the
major drawback. As a future work we consider exploring GPU
based hybrid or hierarchical acceleration techniques which can
compromise between memory and speed. EACD is also suitable
for direct volume rendering, since there are no time consuming
intersection tests and the traversal speed is the major factor of
the performance.

There are some open research areas to accelerate GPU based
ray tracing further. Coherence is one of the key elements for
high performance rendering. We think that it is worthwhile to
perform research on increasing the level of coherency in GPU
ray tracers. Rendering a scene as small tiles instead of a whole
buffer, or reordering rays for coherency may help to increase
performance. Finding faster, more coherent and memory effi-
cient ways for ray recursions may also be a valuable future
work. With each new generation, GPUs are becoming more par-
allel, powerful and flexible processors. Therefore, we believe
that GPUs have great potential for achieving the goal of real
time photo-realistic ray tracing.

References

[1] Advanced Micro Devices, ATI CTM Guide, Online document: (http://ati.
amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf),
2007.

[2] J. Amanatides, A. Woo, A fast voxel traversal algorithm for ray tracing,
in: Proceedings of Eurographics, 1987, pp. 3—10.

[3] A. Appel, Some techniques for shading machine renderings of solids,
in: SICC, 1968, pp. 27-45.

[4] G. Borgefors, Distance transformations in digital images, Comput. Vision
Graph Image Processing 34 (3) (1986) 344-371.

[5] N.A. Carr, J.D. Hall, J.C. Hart, The ray engine, in: Proceedings of
Graphics Hardware, 2002, pp. 1-10.

[6] N.A. Carr, J. Hoberock, K. Crane, J.C. Hart, Fast GPU ray tracing of
dynamic meshes using geometry images. in: Proceedings of the 2006
Conference on Graphics Interface, June 07-09, 2006, pp. 203-209.

[7] D. Cohen, Z. Sheffer, Proximity clouds: an acceleration technique for
3D grid traversal, Visual Comput. 10 (11) (1994) 27-38.

[8] O. Devilliers, The macro-regions: an efficient space subdivision structure
for ray tracing, in: Proceedings of Eurographics’89, 1989, pp. 27-38.

[9] A. Es, H. Yalim, V. i§ler, Accelerated volume rendering with
homogeneous region encoding using EACD on GPU, in: Proceedings
of EGPGV’06, 2006, pp. 67-73.

[10] T. Foley, J. Sugerman, KD-tree acceleration structures for a GPU
raytracer, in: Proceedings of Graphics Hardware, 2005, pp. 15-22.

[11] A. Fujimoto, T. Tanaka, K. Iwata, ARTS: accelerated ray tracing system,
IEEE Comput. Graphics Appl. 6 (4) (1986) 16-26.

[12] GeForce 8 Series, Web site: (http://www.nvidia.com/page/geforce8.html),
2007.

[13] GpGPU, General purpose GPU, Web site: (http://www.gpgpu.org), 2007.

[14] GPU Bench, Web site: (http://graphics.stanford.edu/projects/gpubench/),
2007.

[15] E. Haines, The standard procedural database (SPD), Version 3.14, 2007.
Web site: (http://www.acm.org/tog/resources/SPD/overview.html).

[16] V. Havran, Heuristic ray shooting algorithms, Ph.D. Thesis, The Faculty
of Electrical Engineering, Czech Technical University, Prague, 2000.

[17] K. Hillesland, A. Lastra, GPU floating-point paranoia, in: Proceedings
of GP2 Workshop, 2004.

[18] J. Hurley, Ray tracing goes mainstream, Intel Technol. J. 9 (2) (2005).

[19] H.W. Jensen, Realistic Image Synthesis Using Photon Mapping, AK
Peters, July 2001.

[20] F. Karlsson, C.J. Ljungstedt, Ray tracing fully implemented on
programmable graphics hardware, Master’s Thesis, Chalmers University
of Technology, Department of Computer Engineering, Goteborg, 2005.

[21] M. Levoy, Display of surfaces from volume data, IEEE Comput. Graphics
9 (3) (1990) 245-261.

[22] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, Cg: a system
for programming graphics hardware in a C-like language, ACM Trans.
Graphics (Proc. ACM SIGGRAPH) 22 (3) (2003) 896-907.

[23] Microsoft DirectX: Home Page, Web site: (http://www.microsoft.com/
windows/directx/default.mspx), 2007.

[24] T. Moller, B. Trumbore, Fast, minimum storage ray-triangle intersection,
J. Graphics Tools (1997) 21-28.

[25] nVIDIA, Floating point specials, Web site: (http://developer.nvidia.com/
object/floating_point_specials.html), 2007.

[26] NVIDIA
CUDA Homepage, Web site:
cuda.html), 2007.

[27] NVPerfKit, Web site:
home.html), 2007.

[28] J. Owens, Streaming architectures and technology trends, in: M. Pharr,
R. Fernando (Eds.), GPU Gems 2, Addison Wesley Professional, 2005,
pp. 457-470.

[29] J.D. Owens, Computer graphics on a stream architecture, Ph.D. Thesis,
Stanford University, November 2002.

[30] T.J. Purcell, Ray tracing on a stream processor, Ph.D. Dissertation,
Stanford University Department of Computer Science, March 2004.

[31] T.J. Purcell, I. Buck, W.R. Mark, P. Hanrahan, Ray tracing on
programmable graphics hardware, ACM Trans. Graphics (Proc. ACM
SIGGRAPH) 21 (3) (2002) 703-712.

[32] A. Reshetov, A. Soupikov, J. Hurley, Multi-level ray tracing algorithm,
ACM Trans. Graph. 24 (3) (2005) 1176-1185.

[33] J. Schmitter, I. Wald, P. Slusallek, SaarCOR—a hardware architecture for
ray tracing, in: Proceedings of EUROGRAPHICS Graphics Hardware,
2002, pp. 27-36.

[34] J. Schmittler, S. Woop, D. Wagner, W.J. Paul, P. Slusallek, Realtime
ray tracing of dynamic scenes on an FPGA chip, in: Proceedings of
Graphics Hardware 2004, August 2004, pp. 95-106.

[35] SGI—OpenGL: Home Page, Web page available at: (http://www.sgi.
com/products/software/opengl/), 2007.

[36] M. Sramek, A. Kaufman, Fast ray-tracing of rectilinear volume data
using distance transforms, IEEE Trans. Visualization Comput. Graphics
6 (3) (2000) 236-252.

[37] The Stanford 3D Scanning Repository, Web site: (http://graphics.stanford.
edu/data/3Dscanrep/), 2007.

[38] N. Thrane, L.O. Simonsen, A comparison of acceleration structures
for GPU assisted ray tracing, Master’s Thesis, University of Aarhus,
Denmark, 2005.

(http://developer.nvidia.com/object/

(http://developer.nvidia.com/object/nvperfkit_

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://www.nvidia.com/page/geforce8.html
http://www.gpgpu.org
http://graphics.stanford.edu/projects/gpubench/
http://www.acm.org/tog/resources/SPD/overview.html
http://www.microsoft.com/windows/directx/default.mspx
http://www.microsoft.com/windows/directx/default.mspx
http://developer.nvidia.com/object/floating_point_specials.html
http://developer.nvidia.com/object/floating_point_specials.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/nvperfkit_home.html
http://developer.nvidia.com/object/nvperfkit_home.html
http://www.sgi.com/products/software/opengl/
http://www.sgi.com/products/software/opengl/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

A. Es, V. Isler / J. Parallel Distrib. Comput. 67 (2007) 1201—1217 1217

[39] I. Wald, C. Benthin, P. Slusallek, A simple and practical method for
interactive ray tracing of dynamic scenes, Technical Report, Computer
Graphics Group, Saarland University, 2002.

[40] I. Wald, S. Boulos, P. Shirley, Ray tracing deformable scenes using
dynamic bounding volume hierarchies, ACM Trans. Graphics 26 (1, Art.
6) (2007).

[41] I. Wald, T. Ize, A. Kensler, A. Knoll, S.G. Parker, Ray tracing animated
scenes using coherent grid traversal, ACM Trans. Graphics (Proceedings
of ACM SIGGRAPH 2006) (2006) 485-493.

[42] D. Weiskopf, T. Schathitzel, T. Ertl, GPU-based nonlinear ray tracing,
in: Proceedings of EUROGRAPHICS’04, vol. 23(3), 2004.

[43] T. Whitted, An improved illumination model for shaded display, CACM
23 (6) (1980) 343-349.

[44] S. Woop, J. Schmittler, P. Slusallek, RPU: a programmable ray processing
unit for realtime ray tracing, in: Proceedings of SIGGRAPH 2005, 2005.

[45] K.J. Zuiderveld, A.H.J. Koning, M.A. Viergever, Acceleration of ray-
casting using 3D distance transforms, in: Visualization in Biomedical
Computing II, Proceedings of the SPIE 1808, 1992, pp. 324-335.

Alphan Es is a Ph.D. student at the Middle East Technical University (METU)
in Turkey. He received a B.S. in 1996 from the Ege University and M.S. in
2000 from METU. He has been working in the Scientific and Technological
Research Council in Turkey since 1997. His research interests include real-
time rendering, photo-realistic rendering, game programming and GPU based
algorithms. He is a member of ACM since 1998.

Veysi Isler received the B.S. degree in computer engineering from the Middle
East Technical University (METU), Ankara, Turkey, and the M.S. degree in
computer engineering and information science from the Bilkent University,
Ankara, Turkey, in 1987 and 1989, respectively. He has received his Ph.D.
degree in the Department of Computer Engineering and Information Science
at the Bilkent University in the area of parallel rendering in 1995. After he
received his Ph.D. degree, he worked as a research associate at the Computer
Graphics and Multimedia Laboratory, Department of Computing, The Hong
Kong Polytechnic University. In 1996 he joined the Department of Computer
Engineering of METU. Between 2000-2005 he worked as an R&D Director
for industry. Since July 2005 he has been with the Department of Computer
Engineering of METU, where he is currently an associate professor. He is also
the director of Modeling and Simulation Research and Development Center of
METU. His research interests include rendering, visualization, virtual reality,
game technology, driving simulators and parallel graphics algorithms.

