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It has been shown that top-% retrieval quality can be considerably improved by taking not only relevance
but also diversity into account. However, currently proposed diversification approaches have not put much
attention on practical usability in large-scale settings, such as modern web search systems. In this work, we
make two contributions toward this goal. First, we propose a combination of optimizations and heuristics
for an implicit diversification algorithm based on the desirable facility placement principle, and present two
algorithms that achieve linear complexity without compromising the retrieval effectiveness. Instead of an
exhaustive comparison of documents, these algorithms first perform a clustering phase and then exploit its
outcome to compose the diverse result set. Second, we describe and analyze two variants for distributed
diversification in a computing cluster, for large-scale IR where the document collection is too large to keep in
one node. Our contribution in this direction is pioneering, as there exists no earlier work in the literature that
investigates the effectiveness and efficiency of diversification on a distributed setup. Extensive evaluations
on a standard TREC framework demonstrate a competitive retrieval quality of the proposed optimizations
to the baseline algorithm while reducing the processing time by more than 80% and up to 97%, and shed
light on the efficiency and effectiveness tradeoffs of diversification when applied on top of a distributed
architecture.
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1. INTRODUCTION

The success of a search engine in a highly competitive market is tightly bound to how
effectively its top-ranked answers satisfy the user’s information need. Not surprisingly,
considerable research effort is devoted to ranking candidate answers and determining
the optimal top-% results both by academia and industrial players. A recent yet well-
recognized aspect in this sense is diversifying the top search results, especially when
the user’s search intent is not clear, which has its roots in minimizing the risk in a
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financial portfolio [Markowitz 1952]. That is, just like an investor who is not sure
about the future diversifies the selection of stocks in his or her portfolio, a search
system that cannot predict the search intent behind a query should diversify the top
search results to minimize the risk of frustrating its users [Wang and Zhu 2009].

While the classical examples for such ambiguous queries include java (or jaguar, or
apple), where a search system should return answers related to Java programming
language and Java island, it is soon realized that diversity is needed at different levels
even for queries that look much less ambiguous at first glance [Santos et al. 2010a,
2011]. For instance, users submitting the query java programming can still have very
diverse intents, such as finding an introductory tutorial, obtaining pointers to some
resources like books or class notes, discovering forums, checking ads for tutors, and so
on [Santos et al. 2010a].

The previous example demonstrates that most keyword queries would inherently
involve some ambiguity, to a lesser or greater extent, and hence can benefit from the
promises of result diversification. As this carries diversification from a niche operation
to a widely used everyday task for large-scale search engines, the need for efficient and
scalable algorithms becomes inevitable. Advances are required in two areas: first, the
computational complexity of diversity algorithms needs to be reduced to fit in the tight
budget of online query processing (usually a few hundred milliseconds), and second,
these algorithms need to be adapted to the computing cluster architecture established
for search engines.

Our contributions in this article are thus twofold: first, we improve the efficiency of a
state-of-the-art implicit result diversification algorithm based on the desirable facility
placement principle (from Operations Research) solved by a Greedy Local Search (GLS)
heuristic [Zuccon et al. 2012]. Recently, this algorithm has been shown to have an im-
pressive effectiveness for identifying relevant and novel top-% results, but its quadratic
cost with the number of candidate documents renders this algorithm impractical for
real-world usage. We propose simple yet effective optimizations that employ preclus-
tering of the candidate documents for improved efficiency (i.e., linear with the number
of candidate documents) without sacrificing the effectiveness. In a practical setting
where the top-10 (or 20) results are selected from a candidate set of a few hundred
(or thousand) documents, our optimized algorithms, so-called C-GLS and C2-GLS, can
reduce the online query diversification cost by more than 80%, and for some cases, up
to 97%.

As a second contribution, we turn our attention to incorporating the diversification
algorithms into a large-scale search system that would typically operate on a clus-
ter of thousands of machines. While diversification algorithms in the literature are
extensively evaluated in terms of their effectiveness, the impact of the distributed ar-
chitecture on which they need to operate has not been addressed yet. In contrast, the
effectiveness and efficiency of the diversification algorithms may also depend on the ar-
chitecture and, more specifically, the layer where the actual diversification is realized.
We introduce two possible strategies, broker-based and node-based diversification, and
identify the potential effectiveness and efficiency tradeoffs for both implicit and explicit
diversification algorithms. To be comparable with the previous studies in the literature,
our strategies are evaluated using the standard experimental framework employed in
the TREC Diversity Tasks in 2009 and 2010. To the best of our knowledge, our contri-
bution in this direction is pioneering, as there exists no earlier work in the literature
that investigates the diversification performance on top of a distributed architecture.

The rest of the article is organized as follows. In Section 2, we first provide a review
of search result diversification algorithms and then outline the principles of query
processing techniques in widely employed distributed search systems. Next, we briefly
summarize the GLS-based algorithm from Zuccon et al. [2012] and then introduce our
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more efficient variants in Section 3. Section 4 is devoted to two distributed diversifica-
tion strategies, namely, broker-based and node-based diversification. In Section 5, we
experimentally evaluate proposed strategies. Finally, we summarize our key findings
in Section 6, and conclude and point out future research directions in Section 7.

2. RELATED WORK

Approaches for search result diversification can be categorized as either implicit or
explicit [Santos et al. 2010a]. Given a set of candidate documents retrieved for a query,
implicit methods aim to discover the possible different aspects from these documents
in an unsupervised manner. In contrast, explicit diversification methods directly model
the query aspects, exploiting external knowledge such as manually or automatically
assigned query labels or query reformulations. In Sections 2.1 and 2.2, we review algo-
rithms for implicit and explicit search result diversification, respectively. In Section 2.3,
we provide a brief outline of distributed search on computing clusters, on which such
diversification algorithms are intended to operate.

2.1. Implicit Result Diversification Techniques

The basic assumption of earlier IR ranking, also underlying the probability ranking
principle (PRP, Robertson [1977]), assumes that the probability of a document being
relevant is independent from the other documents in the result set. However, when
viewing the information retrieval task as a decision process where the task is to mini-
mize the risk that a user’s information need remains unsatisfied, it becomes clear that
a result set with high coverage entails a lower risk than a result set with the most
relevant but also very similar documents. Zhai and Lafferty [2006] present a formal
model for this risk minimization approach, where they introduce the notion of loss as
the degree to which a search effort fails to satisfy a user’s information needs. In this
model, different diversification objectives become loss functions that probabilistically
estimate the loss incurred by a user for a given result set.

Several such objectives are proposed and successfully validated. The use of Maxi-
mum Marginal Relevance (MMR) is proposed by Carbonell and Goldstein [1998] and
also used in Zhai et al. [2003]. Chen and Karger [2006] maximize the probability of
retrieving at least one relevant document by assuming that all documents that are
ranked higher than the current one are irrelevant (i.e., as a form of negative feedback).
Carterette and Chandar [2009] focus on a finer-grained level of diversification, similar
to the examples given in Section 1, and introduce the so-called faceted topic retrieval. In
this case, the query facets are identified using LDA and relevance modeling, and then
PRP is employed while assessing the coverage of facets by the candidate documents. In
a similar fashion, He et al. [2011] first cluster the candidate documents and then select
the best clusters to apply diversification to improve the final result quality. Carpineto
et al. [2012] compare some well-known implicit diversification techniques (e.g., based
on MMR) to those that cluster the candidate documents and select the cluster represen-
tatives into the final result list. Besides other metric space-based methods, Gil-Costa
et al. [2011, 2013] describe a diversification approach that again clusters the candidate
documents and constructs the diversified result where the cluster centroids are placed
at the top of the list. Different from all the latter works that essentially employ greedy
best-first search diversification methods (such as the round-robin strategy or MMR) on
top of the document clusters, our work presented here exploits clustering as a prepro-
cessing stage to improve the efficiency and scalability of a greedy local search method,
which is shown to outperform the best-first search strategies [Zuccon et al. 2012] as
discussed later.

Gollapudi and Sharma [2009] show that many diversification objectives can be ex-
pressed as obnoxious facility dispersion optimization problems, that is, the task to place
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facilities as far away from each other under given constraints and other optimization
criteria. Building on this approach, Zuccon et al. [2012] show in that MMR, the Modern
Portfolio Theory (MPT, Wang and Zhu [2009]), and the Quantum Probability Ranking
Principle [Zuccon and Azzopardi 2010] can be expressed as a facility dispersion problem
as well.

Additionally, Zuccon et al. [2012] introduce desirable facility placement (DES) to
express a diversity objective. Desirable facility location is the task to locate a given
amount of facilities such that the average distance of a customer to the nearest facility
is minimized. This problem can be easily mapped to the information retrieval task by
viewing the result documents as facility locations and the user’s information needs as
customer locations. The reported gain in retrieval effectiveness for DES is the highest
of all diversification approaches proposed so far, motivating us to use DES as a base
for our work. We give a more in-depth description of DES in Section 3.

While the proposed diversity objectives improve the quality of the returned results,
diversification comes with a considerable computational penalty. Carterette [2009]
has shown that optimal diversification is NP-hard. Consequently, for practical use,
approximations and heuristics need to be used for computing a diverse result set. But
even in this case, most proposed algorithms have a quadratic complexity, rendering
them infeasible for the demanding efficiency constraints of online query processing.
The only exceptions we are aware of are Minack et al. [2011] and Drosou and Pitoura
[2009], which compute diverse set approximations over continuous data. Our aim is to
overcome this limitation and propose a highly efficient diversification approach.

2.2. Explicit Result Diversification Techniques

In the explicit diversification methods, query aspects are modeled explicitly by ex-
ploiting some sort of external knowledge. The IA-Select method proposed by Agrawal
et al. [2009] assumes that both queries and documents are associated with some cate-
gories from a taxonomy, and then achieves diversification by favoring documents from
different categories and penalizing the documents that fall into already covered cate-
gories.

Radlinski and Dumais [2006] use reformulations of the given query to determine
the candidate result set; that is, the candidate set is formed as the union of results for
the original query and its reformulations, and then reranked based on the interests of
the current user. The xQuAD framework by Santos et al. [2010a] also exploits query
reformulations obtained from TREC subtopics and search engines and achieves diver-
sification by identifying the relevance of candidate documents to these subqueries and
favoring documents that cover those aspects not yet covered in the current result set.
This approach is found to be a top performer in earlier TREC campaigns (e.g., Clarke
et al. [2009, 2010]). In Santos et al. [2011], both xQuAD and IA-Select are employed
in an intent-aware diversification framework, which specifically takes into account the
user query intent (such as navigational, informational, etc.). Chapelle et al. [2011] also
take into account query intents that are defined within a shopping scenario and develop
a specific ranking function per intent. Capannini et al. utilize query logs to decide when
and how query results should be diversified and present the new algorithm OptSelect
that takes into account the popularity of query reformulations in the log [Capannini
et al. 2011]. Vargas et al. [2012] propose to reformulate xQuAD and IA-Select by incor-
porating a formal relevance model. Vallet and Castells [2012] further extend the latter
two approaches to obtain personalized diversification of search results.

Being inspired from the electoral process used in some countries, Dang and
Croft [2012] introduce a novel explicit strategy that takes into account the proportion-
ality of the votes given to the query aspects. In a follow-up work, Dang and Croft [2013]
further argue that an explicit aspect need not be represented in the form of a set of

ACM Transactions on the Web, Vol. 10, No. 3, Article 15, Publication date: August 2016.



Scalable and Efficient Web Search Result Diversification 15:5

terms, but that considering each such term as a separate aspect is equally useful, or
even better. Wu and Huang [2014] propose to combine multiple retrieval results (from
different systems) for a given query with the expectation of having a more diversified
list at the end. Liang et al. [2014] leverage a similar idea, but in their work, after the
data fusion stage, the latent aspects are discovered by the LDA algorithm that also
takes into account the retrieval scores of the fused list. Finally, the combined list and
discovered aspects are all fed to the explicit diversification algorithm of Dang and Croft
[2012]. Note that theirs is not considered as an implicit approach as the initial data
fusion stage operates over the result lists that have been already diversified using some
explicit strategy. In contrast to the latter two approaches that fuse different retrieval
results for the same query, Ozdemiray and Altingovde [2015] adopt score-based (such
as CombSUM and CombMNZ) and rank-based (such as Borda voting and fusion ap-
proaches with Markov chains) aggregation methods to merge the multiple rerankings
of candidate documents for different query aspects. Ozdemiray and Altingovde [2014]
also propose strategies to determine the aspect weights during explicit diversification
and present gains in the diversification effectiveness of almost all of the state-of-the-art
explicit methods.

Note that while explicit diversification approaches are more effective than implicit
methods (e.g., see Capannini et al. [2011]), the best-performing methods (e.g., Santos
et al. [2010a] and Capannini et al. [2011]) essentially exploit external sources of infor-
mation such as query logs, and can identify a query aspect only after the reformulations
appear in the logs. This works well for popular queries, but queries in the long tail of the
popularity distribution may not benefit from such diversification approaches [Chapelle
et al. 2011]. In such cases, implicit diversification methods are still applicable, and this
underlies our motivation in this article to improve the efficiency of one of the most
effective implicit strategies based on DES and GLS, as we describe in Section 3.

2.3. Distributed Search on Computing Clusters

Nowadays, the usage of computing clusters with thousands of nodes for processing
of search requests on large document collections is firmly established. In such an
infrastructure, the index needs to be partitioned. In document-based partitioning, each
node in a cluster of servers is responsible for an index that is created for a particular
subset of documents. In term-based partitioning, each node stores the fragment of
an index corresponding to a subset of terms in the collection. The former approach
is usually preferred by large-scale systems [Dean 2009], due to its lower usage of
resources (like network bandwidth) and better load balancing.

In a document-based partitioning architecture, the query processing is said to be
embarrassingly parallel. In the basic query processing workflow (e.g., Ozcan et al.
[2012]), the processing task is split up between broker nodes that coordinate query
processing, and search nodes that hold index partitions. First, the search engine front
end forwards the query to one of the broker nodes in the search cluster. The broker node
in turn distributes the query to the search nodes that access their index files, compute
partial top-k results, and send them back to the broker. Then the broker determines
the global top-% results and contacts document servers to obtain snippets for result
presentation. Note that documents can reside at the search nodes or in a separate set
of servers [Dean 2009]. Similarly, it is also possible to let each physical node function
as both a search node and broker [Ozcan et al. 2012].

While several aspects of query processing are investigated over the distributed search
architecture (such as query forwarding [Cambazoglu et al. 2010], caching [Ozcan et al.
2012], etc.), to the best of our knowledge, no previous study addresses how online result
diversification algorithms can operate on such an architecture and how their results
might be affected according to the layer where the diversification takes place.
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3. EFFICIENT GREEDY LOCAL SEARCH FOR DES

As we also outlined in the previous section, casting the problem of search result di-
versification as a DES problem from Operations Research yields high-quality retrieval
results [Zuccon et al. 2012]. In this case, the driving motivation is that each document
in the top-% search results represents a facility at a different region and every customer
(i.e., each possible query intent) should be sufficiently close to one of these facilities.
This goal is achieved by choosing the facility locations (i.e., the top-£ documents) such
that the total distance to all other documents is minimized. As usual for diversifica-
tion, this coverage criterion is balanced with document relevance to determine the final
result set. Formally, the optimal set of top-£ results for a query q is given by

S* = arg min f(S) (1D
iz
f®==-2) rd+1-n > (rgeiél w(d, d’)), (2)
deS d'eD\S

where D is the set of candidate documents (i.e., an initial retrieval result for q), f(S)
the diversification objective function, r(d) the relevance score of document d for query
q, and w(d, d’) the distance between two documents d and d’'.

Zuccon et al. [2012] proposed an approximate solution for computing DES using
Greedy Local Search (GLS, see Algorithm 1). GLS starts with placing the most relevant
%k documents of N candidate documents (denoted with set D) into the set S, that is,
top-% search results. At each round of the algorithm, the documents in S are replaced
with documents that are not in S, to optimize the objective function score. If the latter
score does not change anymore, the algorithm terminates, as it has reached a global
or local minimum. The authors have also shown that framing result diversification
approaches such as MMR, MPT, and QPRP into DES and using the GLS approximation
is quite effective, and indeed yields considerably better diversification performance
than applying the traditional Best First Search heuristic.

ALGORITHM 1: GLS: Diversification as DES using Greedy Local Search [Zuccon et al. 2012].

Input: Dk, f
Output: S
S <{d,...,d}
repeat
ford € S do
for d € D\S do
S’ < (S\{d}) U {d'}
if /(S") < f(S) then
| S«¢&
end
end
end
until S does not change

While exhibiting an impressive diversification performance, GLS is computationally
expensive. Each round of Algorithm 1 requires swapping each document in S with each
document in D\, which means £ x N calls for computing the objective function, f(S).
As shown in Equation (2), the computation of f(S) also requires finding the closest
document in S to each document in D\S, and this costs another N x & operations to
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compute pairwise distances. Thus, in total, the computational complexity of a single
round of the algorithm is O(N?k?). Assuming that the algorithm converges in IgLs
rounds, the overall complexity is O(N2k2Iqrs).

Note that if the distance w(d;, d;) is computed on the fly, this cost would further
increase by the complexity of the document similarity measure (e.g., for the cosine-
based similarity O(min(|d;|, |d;|)). Therefore, we assume that all pairwise distances
among the candidate documents (typically top-100 or top-1,000) are computed once (in
a preprocessing stage) and then cached till the end of processing (as in Minack et al.
[2011]). In Table I, we provide the breakup of CPU and memory consumption for this
latter case (i.e., with cached distances). Given that there is no bound on the convergence
of the algorithm and it might take many rounds until it converges (as we illustrate in
our experimental evaluations), the algorithm is expensive for practical scenarios.

Clustering-GLS (C-GLS) algorithm. In this article, we propose to improve the effi-
ciency of the GLS solution by employing clustering to approximate the distance com-
putation stage for the objective function computation (see Algorithm 2). In particular,
we form a clustering of the documents in D such that each document falls into a single
cluster C with centroid ctr(C). Instead of storing pairwise distances, w(d;, d;), we store
for each document the distance to all cluster centroids, w(d;, ctr(C;)). Then, while com-
puting the distance of documents that are in D\S to those in S, instead of considering
every single document in D\ S, we only consider cluster centroids, that is, as an approx-
imation of the document space D\S (compare Figure 1(a) and (b)). As our result set
can represent at most % different query intents, it is sufficient to split D into % different
clusters C;. With C = {C4, ..., C}}, the cluster-based objective function becomes

f(S)=—x Zr(d) +(1 - A); (I(li’leiél w(d, ctr(C))). (3)

deS

As Algorithm 2 shows, computing this objective function has a complexity of O(%k?)
instead of O(k - N). Since the objective function is called £ x N times, the overall
complexity of the algorithm becomes O(NE?) (per round).

In the clustering stage, we essentially employ the k-means clustering algorithm. This
indeed is a natural choice for the GLS problem; as already pointed out in Zuccon et al.
[2012], for A = 1, the objective function (Equation (2)) leads to k-medoids clustering
of D as a result. In our evaluations, we also experiment with a single-pass approach

ALGORITHM 2: Objective Function for C-GLS

Input: S, A
Output: score
relscore « divscore < 0

ford € S do
| relscore « relscore — Ar(d)
end
for C € C do
minDist < 1
ford € S do
| minDist < min(minDist, w(ctr(C), d))
end
divscore « divscore + (1 — A)minDist
end

score « relscore + divscore
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3 <{}2}J w(d, d’)> > (ldneusl w(d, ctr(C)))

d’eD\S cec

(a) (b)

Fig. 1. Objective function computation for (a) GLS (i.e., for each document d’ in D\S, we compute the
distance w(e) to each document d in S) and (b) Clustering-GLS (i.e., for each cluster centroid C in D\S, we
compute the distance to each document d in S).

based on the list of clusters idea introduced by Chavez and Navarro [2005] and adopted
for diversification by Gil-Costa et al. [2013].

Clustering®-GLS(C2-GLS) algorithm. When choosing reasonable 1 values, that is,
values that lead to a balance between relevance and diversity, it can be observed
that documents with a low relevance score don’t end up in the final top-£ result set,
regardless of the chosen DES variant. In a sufficiently large document collection, it
is safe to assume that for several documents matching a specific query intent, the
more relevant ones will be preferred (although such a selection might not lead to the
perfect result set composition). It is therefore very ineffective to try replacement candi-
dates d’ at random (Algorithm 1, Line 6); instead, we should identify the most promis-
ing candidates for each query intent and limit the greedy search procedure to this
selected set.

We exploit clustering again to identify these candidates as well as using the objective
function shown in Algorithm 2 (and hence we call this strategy C2-GLS). We sort the
documents of each cluster by relevance and define our candidate set TopC as the
union of the top-r documents from each cluster C;. By taking only these most relevant
documents into account and with R = |topC|, we achieve a complexity of O(RE?) (per
round), which is a further improvement over O(N%?) given that R <« N.
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Table |. Complexity of Diversification Algorithms (/¢ Denotes the Number of Rounds for
Clustering; CPU Complexity Costs for the Actual Diversification Stage Are in Terms
of the Number of Distance Computations per Round)

Algorithm CPU (Preprocessing) CPU (Diversification) Memory
GLS O(N?) O(N?k?) O(N?)
C-GLS O(NEI;) O(NE3) O(NE)
c2-GLS O(NEI:) O(RE3) O(NE)

Table I shows the cost breakup of the so-called Clustering-GLS (C-GLS) and
Clustering?-GLS (C%-GLS) strategies with the k-means clustering algorithm. The pair-
wise distance computation cost now reduces to O(NkI:), where Iz is the number of
iterations for k-means clustering. Note that the clustering algorithm is expected to
converge in a few iterations as N is at most a few thousands in practical settings. More
crucially, since the computation of f(S) now involves comparison of cluster centroids
to the top-£ documents, it has O(kN) complexity, reducing the overall complexity of
Algorithm 1 from O(N?E?) to O(NE?) and O(RE?) (per round) for the C-GLS and C?-
GLS strategies, respectively. Given that % is usually one or two orders of magnitude
smaller than N (i.e., k = 10 while N is either 100 or 1,000), this is a crucial improvement
in terms of efficiency. Furthermore, our C-GLS and C?-GLS strategies have a memory
footprint linear in the document collection size, that is, O(INk) instead of O(N?), as we
only need to store for each document the distance to the cluster centroids. Last but not
the least, the use of cluster centroids also induces a smoothing effect on the distance
values, and the proposed algorithms converge in a smaller number of rounds (as shown
in the experiments).

4. DISTRIBUTED DIVERSIFICATION

While the effectiveness and efficiency of the diversification algorithms have received
serious attention in the literature, to the best of our knowledge, the architecture over
which these algorithms would be employed has not been considered. In this section, we
introduce two distributed diversification approaches and discuss their pros and cons in
a realistic setup.

In practice, all large-scale search engines operate on a number of geographically
distributed computing clusters, each with tens of thousands of servers (nodes).! Each
node in a cluster stores an inverted index that corresponds to a randomly partitioned
subset of the entire collection, as well as other data statistics (such as document lengths,
ete.) required for query processing. A search cluster has one or more broker nodes that
are responsible for forwarding the query to all search nodes, gathering the top-% partial
results from these nodes, and merging the partial results to obtain global top-£ results.

In this section, we investigate diversification of search results in a typical search
cluster as described earlier. We envision that result diversification for a given query can
take place either in the broker node or in the indexing nodes and define corresponding
strategies as follows:

Broker-based diversification (BB-Div). This is the straightforward case where the
broker runs a diversification algorithm once it collects and merges all the partial
results from the search nodes (see Algorithm 3). Assuming that each of the P nodes
returns the top-% (partial) results computed on its local collection Dp, the broker will
have a set of P % k documents. Then, it can apply the diversification algorithm on
these P x k documents or further restrict this initial set to the top-IV results with the
highest relevance scores (for the sake of efficiency). We opt for the latter option as it is

In this work, we focus on distributed query processing within a single search cluster that can usually
capture a replica of the entire web index.

ACM Transactions on the Web, Vol. 10, No. 3, Article 15, Publication date: August 2016.



15:10 K. D. Naini et al.

W 41 (0.95) W 47 (0.95)
I 47 (0.95) [ d9 (0.85) d7 (0,95)
Broker d (0.90) Broker @ d2 (0.80) = d9 (0.85)
I 2 (0.80) 3 (0.75)
[ a4 (0.80) & e B4 ds (0.70)
O/ T B s 070 W 095 <l & d7 W 6 (0.65)
&2 A5 d8 44 (1.80) 3l dlll o
DIV Cov) DIV
W 41095 d4 (0.80) W 47(095) B 41095 dd (0.80) B &7 095)
W ©s0) | |E ds070) B a5 (0.90) W 2080 | B d5070) B s 090
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Fig. 2. A toy example for (a) broker-based and (b) node-based diversification strategies (all nodes and the
broker return top-2 results). Note that the final diversified results differ.

ALGORITHM 3: BB-Div

Node Dpj, <= Top(Dp, k) // Compute local top-k result
Broker for P € P do
| D< DUDpy // Merge top-k from nodes
end
D < Top(D, N) // Keep top-N results

S < Diversify(D, k)

more likely in practice (otherwise, for a typical cluster of 50,000 servers, the candidate
set would be huge). Besides, as we discuss in the next section, fixing the candidate
set size allows a fair comparison of the distributed diversification approaches in our
simulations. Thus, in Algorithm 3, the broker first calls the function 7Top(.) to construct
the candidate set D of size NV, and then invokes the diversification algorithm to obtain
the final result set S (of size k). Note that if the diversification algorithm imposes an
order on the documents selected into S (e.g., by generating a score), the results are
presented in this order. Otherwise, for the algorithms (like DES) where the output S
is a set but not a ranked list, the final top-% results are still presented in the order
of their initial relevance scores. The BB-Div strategy is illustrated in Figure 2(a) for
a toy scenario with the latter assumption. In this scenario, d; and d; are sent to the
broker as they achieved the highest relevance scores at their nodes; at the end of the
diversification applied at the broker, we assumed both appeared in the final result,
because they are both relevant and also different from each other (as denoted by
different color codes and textures in the figure).

The advantage of the broker-based diversification strategy lies in its simplicity and
practicality; it can be directly coupled with an existing search system. On the other
hand, there are a couple of drawbacks that should be taken into account in terms
of the efficiency and effectiveness of the diversification: First, as each server returns
its top-% results (where % is usually 10), the candidate list to be diversified can miss
results that are related to different interpretations of a query, especially if a particular
interpretation dominates the result set. For instance, for the query Java, partial top-10
results from each node can rank only those documents related to Java as a programming
language, so that diversification in the broker by setting N to 100 or 1,000 (or even
using all P x k results) might be suboptimal, simply because the candidate set is
not large enough to encounter the documents that cover different query intents. We
illustrate this case also in Figure 2(a): the third node returns its top-2 results (d; and
dg), both of which have the same pattern/color, and hence misses the third result, dy,
which is different from the first two documents. This might be remedied by increasing
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the partial result set size if the query can be identified as ambiguous beforehand, which
is a nontrivial issue on its own (e.g., see Capannini et al. [2011]).

As a further yet related efficiency problem, the broker-based diversification requires
the document vectors for the top-IN documents to be transferred to the broker node, as
most of the implicit and explicit diversification approaches need the document vectors.
For instance, all implicit diversification approaches we focus on in this article would
need vectors for pairwise distance computations. Indeed, even for an explicit diversifi-
cation technique like xQuAD [Santos et al. 2010a], the document vectors may still be
required to compute the similarity of explicit query intents to each candidate document
in the broker.?2 Moving document vectors among the nodes incurs some network cost
even if each document resides in a different node and transfers can be processed in
parallel. This cost would further increase for larger values of N and/or partial result
set size. In the next section, we provide a detailed analysis of the network cost for this
scenario. Note that once document vectors are transmitted to the broker, the pairwise
distances (or coverage of explicit query aspects) have to be computed on the fly, since
the top-N candidate documents will be almost always compiled from different nodes
(due to partitioning of the collection uniformly at random to the nodes), and hence,
these distances cannot be computed a priori.

Node-based diversification (NB-Div). An alternative strategy is applying the result
diversification in each search node and combining the partial top-£ results that are
already diversified (see Algorithm 4). In this case, each of the P nodes first obtains the
candidate set Dp y (of size N) on its local collection Dp and then calls the diversification
algorithm to select the diversified top-£ set into Sp ;. The generated partial results are
simply merged at the broker based on their relevance scores (or diversification scores,
if available) to create the global top-k answer. This case is illustrated in Figure 2(b). In
this case, the top-ranked document d; is eliminated at the node on which it is hosted,
as its successors in the list dy, which has a lower relevance score, is assumed to have
a much higher dissimilarity to the third document in the list (d3) (to illustrate how
NB-Div differs from BB-Div), and hence, these two documents, d; and ds, are sent to
the broker.

ALGORITHM 4: NB-Div
Node DP,N & Top(Dp, N)
Spr < Diversify(Dpy, k)

Broker for P ¢ P do

| S<SuUSps // Merge Div-k from nodes
end
S < Top(S, k) // Keep top-k results

As the indexed documents can be stored along with the index at each node [Ozcan
et al. 2012], the node-based diversification strategy has no transfer costs to access the
documents. Furthermore, similarities between a certain subset of documents (such as
those with the highest PageRank scores or highest frequency in the query results)
can be precomputed and cached, to be used for different queries. This strategy also
allows considering a deeper pool of documents while still executing the diversification
algorithm for the top-N candidates. That is, for a fixed value of N, the cost of running

2Alternatively, each query aspect has to be sent back to the nodes and the relevance scores for each such
aspect and every document in the candidate set need to be computed using the inverted index. We further
investigate the efficiency of this approach in the next section.
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a diversification algorithm at the broker (excluding the document transfer times as
discussed earlier) is the same as running the same algorithm at the nodes, but since
each node has its own top-N set, it is more likely to encounter documents with diverse
interpretations (e.g., in the Java example earlier). However, this might also work in the
reverse direction: when each partial result set is locally diversified, some of the results
in partial top-k can indeed have a very low global rank in terms of relevance; that is,
some potentially more relevant results might be sacrificed at each node for diverse yet
very low-ranked results. This is an interesting tradeoff that might require adaptive
solutions based on the query properties, such as the degree of ambiguity [Santos et al.
2010b].

A particular disadvantage of this algorithm is the lack of global knowledge during
the diversification stage. That is, since each list is diversified locally, the relative order
of diverse intents might be similar (e.g., all top-1 documents from each node might
be relevant for the programming language intent for the Java query) and the simple
relevance-based merging at the broker can easily end up with less diversification than
desired.

In the following section, we evaluate both the GLS-based implicit diversification
algorithms and xQuAD, a well-known explicit diversification algorithm, in a distributed
environment; observe how the aforementioned tradeoffs affect their effectiveness and
efficiency; and draw conclusions for designing and employing diversification algorithms
in large-scale search systems.

5. EXPERIMENTS AND RESULTS
5.1. Experimental Setup

Document collection. In this article, following the practice in the diversification field,
we use one of the largest available web datasets with expert assessments, namely, the
Clueweb09 Part-B collection?® that includes around 50 million web pages. We index the
collection using the Zettair IR system,* with the “no stemming” option. All stop words
and numbers are included in the index, yielding a vocabulary of around 160 million
terms.

Queries and initial retrieval. We use the query topics and relevance judgments
released for TREC 2009 and 2010 Diversity Task® that include 50 and 48 topics, re-
spectively. For each topic, there are a number of predefined subtopics (between one and
eight) that are used during the judgment process, so that each document annotated as
relevant is also associated with one or more subtopics from this list. The TREC queries
are generated automatically using the title fields of the topics.

Additionally, we employ a third and larger set (denoted as @1000) that includes
1,000 queries that are sampled from the AOL 2006 query log [Pass et al. 2006] and can
retrieve nonempty results over our collection. This latter set is only used for evaluating
efficiency but not effectiveness, as there are no available relevance judgments for the
queries in this set. A similar approach is also followed in Gil-Costa et al. [2013] for
evaluating diversification efficiency.

We used our own IR system (also employed in Ozdemiray and Altingovde [2015])
to process the queries over the index. As the relevance model, we use a variant of
the well-known Okapi-BM25. We set the free parameters %2, and b to 1.2 and 0.75,
respectively.

Shttp://www.lemurproject.org/clueweb09.php/.
‘www.seg.rmit.edu.au/zettair/.
S5http://trec.nist.gov/data/web09.html.

ACM Transactions on the Web, Vol. 10, No. 3, Article 15, Publication date: August 2016.


http://www.lemurproject.org/clueweb09.php/.
file:www.seg.rmit.edu.au/zettair/.
http://trec.nist.gov/data/web09.html.

Scalable and Efficient Web Search Result Diversification 15:13

Document similarity computation. We employ the usual cosine similarity of doc-
ument vectors with tf-idf weights for computing the similarity s(d, d’) between two
documents d and d'.

Diversification algorithms. In addition to GLS and its proposed variants the C-GLS
and C2-GLS methods, we involve List of Clusters Diversification (LCD) and xQuAD as
further baselines from the implicit and explicit diversification literature, respectively.
We summarize their implementation and parameters as follows.

GLS, C-GLS, and C?-GLS. As discussed in the previous sections, we focus on desir-
able facility placement (DES) approaches and evaluate three approximate solutions:
GLS from Zuccon et al. [2012], C-GLS, and C2-GLS. In Zuccon et al. [2012], it is also
shown that well-known diversification techniques like MMR, QPRP, and MPT can be all
modeled within the DES framework, by choosing corresponding relevance and distance
measures in Equation (2). Their experiments further reveal that the best-performing
strategy in the DES+GLS framework is MPT, outperforming MMR and QPRP. There-
fore, in this article, we instantiate the objective function in Equations (2) and (3) for
the MPT approach as in Zuccon et al. [2012] for all three diversification algorithms. So,
r(d) is set to the document’s BM25 score (normalized per query by dividing relevance
scores by the maximum BM25 score for a given query) and

w(d,d) =2 xbxo?xwg x(1—s(d,d)), 4)

where wy is the importance weight of the rank of d’ in S, computed in the same fashion
to discounting factors of the nDCG metric [Jarvelin and Kekéldinen 2002], and b and
o2 are treated as parameters for MPT following the practice in Zuccon et al. [2012].
We experiment with values of b in the range [1, 10] with increments by 1, and o2 in
the range [107%, 10] incremented by orders of 10. Finally, for our C2-GLS algorithm, we
set r to 5; that is, we consider the top-5 most relevant documents of each cluster in the
algorithm.

LCD. As a further baseline, we involve another implicit approach, namely, the List
of Clusters Diversification (LCD) algorithm introduced by Gil-Costa et al. [2013]. As
discussed in the related work section, this latter work also aims to improve the ef-
ficiency of implicit diversification and proposes three different methods that utilize
metric spaces for efficient computation of the pairwise distances. Among these meth-
ods, we choose LCD as the baseline for two reasons. First, the LCD method applies
clustering for diversification, so it is methodologically close to our C-GLS and C?-GLS
methods that also employ clustering, albeit as a preprocessing stage. Second, according
to their experimental results, when the underlying retrieval model is BM25 (which is
also the case in our article), the best-performing method is LCD (please see Table I
in Gil-Costa et al. [2013]).

In a nutshell, the LCD algorithm works as follows. The document with the highest
retrieval score is selected as the center of the first cluster, and the distance of all
the other documents to the center is computed. Then, a fixed number, say, r, of the
documents that are nearest to this first center are assigned to its cluster and removed
from the candidate set. The next cluster center is chosen as the one that maximizes
the sum of distances to the previous center(s), and again, the r-nearest documents are
assigned to this cluster. The process continues until all the candidate documents are
clustered and results in a List of Clusters (LC) [Chavez and Navarro 2005]. Finally, the
LCD algorithm ranks the cluster centers at the top of the final result list (in the order
of the discovery) and then lists their members as blocks (in the order of relevance) in
the corresponding order of their centers. In our implementation of LCD, we set the
cluster size, r, as the value that yields the highest diversification performance for each
query topic set.
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xQuAD. While our cluster-based solutions are intended to improve the efficiency of
GLS as an effective implicit diversification algorithm, the strategies proposed for a
scalable distributed architecture are independent of the diversification algorithm; that
is, any kind of diversification approach can be incorporated into BB-Div and NB-Div
strategies. Therefore, we do not restrict our evaluations over the distributed architec-
ture to only implicit diversification algorithms, but also employ xQuAD as a further
baseline. We believe that xQuAD is a good representative of the class of explicit diver-
sification algorithms, as it is placed among the top performers in the diversity tasks of
TREC from 2009 to 2012. Furthermore, most recent explicit diversification algorithms,
namely, IA-Select [Agrawal et al. 2009], xQuAD [Santos et al. 2010a], PM2 [Dang
and Croft 2012], and ranking aggregation-based methods proposed in Ozdemiray and
Altingovde [2015], all need to compute the relevance scores of the candidate documents
for the query aspects, which means that they would incur the same cost in terms of the
network communication in a distributed setup. Hence, xQuAD serves as an adequate
representative also from the latter perspective.

We implemented xQuAD following the common practice in the earlier works [Santos
et al. 2010a; Dang and Croft 2012; Ozdemiray and Altingovde 2015] to simulate an
ideal setup, that is, with the perfect knowledge of the query aspects. To this end,
explicit query aspects are generated using the official TREC subtopic descriptions for
each topic. In our experiments, we test all values of the tradeoff parameter A in the
[0,1] range with a step size of 0.01 and report the results for the A that optimizes «-
NDCG@20. Note that, in a more realistic scenario, the query aspects could be obtained
from the query suggestions of a search engine [Santos et al. 2010a] and X values could
be learned within a machine-learning setup as in Santos et al. [2010b]. However, we
prefer to use the best-performing setup for xQuAD as our goal here is not comparing
the effectiveness of implicit and explicit diversification algorithms, but providing an
in-depth investigation of how these algorithms perform when they are incorporated
into our distributed diversification strategies.

Clustering algorithms. As discussed in Section 3, we essentially employ the standard
k-means clustering algorithm for the preprocessing in the C-GLS and C?-GLS methods.
As a further baseline, we employ the LC approach [Chavez and Navarro 2005] described
before in the context of LCD, as it is a single-pass algorithm and found to be efficient
when the target number of clusters is small [Gil-Costa et al. 2013].

Evaluation metrics. We use the evaluation software ndeval provided as part of the
TREC Diversity Task. We report effectiveness results using «-NDCG [Clarke et al.
2008], ERR-IA [Chapelle et al. 2009], and subtopic recall (S-recall) [Zhai et al. 2003],
which are widely used in the literature. To evaluate efficiency, we report the elapsed
time for the preprocessing (i.e., pairwise distance computations for GLS, and the cost
of k-means or LC clustering for the proposed methods C-GLS and C?-GLS) and actual
diversification stages, per query. To facilitate the reproducibility of our results by others,
we also report machine-independent measures, namely, the average number of rounds
till convergence, average number of times for invoking the objective function (in each
round), and average number of lookups for pairwise distances (between two documents
or between a document and a cluster centroid) in each call of the objective function.
Finally, for the distributed diversification setup, we evaluate the performance in terms
of the network communication cost, namely, total volume of the transferred data (in
bytes) and transfer time (in milliseconds).

5.2. Evaluation of the C-GLS and C2-GLS

As our first goal is improving the efficiency of the GLS solution for the DES approach in
result diversification, we compare the effectiveness and efficiency of GLS to the C-GLS
and C2-GLS strategies that are proposed in this article. In this set of experiments, we
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Table Il. Retrieval Effectiveness of the Diversification Algorithms. Type Field Denotes Implicit
or Explicit Diversification

ERR-IA a-NDCG S-recall
TREC 2009
Algorithm Preproc. Type @5 @10 @20 @5 @10 @20 @5 @10 @20
Baseline None 0.120 0.134 0.142 0.183 0.217 0.250 0.256 0.346 0414
LCD Imp. 0.120 0.134 0.142 0.183 0.217 0.250 0.256 0.346 0.414
GLS Imp. 0.150* 0.162* 0.168* 0.228* 0.248 0.269* 0.286* 0.347 0.391

C-GLS k-means Imp. 0.155*% 0.164* 0.171* 0.233* 0.248* 0.272* 0.316* 0.353 0.420
C%.GLS k-means Imp. 0.153* 0.163* 0.169* 0.230* 0.247* 0.270 0.313* 0.381 0.435

C-GLS LC Imp. 0.156* 0.169* 0.175* 0.227* 0.250* 0.276* 0.299* 0.351 0.424
C%.GLS LC Imp. 0.146* 0.158* 0.165* 0.220* 0.244* 0.270 0.291 0.368  0.426
xQuAD Exp. 0.158 0.175 0.183 0.226 0.264 0.298* 0.288 0.390" 0.460*f
TREC 2010

Baseline None 0.141 0.156 0.165 0.182 0.214 0.245 0.276 0.377 0.452
LCD Imp. 0.141 0.156 0.165 0.182 0.214 0.249 0.276 0.377 0478
GLS Imp. 0.138 0.156 0.166 0.184 0.221 0.255 0.276 0.386 0.483

C-GLS  k-means Imp. 0.168*" 0.187* 0.195* 0.209*' 0.249* 0278 0.287 0408 0.507*
C2.GLS  k-means Imp. 0.164* 0.175 0.184* 02101 0.231* 0.265* 0.310 0.385 0.506

C-GLS LC Imp. 0.151* 0.162* 0.169* 0.208* 0.233*F 0.266*" 0278 0.356  0.432
C2GLS LC Imp. 0.159* 0.176*7 0.185*1 0.202*" 0.238*1 0.270*7 0.298 0.395 0.502
xQuAD Exp. 0.177 0.194 0200 0234 0.272*0 0.293* 0.390*' 0.488*" 0.526*

The superscripts (x) and () denote a statistically significant difference at the 0.05 level from the baseline and
GLS algorithms, respectively. The xQuAD algorithm that utilizes explicit knowledge of aspects is included
only for reference, to be considered in the evaluation of the distributed framework.

assume a single-node architecture as is typical in the literature; that is, for a given
query, we retrieve the top-IN documents (D set) from the entire collection and then
rerank these candidate documents to obtain the final top-% results (S set) using GLS,
C-GLS, and C2-GLS with MPT instantiation. We set 2 = 20 and N = 100.

Effectiveness evaluation. In Table I, we compare the effectiveness of the baseline and
proposed diversification algorithms and the standard BM25 baseline, that is, retrieving
the top-20 most relevant documents without any diversification, for the TREC 2009
and 2010 topic sets. First of all, we observe that the nondiversified baseline using
BM25 is much better than the language model baseline reported in Zuccon et al.
[2012]. For instance, while NDCG@5, @10, and @20 are found to be 0.105, 0.150, and
0.207 in Zuccon et al. [2012], our baseline yields 0.183, 0.217, and 0.250, respectively.
Capannini et al. [2011] also report values closer to ours, namely, 0.190, 0.212, and
0.240, respectively, for NDCG@5, @10, and @20 while they employed the Divergence
from Randomness (DFR) model for the retrieval. We believe that these differences
can be caused by different choices that might be made during document processing,
indexing, and/or query processing, as each of these stages involves several parameters
that can affect the final result.

Table IT shows that xQuAD, in its best-performing setup, can beat both the standard
baseline and implicit diversification approaches, a finding that confirms the previous
results in the literature. As we have pointed out, our goal in this work is improving
the efficiency of GLS as an implicit diversification solution, as such approaches are
viable/helpful for a wide range of practical cases where the query aspects cannot be
known in advance. Therefore, here we provide the effectiveness values for nondis-
tributed xQuAD only for reference, to enable the analysis of its performance within the
distributed framework in the following section.

For the implicit strategies, our experiments reveal that GLS can outperform the stan-
dard baseline, although the gains are not as pronounced as those reported in Zuccon
et al. [2012]. In contrast, the alternative implicit diversification baseline, LCD, can
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Table IlI. Diversification Performance («-NDCG @20) Versus the Number of Clusters (k)

Preprocessing No. of Clusters (k)
Topic set  Algorithm  Algorithm 5 10 15 20 25
C-GLS k-Means 0.266 0.266 0.270 0.272 0.267
TREC09 C2-GLS k-Means 0.263 0.270 0.258 0.270 0.267
C-GLS LC 0.274 0.276 0.270 0.276 0.272
C2-GLS LC 0.259 0.265 0.268 0.270 0.258
C-GLS k-Means 0.264 0.247 0.261 0.278 0.259
TREC'10 C2-GLS k-Means 0.258 0.255 0.256 0.265 0.256
C-GLS LC 0.265 0.266 0.262 0.266 0.263
C2-GLS LC 0.258 0.266 0.266 0.270 0.260

improve the nondiversified BM25 ranking only for a couple of cases for the TREC 2010
topic set. Note that the latter finding is not far from the earlier results reported in
Table I of Gil-Costa et al. [2013], where an improvement of at most 0.0067 is observed
for LCD using similar metrics at the cutoff value 20. These results also justify our goal
of improving the efficiency of GLS in this article, due to its high effectiveness as an
implicit diversification algorithm.

Our proposed methods, C-GLS and C?-GLS, are evaluated using two different clus-
tering algorithms, namely, k-means and LC. Table II shows that, especially for the cases
with the k-means algorithm, our methods have no adverse impact on the diversification
effectiveness, and indeed, at almost all rank cutoffs, both of the proposed strategies are
better than the baseline and perform comparable to (or, especially for the TREC 2010
set, even better than) the GLS algorithm. The latter finding on the TREC 2010 dataset
can be explained by the smoothing effect of the clustering strategies; that is, our algo-
rithm avoids considering very diverse candidates with very low relevance scores. We
also observe that using k-means for the preprocessing yields higher effectiveness than
using LC for the majority of the cases (e.g., C2-GLS with LC is inferior to the version
with k-means for the TREC 2009 set for almost all metrics). This is also expected, as
the multipass nature of the k-means algorithm may yield a better clustering of the
candidate documents.

Impact of the parameters N and k. We also analyze the sensitivity of our methods for
the candidate result set size (V) and the number of clusters (k). For the former parame-
ter, earlier studies using a similar TREC setup report that smaller values (such as 50 or
100) are better [Dang and Croft 2012, 2013; Ozdemiray and Altingovde 2015]. A possible
explanation for this observation is that the documents that are ranked too low are more
likely to be irrelevant yet diverse, and hence their inclusion in the final result reduces
the effectiveness. In our case, we also experimented for N € {50, 100, 200, 500, 1000}
and found out that a candidate set of 100 consistently yields the best scores for more
than half of the cases on the TREC 2009 and 2010 sets for GLS, as well as the C-GLS
and C2-GLS methods (with the k-means clustering).

Another important parameter is the number of clusters, %, that is intuitively set to
the final result set size (i.e., 20), as it is possible to represent at most 20 different
clusters (and, equivalently, intents) in the final query result. We also experimented for
k € {5,10, 15, 20, 25}. In Table III, we only report the results in terms of the «-NDCG
metric at the cutoff value of 20, as the results for the other metrics exhibit completely
similar trends and are discarded for the sake of brevity. These experiments reveal that
for the majority of the cases, setting % as 20 yields the best effectiveness score in this
setup, a finding that justifies our intuitive choice.

Finally, we investigate the stability of the performance of our methods when the
k-means algorithm is initialized differently, due to random selection of the seeds (note
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Table V. Statistics of the Diversification Performance for 10 Different Clustering Structures Produced
by the k-Means (GLS Scores Are Provided for Easy Comparison)

ERR-IA a-NDCG S-recall

TREC 2009

Algorithm @5 @10 @20 @5 @10 @20 @5 @10 @20

GLS 0.150 0.162 0.168 0.228 0.248 0.269 0.286 0.347 0.391
AVG 0.152 0.165 0.171 0.225 0.248 0.273 0.285 0.350 0.416

C-GLS MIN 0.143 0.159 0.166 0.213 0.243 0.269 0.263 0.337 0.380
MAX 0.161 0.172 0.178 0.239 0.255 0.282 0.316 0.365 0.433
STDEV  0.006 0.005 0.005 0.009 0.004 0.005 0.011 0.009 0.019
AVG 0.154 0.165 0.172 0.225 0.247 0.272 0.291 0.355 0.420

C2.GLS MIN 0.150 0.161 0.169 0.218 0.239 0.264 0.272 0.335 0.390
MAX 0.161 0.170 0.178 0.235 0.252 0.283 0.319 0.389 0.446
STDEV  0.003 0.003 0.003 0.005 0.004 0.005 0.008 0.010 0.017

TREC 2010

GLS 0.138 0.156 0.166 0.184 0.221 0.255 0.276 0.386 0.483
AVG 0.159 0.174 0.183 0.203 0.234 0.267 0.295 0.385 0.498

C-GLS MIN 0.150 0.162 0.169 0.183 0.221 0.254 0.247 0.334 0.432
MAX 0.171 0.182 0.194 0.219 0.247 0278 0.342 0.424 0.530
STDEV  0.005 0.004 0.002 0.009 0.006 0.002 0.026 0.012 0.015
AVG 0.166 0.181 0.188 0.211 0.241 0.265 0.312 0.389 0.472

C2.GLS MIN 0.162 0.175 0.184 0.202 0.231 0.259 0.286 0.373 0.432

MAX 0.170 0.188 0.194 0.216 0.253 0.271 0.333 0403 0.506
STDEV  0.003 0.004 0.003 0.004 0.006 0.003 0.011 0.010 0.006

that this is not an issue for L.C as it always chooses the same seeds in the same order in
a deterministic manner). To this end, for each algorithm and topic set, we applied the k-
means algorithm 10 times, yielding different clustering structures, which are then used
in the diversification stage. In Table IV, we present the statistics for the diversification
performance of each algorithm with these 10 clustering structures in terms of the
minimum, maximum, and average scores for each metric. We also report the effective-
ness of the original GLS for each case, which is repeated from Table II to facilitate
the comparison. Our findings show that the effectiveness scores of the algorithms
are stable, as the standard deviation for each metric is very low. Furthermore, a
comparison of the average scores to the corresponding GLS row shows that our
methods consistently perform as well as the original GLS on average, even with
different clustering structures.

Efficiency evaluation. Being convinced of the effectiveness of our methods C-GLS
and C2-GLS, we turn our attention to their efficiency, which is our main focus here. We
report the preprocessing and diversification costs in terms of the CPU processing time.
While doing so, we discard the time for generating the candidate result set (D) and
retrieving the document vectors, as these stages have the same cost for all compared
approaches. Our implementations are single threaded and hence executed on a single
CPU, although we use a server with 31 Intel Xeon processors and a total of 32GB of
RAM, and running CentOS Linux 6.6 distribution.

Our results in Table V reveal that the implicit diversification baseline, LCD, is
extremely fast. Indeed, it is even faster than xQuAD, which is reported here only for the
sake of completeness, as most explicit approaches have lower computational complexity
due to their prior knowledge of the query aspects (e.g., see Ozdemiray and Altingovde
[2015]). However, as discussed before, the effectiveness of LCD is only slightly better
than the nondiversified BM25 ranking, rendering it rather useless in a realistic setup.
For the GLS algorithm with higher effectiveness, the online diversification stage takes
more than 500 milliseconds, which is again impractical.
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Table V. Processing Time of the Diversification Algorithms (Per Query) (the Last Column Denotes
the Improvement over GLS with Respect to the Total Processing Time)

Topic Preprocessing  Preprocessing  Diversification Total Impr.
Set Algorithm Algorithm Time (ms) Time (ms) Time (ms) over GLS
GLS 72.081 747.938 820.019 -
LCD N/A - 5.604 5.604 99%
C-GLS k-Means 138.244 38.375 177.149 78%
TREC 2009  C2-GLS k-Means 138.244 0.486 138.730 83%
C-GLS LC 19.104 38.905 58.009 93%
Cc?.GLS LC 19.104 1.441 20.545 97%
xQuAD N/A - 9.375 9.375 98%
GLS 92.395 770.687 863.082 -
LCD N/A - 8.175 8.175 99%
C-GLS k-Means 146.750 37.908 184.658 79%
TREC 2010  C2.GLS k-Means 146.750 0.481 147.231 83%
C-GLS LC 21.314 38.366 59.680 93%
C2.GLS LC 21.314 1.703 23.017 97%
xQuAD N/A - 9.591 9.591 98%
GLS 70.100 544.776 614.876 -
LCD N/A - 4.899 4.899 99%
Q1000 C-GLS k-Means 132.787 27.123 159.910 74%
C2.GLS k-Means 132.787 0.338 133.125 78%
C-GLS LC 16.248 217.244 43.492 93%
C?.GLS LC 16.248 1.100 17.348 97%

Fortunately, Table V demonstrates that our approaches (and especially C?-GLS)
reduce the actual diversification time of GLS by up to three orders of magnitudes
(e.g., 747.938 vs. 0.486ms for GLS and C2-GLS with k-means on the TREC 2009 topic
set, respectively). In terms of the preprocessing time, when we employ the k-means
algorithm, the clustering overhead of our approaches seems to be larger than the cost
of computing all pairwise distances for GLS. However, this is observed in a setup where
we use a straightforward implementation of the k-means algorithm (without any efforts
for optimization) and the parameters £ and N are set to rather close values, that is, 20
and 100, respectively. When we employ LC for the preprocessing stage, the clustering
overhead is significantly reduced, but in return for some reduction in the effectiveness
(cf. Table II). In practice, some search engines may even prefer to precategorize the
documents in its collection according to a taxonomy (as suggested in Agrawal et al.
[2009]) for various purposes (like improving the result relevance), and in this latter
case the preprocessing cost of clustering can be totally avoided.

Nevertheless, even when the preprocessing times are included, C-GLS (C2?-GLS)
with the k-means preprocessing yields an overall efficiency improvement of 78% (83%),
79% (83%), and 74% (78%) over GLS for TREC 2009, 2010, and Q1000 topic sets,
respectively. Remarkably, the overall processing time for the C-GLS (C2-GLS) algorithm
drops under, respectively, 200 (150) milliseconds, which makes it possible to satisfy
the demanding requirements of online query processing in real-life search systems.
Furthermore, under heavy workloads, the search engines may even switch to a less
effective yet more efficient preprocessing technique as a compromise, such as the LC
method, which yields an overall processing time of less than 25ms with C2-GLS (an
improvement of 97% over GLS) for all three topic sets.

In Table VI, we report the counts of key operations to shed light on the efficiency
gains provided by our methods. Note that, unlike the processing time, these operation
counts are independent of the experimental architecture, and hence, allow a more gen-
eral comparison among the algorithms. Table VI shows that the proposed approaches
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Table VI. Breakup of the Diversification Cost in Terms of the Key Operation Counts (Per Query)

Topic Preproc. No. of  No. of Calls Time No. of Iterations & Time for
set Algorithm  Algorithm Rounds to £(S) in £(S) Lookups per Call  Lookups
GLS 54.220 8,288.100 741.108 1,600.0 97.936
C-GLS k-Means 10.740 1,703.380  34.460 400.0 4.820
TREC 2009  (2-GLS k-Means 3.388 23.320 0.473 400.0 0.015
C-GLS LC 10.964 1,743.184  35.669 400.0 5.051
C%-GLS LC 8,327 70,469 1.377 400.0 0.076
GLS 41.400 8,308.020 765.259 1,600.0 118.217
C-GLS k-Means 10.313 1,679.300  34.189 400.0 7.371
TREC 20010 (2-GLS k-Means 3.958 23.813 0.468 400.0 0.047
C-GLS LC 11.313 1,704,854  34.658 400.0 6.784
C2-GLS LC 7.813 66.479 1.647 400.0 0.290
GLS 19.875 5,526.915 539.655 1,600.0 109.588
C-GLS k-Means 8.534 1,276.450  23.303 400.0 1.793
Q1000 C2-GLS k-Means 1.034 17.694 0.321 400.0 0.026
C-GLS LC 8.605 1,280.213  23.456 400.0 1.855
C2-GLS LC 2.291 51.433 1.031 400.0 0.139

significantly reduce the average number of calls for computing the objective function
and number of rounds till convergence, per query. Furthermore, the number of itera-
tions within the objective function per call (which is also equal to the number of distance
lookups) is also reduced: as also illustrated in Figure 1, while C-GLS and C2-GLS make
only 400 iterations (and lookups) per call, GLS requires 1,600 iterations.

We also investigate the relationship between the operation counts and diversification
time. It turns out that the majority of the diversification time is spent for computing
the objective function (cf. Table V). Therefore, the reductions provided by our methods
in two ways, namely, in the number of calls for the objective function and number of
iterations within the function, are almost exactly reflected to the diversification time.
For instance, for the TREC 2009 set, GLS calls the objective function 8,288 times, and
in each call of the function, the loop iterates 1,600 times (cf. Algorithm 2); while for
C-GLS (with k-means), these numbers are 1,703 and 400, respectively. Thus, in terms
of the operation counts, C-GLS should be 19.5 times faster than GLS, which is actually
reflected in the diversification times of 34.460ms and 741.108ms, respectively @.e.,
implying a speedup of 21.5 times). A similar proportionality is also observed between
C-GLS and C?-GLS: both methods iterate the same number of times (namely, 400) in
the objective function; however, the former calls it 1,703 times, whereas the latter calls
only 23 times (again for the TREC 2009 dataset), a reduction of almost 74 times, which
is almost perfectly reflected in the diversification times (i.e., 34.460ms. vs. 0.473ms,
indicating a speed-up of 73.2 times).

Finally note that the distance lookups during the computation of the objective func-
tion take a nonnegligible portion of the online diversification time (i.e., up to 20% for
different algorithms and datasets). Our methods again significantly reduce the time for
the lookups, as shown in Table VI. While we cache all the distances during the prepro-
cessing for all the methods compared here, for the scenarios where such a caching may
not be possible and the lookups have to be replaced by the actual distance computations,
our reductions for the online diversification time would be more emphasized. Overall,
all these findings confirm that the reductions shown in the algorithmic complexities
(cf. Table I) for the proposed methods are also reflected in the actual performance.

5.3. Evaluation of the Distributed Strategies

In this section, we investigate the impact of a distributed query processing architecture
on the diversification effectiveness and efficiency of the implicit (i.e., GLS, C-GLS, and
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Table VII. Retrieval Effectiveness of Distributed Diversification Algorithms for TREC 2009 and 2010 Topic Sets

ERR-IA a-NDCG S-recall
Topic Set Algorithm Dist. Strategy @5 @10 @20 @5 @10 @20 @5 @10 @20
BB-Div 0.152 0.164 0.169 0.228 0.249 0.270 0.285 0.348 0.393

GLS NB-Div 0.124 0.138 0.147 0.187 0.219 0.254 0.257 0.351 0.423

C-GLS BB-Di.v 0.155 0.164 0.171 0.233 0.248 0.272 0.316 0.353 0.420

TREC’09 NB-D}V 0.142 0.159 0.167 0.214 0.248 0.281 0.280 0.361 0.459
C2.GLS BB-Div 0.153 0.163 0.169 0.230 0.247 0.270 0.313 0.381 0.435

NB-Div 0.133 0.147 0.156 0.195 0.227 0.265 0.258 0.345 0.421

xQuAD BB-Div 0.152F 0.169" 0.178" 0.2207 0.256" 0.294" 0.299" 0.395" 0.461

NB-Div 0.136 0.149 0.160 0.202 0.229 0.275 0.267 0.347 0.465

GLS BB-Div 0.138 0.156 0.166 0.184 0.221 0.255 0.276 0.386 0.483

NB-Div 0.145 0.162 0.171 0.188 0.223 0.257 0.289 0.394 0.485

C-GLS BB—Di.V 0.168 0.187 0.195 0.209 0.249 0.278 0.287 0.408 0.507

TREC’10 NB-D.IV 0.165 0.177 0.188 0.214 0.238 0.277 0.324 0.392 0.513
C2-GLS BB-Div 0.164 0.175 0.184 0.210 0.231 0.265 0.310 0.385 0.506

NB-Div 0.153 0.168 0.178 0.193 0.228 0.264 0.281 0.386 0.482

xQuAD BB-Div 0.177" 0.1947 0.200° 0.2347 0.272F 0.293 0.3907 0.487 0.526f

NB-Div 0.154 0.176 0.191 0.204 0.256 0.312 0.319 0.469 0.631

The cases where the result of the BB-Div strategy differs significantly (at 0.05 level) from that of the NB-Div
strategy are denoted with 1.

C2-GLS with the k-means) and explicit (xQuAD) diversification approaches, in a setup
that employs either broker-based (BB-Div) or node-based (NB-Div) diversification, as
proposed in Section 4. To this end, we assume a simulated search cluster with P = 10
nodes. Given that the total collection is around 50 million documents, we believe the
choice of cluster size is realistic, as each node is typically expected to include a few
million documents (see, for instance Ozcan et al. [2012] and Cambazoglu et al. [2010]
and the industrial practice®). In our simulation runs, we first retrieve the top-1,000
documents for a given query ¢ and randomly distribute’ these results to each node so
that each node stores 100 documents (i.e., N = 100). We repeated each simulation run
five times and report the average results. As in the previous section, % is set to 20.

For broker-based diversification, each node returns its local top-20 results based on
the relevance scores, resulting in up to 200 documents. From these documents, the
broker selects the most relevant 100 documents (as we keep N = 100 through all
experiments for the sake of comparability) and executes the diversification algorithm
on the top-100 set to create the final result set of 20 documents.

In the case of node-based diversification, each node applies the diversification algo-
rithm to determine its local diversified result set of size 20 from its own 100 candi-
dates. These diversified sets are merged at the broker and the global top-20 results are
returned.

Effectiveness evaluation. In Table VII, we provide the evaluation results using TREC
2009 and 2010 topics for all four algorithms combined with each of the two distributed
diversification strategies. We see that broker-based and node-based diversification
strategies exhibit a similar effectiveness, but the former is slightly better for the ma-
jority of algorithms and evaluation metrics. The differences between two distributed
strategies are more visible for GLS (on TREC 2009 topics) and for xQuAD (on both topic
sets) and found to be statistically significant (at the 0.05 level using one-way ANOVA)
for the latter algorithm.

6http://www.searchtechnologies.com/enterprise-search-scalability.html.
"We discuss alternative document partitioning strategies later in the subsection entitled Critical
Assumptions.
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Fig. 3. Query-wise a-NDCG@20 scores for BB-Div and NB-Div using GLS, C-GLS, C2-GLS, and xQuAD
diversification algorithms (query ids sorted in ascending order of « —NDCG@20 scores for the baseline).

In addition to average values, for each diversification strategy, we also provide a
query-wise breakup of performances in Figure 3 for each of the algorithms, namely,
GLS, C-GLS, C2-GLS, and xQuAD, respectively. In the plots, queries are sorted in
the order of increasing «-NDCG@20 score obtained for the nondiversified baseline.
We see that, in line with the general trends, diversification algorithms are usually
outperforming the baseline. Interestingly, regardless of the layer of diversification (i.e.,
either at the broker or nodes), both xQuAD and GLS exhibit a more volatile behavior
in that they improve certain queries a lot but also hurt some others a lot. On the
other hand, our algorithms (especially C-GLS) behave more conservatively, but while
they usually improve the result diversity, the gains can be rather small for many
queries. Nevertheless, this is a positive finding for our cluster-based approaches as
their diversification performance seems to be more robust over a set of queries.

Next, we concentrate on the possible causes of the performance differences between
the distributed diversification strategies, especially for the GLS and xQuAD algo-
rithms. For both of the latter algorithms, BB-Div seems to outperform NB-Div for
the queries with higher «-NDCG scores (see corresponding plots in Figure 3). For a
better insight, in Figures 4(a) to 4(d), we show the effectiveness with respect to the
number of relevant documents (based on the relevance judgments) encountered in the
broker’s candidate set D (i.e., top-100 results) for each query. The figure shows that,
especially for xQuAD and GLS, the gap between BB-Div and NB-Div widens as the
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Fig. 4. Effectiveness of distributed diversification strategies versus the number of relevant documents in
the top-100 results.

number of relevant documents in the top-100 increases. This implies that, while the
NB-Div strategy works on a deeper pool (as each node operates on a different set of
candidate documents), its pool may not include as many relevant documents as that of
the broker. Supporting this latter hypothesis, for each query, Figure 5 shows the per-
centage of relevant documents in the top-100 and top-1,000 results, that is, the broker’s
candidate set and the union of the nodes’ candidate sets, respectively (as we distribute
the top-1,000 results of a query among 10 nodes in the simulation runs). We see that
while for some queries the percentage of relevant documents reaches up to 75% in the
top-100, the percentage of relevant documents in the top-1,000 does not increase pro-
portionally, and indeed, it remains mostly less than 10%. In other words, the biggest
possible advantage of NB-Div, being able to consider a deeper pool of documents, does
not necessarily help in this setup, as the majority of the documents in the candidate
sets of the nodes are indeed irrelevant.

In this sense, the potential of the NB-Div strategy should not be underestimated:
although it encounters many more irrelevant documents than the BB-Div strategy in
the current TREC evaluation setting, it can still provide comparable results to the
BB-Div strategy. We presume that in a setup where each query has more relevant
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Fig. 5. Percentage of documents judged as relevant in the top-100 and top-1,000 results for TREC 2009 and
2010 queries. Note that the x-axis represents the queries sorted wrt the number of relevant documents in
the top-100 for a more clear visualization.

documents and the initial retrieval strategy can retrieve more relevant documents
in the top-1,000, NB-Div might outperform BB-Div. However, further investigation
would require a test collection with a much higher number of relevance judgments.
We identify the latter point as a limitation of the experimental framework provided
by the TREC Diversification Task: the majority of the queries have a small number
of relevant documents (i.e., on average, there are around 200 relevant documents per
query in the TREC topic sets released between 2009 and 2012) and they are distributed
quite unevenly among the subtopics.

Efficiency evaluation. In this section, we compare the efficiency of BB-Div and NB-Div
in terms of the network communication costs. As a particular diversification algorithm
is always executed on a candidate set of the same size either at the broker or at the
nodes (and since the latter execution takes place in parallel), the processing cost of the
algorithm itself (as extensively discussed in Section 5.2) would be the same for BB-Div
and NB-Div. For this reason, our discussion in this section focuses only on the network
communication costs. In our analysis, as in the previous section, we employ GLS (and
its variants) and xQuAD as the representative methods for the implicit and explicit
diversification approaches, respectively. However, the cost formulas developed here are
applicable to any implicit diversification method that needs to access the actual docu-

ment vectors of the candidate documents (e.g., our C-GLS and C2-GLS, MMR [Carbonell
and Goldstein 1998], etc.), and any explicit method that needs to compute the scores
of the candidate documents for each (known) query aspect (e.g, PM2 [Dang and Croft
2012] and aggregation-based methods in Ozdemiray and Altingovde [2015]). In this
sense, our analysis sheds light on the general efficiency figures of the typical implicit
and explicit diversification approaches on a distributed setup. Therefore, in the follow-
ing cost formulas and experimental results, we prefer to label the cases as “implicit” or
“explicit” diversification, rather than using particular algorithm names.

For the more straightforward NB-Div strategy, there is no additional network com-
munication, assuming that each node stores the document vectors for the set of doc-
uments that are assigned to it, as well as the index on these documents,® which is

8We discuss alternative storage strategies for document vectors later in the subsection entitled Critical
Assumptions.
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Table VIII. Parameters for the Network Cost Computations

Parameter Description

|d| No. of distinct terms in a document

s Size of an entry in the document vector (in bytes)

|A] No. of aspects for a query

la| Size of a query aspect (in bytes)

f Size of an entry in the vector of aspect scores (in bytes)
O; Set of documents hosted at the node j

\4 No. of nodes that include at least one candidate document
T Transfer rate of the network (MB/s)

Table IX. Network Communication Costs for the Implicit and Explicit Diversification Approaches
with BB-Div Strategy

Algorithm Type Communication Volume Communication Time
- A > ldilxs
Implicit Z Id;| x s B0,
dieD max
Jje{l....P) T
Explicit >olail+ X (AIx )
> lail x [V | +(Nx|Alx| f]) max €A d<DnO;
a;cA Jje(l,...,P} T

a practical assumption also employed in earlier works (e.g., Ozcan et al. [2012]). In
contrast, the BB-Div strategy requires that the necessary information for the diversifi-
cation stage, which naturally depends on the type of the utilized algorithm, should be
transferred to the broker. In what follows, we analyze this latter case in detail.

In Table VIII, we list the parameters and their symbols to be used in the cost formu-
las, and in Table IX, we provide the formulas for the network cost of the implicit and
explicit algorithms when employed together with the BB-Div strategy. Note that the
communication volume is computed by summing the total amount of data (in bytes)
that needs to be transferred on the network. In contrast, network communication time
is computed as the time to transfer a data package to the broker from the node that
sends the maximum amount of data (note that the number of candidate documents
stored in a node and their total size may differ among the nodes).

We derive the formulas in Table IX based on the following facts. If BB-Div employs
an implicit diversification algorithm, it will need to fetch the document vectors of
the candidate results (so that the pairwise document similarities, as in GLS or MMR
[Carbonell and Goldstein 1998], or document-cluster similarities, as in the case of our
C-GLS and C2-GLS methods, can be computed). Hence, the network communication
volume is simply the sum of the lengths of the document vectors for all candidate
documents in D. In contrast, for the communication time, we compute the transfer
time from each node to the broker, which is based on the total document length of the
candidate documents hosted at a node, and take the maximum of these transfer times,
as the broker needs to wait until all data from the nodes arrive.

In case of an explicit algorithm, such as xQuAD, the broker should compute the score
of each query aspect for each candidate document using a retrieval model. This latter
score can be computed by either transferring the document vectors to the broker, of
which cost was already discussed for the BB-Div case, or, more conveniently, sending
the query aspects to those nodes that host the documents in the candidate set. In the
communication volume formula for the explicit case in Table IX, the first summation

ACM Transactions on the Web, Vol. 10, No. 3, Article 15, Publication date: August 2016.



Scalable and Efficient Web Search Result Diversification 15:25

Table X. Network Cost in Terms of the Communication Volume (in Bytes)
and Time (in Milliseconds) per Query for the BB-Div Strategy

Topic Set Div. Type Comm. Volume Comm. Time
TREC09 Implicit 391,360 5.159
TREC’10 Implicit 433,658 5.749
TREC09 Explicit 5,455 0.066
TREC’10 Explicit 4,845 0.058

represents the size of the query aspect strings (in bytes), which is the amount of data
that is sent to each node including a document in D. Then, each such node computes the
aspect-document score by using its local inverted index and sends back to the broker a
vector that involves the score of each candidate document for each aspect. The overall
communication volume incurred by this latter stage is N x |A| x f, where A denotes
the set of query aspects, f denotes the size of a score value, and N is the size of the
candidate set, as before.

To apply the cost formulas in Table IX in our experimental setup, we set the param-
eter s as 8 bytes, assuming that each entry in the document vector will include two
integer values, a term id and its frequency in the document. We also set the parameter
[ again as 8 bytes, assuming that the score of an aspect for a document is stored as a
double value. The transfer rate of the network, assuming a LAN, is set to 11MB/s. Note
that we discuss other possible values for these parameters in the following subsection.

Table X reveals that, as expected, explicit diversification algorithms incur network
costs that are two orders of magnitude smaller than those incurred by the implicit
algorithms; hence, if query aspects are available beforehand, employing an explicit
algorithm on top of the BB-Div strategy is more efficient. In contrast, for the practical
scenarios where no aspects are known and implicit methods need to applied, the BB-
Div strategy incurs some overhead in terms of the communication volume and time.
However, we envision that these additional costs are still affordable. For instance,
in a real-life setting, a typical query of 15 characters on average (e.g., see Kamvar
and Baluja [2006]) needs to be sent to several thousands of nodes, say, 50,000, at a
particular data center (this is a moderate estimation given that Microsoft had more
than 1 million servers in 2013%). With a back-of-the-envelope computation, we see that
even forwarding a query string to the nodes in the latter setup causes a communication
volume of 750,000 bytes, which is larger than the data volumes shown in Table X (e.g.,
391,360 and 433,658 bytes per query for the TREC 2009 and 2010 sets, respectively).
Furthermore, the communication volume formula in Table IX only involves N, the
size of the candidate set, as a parameter, but not the number of nodes; hence, the
overhead will be the same regardless of the number of nodes for a fixed N. Regarding
the network communication time, the cost is around 5ms using a moderate parameter
for the network transfer rate (i.e., 11MB/s) and should be clearly affordable in a real-
life setup. Therefore, we conclude that, when the candidate set D is small, the network
costs seem to be an affordable overhead, and BB-Div remains as a viable option for
applying implicit diversification in a distributed setup.

Critical assumptions. In our evaluation of the diversification algorithms in a dis-
tributed setup, we have some critical assumptions that are essentially based on the
common practice for web search setup and may not hold in different scenarios. We list
and discuss these assumptions as follows:

—Distribution of the collection: As discussed in the related work section, it is usu-
ally assumed that the state-of-the-art method used in partitioning the collection of

9http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/.
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a search engine is document partitioning, where each node (and its possible repli-
cas) in the system is responsible for a disjoint subset of the collection and the cor-
responding index. In the literature, different approaches for assigning documents
to the nodes are proposed. The most straightforward approach, as we also assume
here, is a random allocation. In contrast, alternative partitioning approaches usually
aim to store the similar documents at the same node, which can be achieved
via unsupervised clustering, using semantic catalogues, or exploiting previous query
results in the log (e.g., Puppin et al. [2006] and Cambazoglu and Baeza-Yates [2011]).
Despite its simplicity, the random document partitioning is attractive in many ways:
First, its implementation is practical, as a hash function can be used to quickly as-
sign each document to a node. In contrast, alternative approaches require running an
algorithm to determine the document’s node. Second, random partitioning achieves
good load balancing. In contrast, alternative document partitioning models usually
suffer from load imbalance; that is, some nodes need to answer a large number of
queries while some others stay idle. Finally, in the random partitioning, fault tol-
erance may be simply achieved by having a fixed number of replicas for each node.
For the alternative approaches, this issue is also more complicated due to the load
imbalance problem; that is, the nodes that include the documents from the most
popular sites may be accessed more and need to have a larger number of replicas.
In the light of these discussions, we believe that the random document partitioning
is the most practical approach and hence employed in large-scale search engines,
as also stated in Feldman et al. [2011]. Nevertheless, for the scenarios where top-
ically similar documents are assigned together to a single node (e.g., a metasearch
scenario as in Kulkarni and Callan [2010]), the query processing model would also
change (i.e., include a resource selection stage instead of forwarding the query to all
the nodes), and hence, our findings discussed in the previous sections may not hold.
Clearly, such scenarios are not in the scope of our article and can be investigated in
the future work.

—Index and document servers: In this work, following the practice in the earlier stud-

ies [Ozcan et al. 2012], we assume that a particular node stores both a disjoint subset
of the collection and its index. It is also possible that the document subset and its
corresponding index are stored in physically different servers, that is, at a document
and index server, respectively (e.g., see Dean [2009]). In this case, implicit diversifi-
cation methods with the NB-Div strategy would need to fetch the document vectors
from another server, yielding network costs similar to those in the BB-Div case. For
the explicit diversification methods with the NB-Div strategy, there would be still
no network costs, as these approaches use the index to compute the score of each
candidate document for each query aspect.

—System parameters: In our cost formulas shown in Table IX, we set the size of a

6.

document vector entry as 8 bytes, assuming that such a vector is composed of integer
pairs that represent a term identifier and its frequency in the document. In practice,
such a vector can have additional information and/or can be stored in a more efficient
way, that is, in a compressed form. We also assume a network speed of 11MB/s, which
might be very moderate for connecting the servers in a data center. Nevertheless, we
believe that replacing such parameters with more realistic values will not change
the trends reported in this article.

SUMMARY OF THE KEY FINDINGS

Our key findings in this article can be summarized as follows:

—Explicit diversification approaches are both effective and efficient, as xQuAD, a rep-

resentative explicit approach, spends around only 10ms for diversification, whereas
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the implicit algorithms are either efficient yet less effective (as in the case of LCD)
or effective yet inefficient (as in the case of the original GLS). Given that the explicit
aspects of a query may not be always available in practical scenarios, this finding
also justifies our first goal in this article, namely, improving the efficiency of GLS as
a promising implicit algorithm.

—Using clustering as a basis of the diversification on its own does not yield high-quality
results, as LCD is found to be only slightly more effective than the nondiversified
baseline. In contrast, our methods C-GLS and C?-GLS that employ the clustering as a
preprocessing stage for GLS are found to be both effective and efficient. In particular,
when the k-means algorithm is used for the preprocessing, their effectiveness is
comparable to (or sometimes better than) GLS, whereas the overall diversification
time is reduced by more than 80%. It is also possible to improve the diversification
efficiency by employing a cheaper preprocessing algorithm, namely, LC, that yields
slightly inferior diversification quality in return to higher efficiency. For this latter
case, C2-GLS takes at most 23ms, which means a 97% improvement over GLS. These
findings mean that the proposed algorithms can be utilized in real-world scenarios
with strict budgets for query processing.

—Our experiments on a distributed setup show that running the diversification algo-
rithms (of either implicit or explicit type) at the broker (i.e., using BB-Div) yields
higher effectiveness scores than applying diversification at each node (i.e., using
NB-Div). Our detailed analysis reveals that the ineffectiveness of NB-Div might be
caused by the relatively small number of relevant documents per query in the TREC
datasets. Because of this, the candidate sets at the nodes include a larger number of
irrelevant documents and, hence, lead to inferior diversification effectiveness.

—We also show that NB-Div is relatively cheap, as it incurs no network communication
overhead in a typical distributed setup. In contrast, BB-Div has additional overhead
in terms of the network costs (especially for the implicit diversification algorithms);
however, these costs, namely, network communication volume and time, seem to be
affordable in a practical web search setup.

In light of these findings, we can claim that in a setup that needs an implicit diver-
sification algorithm, the proposed methods C-GLS and C2-GLS (with the k-means or
LC preprocessing) can be safely utilized as effective and efficient variants of GLS. Fur-
thermore, if a given query is expected to return a relatively small number of relevant
documents, it may be better to apply these algorithms at the broker (as the network
communication overhead seems to be affordable in a realistic setup); otherwise, apply-
ing the diversification at the nodes would be a more efficient choice.

7. CONCLUSION

For practical application of diversification in a large-scale setting, two requirements
need to be met. First, we need an algorithm with low computational complexity to
satisfy the demanding efficiency requirements of online query processing. Second, the
diversification process should be executable on a computing cluster where each node
holds a collection partition, because larger collections cannot be maintained on one
central node.

In this work, we presented C-GLS and C2-GLS, two greedy algorithms that perform
an initial document clustering to reduce the GLS complexity from quadratic to linear
(with the number of candidate documents). We show that the proposed approaches can
reduce the online diversification cost by more than 80% and up to 97% while achieving
comparable or even better effectiveness than the GLS solution.

We also studied how distribution of the diversification process affects its result qual-
ity and efficiency. In our experiments, diversification on the broker with the BB-Div
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strategy yielded better result quality than diversification on the nodes with the NB-
Div strategy; however, there were also cases where both strategies performed equally
well. While evaluating their efficiency, we found that the diversification algorithms
with the BB-Div strategy incur additional costs for the network communication (while
NB-Div incurs no network costs); fortunately, this seems to be an affordable overhead
in real-life settings.

These two contributions pave the way for scalable distributed diversification of search
results for web-scale document collections. We also anticipate that our work may lead
the community interest toward the development and evaluation of diversification al-
gorithms on distributed architectures, which we believe to be the next and natural
testbed for evolving research in this field.

In our future work, we plan to evaluate the distributed diversification for other sce-
narios that employ alternative document allocation policies. We also plan to investigate
approaches to further reduce the network communication costs when diversification is
applied at the broker.
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