CENG 793

On Machine Learning and
Optimization

Optimization Methods for Large-Scale Machine Learning

Léon Bottou® Frank E. Curtis' Jorge Nocedal?

June 16, 2016

Abstract

This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case studies
on text classification and the training of deep neural networks, we discuss how optimization
problems arise in machine learning and what makes them challenging. A major theme of our
study is that large-seale machine learning represents a distinetive setting in which the stochastic
gradient (SG) method has traditionally played a central role while conventional gradient-based
nonlinear optimization techniques typically falter. Based on this viewpoint, we present a com-
prehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior,
and highlight opportunities for designing algorithms with improved performance. This leads to
a discussion about the next generation of optimization methods for large-scale machine learning,
including an investigation of two main streams of research on techniques that diminish noise in
the stochastic directions and methods that make use of second-order derivative approximations.

Now

* [ntroduction to ML
— Problem definition
— Classes of approaches
— K-NN
— Support Vector Machines
— Softmax classification / logistic regression
— Parzen Windows

* Optimization
— Gradient Descent approaches
— A flavor of other approaches

Introduction to
Machine learning

Uses many figures and material from the following website:
http://www.byclb.com/TR/Tutorials/neural_networks/ch1l_1.htm

Testing

Test input

Overview

Extract
Features

Training

Data with label
(label: human, animal etc.)

Oo
oo’

- Size

- Texture

- Color

- Histogram of

oriented gradients
SIFT Human or Anima5l or

- Etc.

Content

* Problem definition
* General approaches

* Popular methods
— kNN
— Linear classification
— Support Vector Machines
— Parzen windows

Problem Definition

* Given
— Data: a set of instances x4, X5, ..., Xy,
sampled from a space X € R€.
— Labels: the corresponding labels y; for each
X;. y; €Y e R.
* Goal:

— Learn a mapping from the space of “data”
to the space of labels, i.e.,

e M:X Y.
*y = f(X).

Issues in Machine Learning

Hypothesis space

Loss / cost / objective function
Optimization

Bias vs. variance

Test / evaluate

Overfitting, underfitting

General Approaches
Discriminative Generative

N0l .
: 7 " - Nip,.02]

" .
P
."_'. .
o
“and 2
R
»ietert o
*<=Pe

r-—

Learn a model for
each class.

70.0

Regression Estimate at UT3 Q""
& UT3 observations

Temperature (F)

0.0 5.‘0 16.0 15‘.0 20I.D
Hour (UTC) on 9/4/97

Fit a function to data
(regression).

General Approaches (cont’d)

Discriminative

e Artificial Neural Networks
 Conditional Random Fields

Generative

Regression

Markov Random Fields

Bayesian Networks/Learning

Clustering via Gaussian Mixture Models,
Parzen Windows etc.

N[, 07
ol

.
N
. .
a.'u"io .
s s
2%

- Nip,.0%]

.
.8
.""o }#-2.
.
. et
- - .
.o"".no' .
-ty

10

General Approaches (cont’d)

Supervised Unsupervised

tion 2 ||e:a'l\?
s 54
Labe "
+ e

e.g. k-means
Extract Extract clustering
Features Features

Learn a
model

General Approaches (cont’d)

Generative Discriminative

Support Vector Machines
Neural Networks
Conditional Random Fields
Decision Tree Learning

Regression

Su pervised Markov Random Fields
Bayesian Networks

Gaussian Mixture Models K-means
Parzen Windows Self-Organizing Maps

Unsupervised

12

Now

Support Vector

Logisti .
Softmax/Logistic Machines

Regression

Parzen Windows

Linear separabiity

Feature Space

.
X\l.‘ = X lx .
x - - . x.
X

f - . X X »
X X i, s

Good features Bad features

x x

1 s /‘/--\

Non-lirear separability Multi-modal

(b)

Hghly carelated

17

General pitfalls/problems

e Overfitting
* Underfitting
 Occams’ razor

width
=2 Sea-bass
20 4+ Salmon 3
18 + X X X
16T G y X : - : x
T - g s T ey RS X X
12 4 - : " ; Xx X . X X
T BARET A A x\ X% R « X
s B 2T e e K X B
8 4 T e Y X &
4 4 - g I . L \”‘\x
2 4 . "
- $ M*—T‘_» lightness
2 4 6

width
22
Sal \Sea-bass
20 4+ almon
X
18 -+ - -jl X
- = / X
16 1 L] . X < ® /X X X
14 1 . .- . . X X
121 " Tl Xx X
‘0 1 = 'c. 2 X l' X X
8 .. . -
[’ G v X
4 ¥ - x x
2 il
4

lighthess

18

classification scikit-learn

algorithm cheat-sheet

WORKING

get
more
data NO
>50
YES samples
NOT do you have

WORKING labeled éw features
; should be
NO data important

ves A regression

NOT

Text WA 2"“E o <100K
Data oy samples

YES

YES

number of
categories

clustering S

NOT
WORKING

YES
g dimensionality
reduction

predicting
structure

21

K-NEAREST NEIGHBOR

A very simple m Al
-
algorithm i
m
Advantages:
— No training
— Simple
Disadvantages: T '
Wikipedia

— Slow testing time (more efficient
versions exist)
— Needs a lot of memory

the data NN classifier 5-NN classifier
% ° . ”
s R
.‘.. .. ‘ GZD:%%
o 00..

http://cs231n.github.io/classification/

23

Density
estimate

Kernel
7 functions

A non-parametric method

PARZEN WINDOWS

24

Probability and density

* Probability of a continuous probability function, p(x), satisfies the
following:

— Probability to be between two values:

b
Pla<x<b)= J p(x)dx

— p(x) > 0 for all real x.

— And
J p(x)dx =1
* In2-D:
— Probability for x to be inside region R:

P = .[Rp(x)dx

— p(x) > 0 for all real x.
— And

J_O:op x)dx =1

Density Estimation

* Basicidea:
P = fp(x)dx
R

* If R is small enough, so e If k out of n samples fall

that p(X) is almost into R, then

constant in R: P=k/n

— P = pr(x)dx ~ * From which we can

(x) [.dx = p(X)V write:
p(x) J, PG) X/
— V: volume of region R. = p(X)V = p(x) = -

Parzen Windows

* Assume that:
— R is a hypercube centered at x.

— his the length of an edge of the hypercube.
— Then,V = h*in2Dand V = h3 in 3D etc.

* Let us define the following window function:

W(Xi_xk): 1, IX; — X |/h < 1/2
h 0, otherwise

* Then, we can write the number of samples falling

into R as follows:
X; — Xg
W(n)

k =

s

o~
[
p—

Parzen Windows (cont’d)

* Remember: p(x) = kin

* Using this definition of k, we can rewrite p(x)
(in 2D):

n
P = 1h_1zw("i;")

* Interpretation: Probability is the contribution
of window functions fitted at each sample!

Parzen Windows (cont’d)

* The type of the window function can add
different flavors.

e |f we use Gaussian for the window function:

1w 1 (x; — X)*?
p(X)=Ezm/2neXp< P)

=1

* |nterpretation: Fit a Gaussian to each sample.

Pl

—0.-

-0.

ja

LINEAR CLASSIFICATION

Linear classification

* Linear classification relies on the following score function:
f(x;;W,b) =Wx; + b
Or
f(xi; W, b) = Wxi
* where the bias is implicitly represented in W and x;

stretch pixels into single column

I 0.2 | -0.5 | 0.1 2.0 56 1:d -96.8 cat score

15| 13 | 21 | 0.0 231 + 32 | | 437.9 dog score

inputxtige 0 (025| 02 | -0.3 24 -1.2 il | —
€L
One row per class 33

http://cs231n.github.io/linear-classify/

* We can rewrite the score function as:
fxi; W, b) = Wx;

Linear classification

* where the bias is implicitly represented in W/

and x;
02 |-05]| 0.1 | 2.0 56 1.1
15 | 1.3 | 21 | 0.0 231 3.2
0 [025]| 0.2 |-0.3 24 1.2
W 2 b
€L

http://cs231n.github.io/linear-classify/

02 |-05(01] 20 | 1.1 56
15 | 13 | 21 [00| 82 231
0 |025| 02 |-03| -1.2 24
1% b 2

new, sir :

L

34

Linear classification:
One interpretation

* Since an image can be thought as a vector, we can consider them as points
in high-dimensional space.

One interpretation of:

f(x;W,b) =Wx; + b

car classifier - Each row describes a
line for a class, and “b”

deer classifier

35

http://cs231n.github.io/linear-classify/

Linear classification:
Another interpretation

* Eachrow in W can be interpreted as a
template of that class.

— f(x;;W,b) = Wx; + b calculates the inner
product to find which template best fits x;.

— Effectively, we are doing Nearest Neighbor with
the “prototype” images of each class.

plane car bird cat deer dog frog horse ship truck
36

http://cs231n.github.io/linear-classify/

Loss function

e A function which measures how good our weights are.
— Other names: cost function, objective function

* Let Sj — f(xl-; W)]
 An example loss function:

L; = 2 max(0,s; — s, +A)
J#Yi
Or equivalently:

_ T T
L; = z max(0, w; x; —wy x; + A)
J#Yi
 This directs the distances to other classes to be more than
A (the margin)
I L 1L delta
1 . + score.

scores for other classes score for correct class
http://cs231n.github.io/linear-classify/

Example

* Consider our scores for x; to be s =
|13,—7,11] and assume A as 10.

 Then,
L; = max(0,—7 — 13 + 10) + max(0,11 — 13 + 10)

http://cs231n.github.io/linear-classify/

Regularization

* |n practice, there are many possible solutions
leading to the same loss value.

— Based on the requirements of the problem, we
might want to penalize certain solutions.

* E.g,
A

— which penalizes large weights.
* Why do we want to do that?

http://cs231n.github.io/linear-classify/

regularization loss
Combined Loss A e
. =uf($iaw) ata loss "
Function z;
Y;
* The loss function becomes:

1
= — L; + AR(W}
regularization loss

-

"
data loss

If you expand it:

1
— Nz Z [max(O,f(xi, W); — f(x;, W)y, + A)

») PR

Hyper parameters
http://cs231n.github.io/linear-classify/

(estimated using validatioff set)

Hinge Loss, or Max-Margin Loss

Nz z[maX(O fle, W) — f(xi, W)y, +A)] +/122

L J#Yi

http://cs231n.github.io/linear-classify/

Interactive Demo

wi{0,0] %l0,1) b0}
i > o) (o) [) (o)] []
_?__-°f‘ S48 ERes8l [0.50 || 0.40 0 |(f|2.20]|o0.01 o.zz| 0.02
Wi W 0.80 || 0.30 0 1.67| | 0.33 1.1o| 0.44

wi:,0) w(1,11 Bl
A A A 0.30 || 0.80 o |I|1.38]|-0.80 -1.05] 0.00

0.44 | |-1.82| | 0.52 '
.19 (| -o.:.o] o.ac] 1 -0.80| | -0.20 [-1.62] 0.39
v v
vi2,0 2,11 b121 | =0.30] 0.70] 1 -0.01 [-0.88 [-2.21] .87
A A

-0.70| [6.20 1 -1.57| | -0.15 [-2.10] 0.00

2.27 | -2.04 -0.10

0.27 0.2 0.12
- 0.70 | |-o0.40] || 2 0.43 || 1.55 2.31] 0.25

v v v |
0.50 | |-0.60]| 2 l -0.28| | 1.83 2.26] 0.57
Step size: 010000 [-0.40] [-0.50| [2 | -1.98][1.26”0.01] | 2.24
Single parameter update |m:
Start repeated update Total data loss: 0.64 0.64‘
Regularization loss: 1.92
Siop Total loss: 2.57
Rancomize parameden

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

42

SUPPORT VECTOR MACHINES

Barrowed mostly from the slides of:
- Machine Learning Group, University of Texas at Austin.
- Mingyue Tan, The University of British Columbia

Linear Separators

* Binary classification can be viewed as the task of
separating classes in feature space:

wix+b=0

wix+b<0

f(x) = sign(w™x + b)

Linear Separators

* Which of the linear separators is optimal?

45

Classification Margin
Distance from example x; to the separatoris r= WTH);\‘/HJFb

Examples closest to the hyperplane are support vectors.

Margin p of the separator is the distance between support
vectors.

Maximum Margin Classification

* Maximizing the margin is good according to intuition.

* Implies that only support vectors matter; other training
examples are ignorable.

Linear SVM Mathematically

\
664)(X" /\
C

p=Margin Width

What we know:
e w.x"+b=+1
e w.x+b=-1 P
e w. (x*-x)=2

49

Linear SVMs Mathematically (cont.)

 Then we can formulate the optimization problem:

Find w and b such that

2
P =1— is maximized
W

and for all (x, y.), i=1.n: y(w'™x.+b) 21

Which can be reformulated as:

Find w and b such that
d(w) = | |w] |>=w'w is minimized

and for all (x, y,), i=1..n: y. (w'x.+ b) 21

Lagrange Multipliers

* Given the following optimization problem:
minimize f(x,y) subjectto g(x,y) = ¢

* We can formulate it as:
L(x,y,2) = f(x,y) + 2(g(x,y) —¢)
* and set the derivative to zero:
Vx,y,AL(x» YV, A) =0

Lagrange Multipliers

* Main intuition:
— The gradients of f and g are parallel at the
maximum

52
Fig: http://mathworld.wolfram.com/LagrangeMultiplier.html|

Lagrange Multipliers

* See the following for proof

— http://ocw.mit.edu/courses/mathematics/18-02sc-
multivariable-calculus-fall-2010/2.-partial-
derivatives/part-c-lagrange-multipliers-and-
constrained-differentials/session-40-proof-of-
lagrange-multipliers/MIT18 02SC notes 22.pdf

* A clear example:

— http://tutorial.math.lamar.edu/Classes/Calclll/Lagrang
eMultipliers.aspx

* More intuitive explanation:

— http://www.slimy.com/~steuard/teaching/tutorials/La
grange.htmi

53

http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/2.-partial-derivatives/part-c-lagrange-multipliers-and-constrained-differentials/session-40-proof-of-lagrange-multipliers/MIT18_02SC_notes_22.pdf
http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

e In the SVM problem the Lagrangian s

H —Z{l’flf X, “-l—b -|—Za'

=1
P 2

a 20,1

e From the derivatives = 0 we get

/ /
W = Z {ZEJ{;EX??Z fo};f = 0
=1 =1

54

Non-linear SVMs

Datasets that are linearly separable with some noise work
out great:

== |©—0 :X

But what are we going to do if the dataset is just too hard?

*—0 *—0— o0—0 *—0 *—
0 X

How about... mapping data to a higher-dimensional space:

55

SOFTMAX OR LOGISTIC CLASSIFIERS

Cross-entropy

e Uses cross-entropy (t: target probabilities, o: estimated
probabilities):

H(p,q) = Ey[—logq] = ZPJ logq;

* Wikipedia:

“the cross entropy between two probability distributions p and g over
the same underlying set of events measures the average number of
bits needed to identify an event drawn from the set, if a coding
scheme is used that is optimized for an "unnatural” probability
distribution g, rather than the "true" distribution p”

57

Softmax classifier — cross-entropy loss

Cross-entropy: H(p,q) = Ep[_ logq] = - Zj pjloggq;
In our case,

— p denotes the correct probabilities of the categories. In other words,
pj = 1 for the correct label and p; = 0 for other categories.

— @ denotes the estimated probabilities of the categories

But, our scores are not probabilities!

eZi

Z.
.]
e

— One solution: Softmax function: f(z;) =

— It maps arbitrary ranges to probabilities

Using the normalized values, we can define the cross-entropy
loss for classification problem now:

L; = —log > ol =—fyi+logZeff
J

http://cs231n.github.io/

logistic loss

* A special case of cross-entropy for binary classification:

H(p,q) = —ij logq; = —p;logq; — (1 —p;)log(1 — q;)
j

* Softmax function reduces to the logistic function:
1

14+ e*

e And the loss becomes:

1
Li = _log(1+ef>

http://cs231n.github.io/

59

Why take logarithm of probabilities?

Maps probability space to logarithmic space
Multiplication becomes addition

— Multiplication is a very frequent operation with
probabilities

Speed:
— Addition is more efficient
Accuracy:

— Considering loss in representing real numbers, addition is
friendlier

Since log-probability is negative, to work with positive
numbers, we usually negate the log-probability

Softmax classifier:
One interpretation

* Information theory

— Cross-entropy between a true distribution and an
estimated one:

H(p,q) = —ZP(x) log q(x).

—Inour case, p = [0, ..., 1,0,..0], containing only
one 1, at the correct label.

— Since H(p, q) = H(p) + Dk, (pllq), we are
minimizing the Kullback-Leibler divergence.

P(i)
Q)

Dy (P||Q) =) P(i) log
http://cs231n.github.io/ - Z;:

Softmax classifier:
Another interpretation

 Probabilistic view

elvi
i [x5 W) 3 o
* |n our case, we are minimizing the negative
log likelihood.

* Therefore, this corresponds to Maximum
Likelihood Estimation (MLE).

http://cs231n.github.io/

Numerical Stability

* Exponentials may become very large. A trick:

el Celu efu o8¢
>, i O >, ofi) ofiHlog C

* SetlogC = —maxf;.
J

http://cs231n.github.io/

SVM loss vs. cross-entropy loss

 SVM is happy when the classification satisfies
the margin

— Ex: if score values = [10, 9, 9] or [10, -10, -10]
* SVM loss is happy if the marginis 1
— SVM is local

e cross-entropy always wants better
— cross-entropy is global

0-1 Loss

 Minimize the # of cases where the prediction is wrong:
L= 2 1(f (x; W, b),, # 9;)
i
Or equivalently,

L= 2 1(9:f (x;; W, b),, <0)

- Zzero-one loss
- |ogistic loss
\ hinge loss

(=] = I d L= w

68

Absolute Value Loss, Squared Error

L; =Z|Sj—yj|q
j

* q = 1:absolute
value loss

e q = 2:square
error loss.

y — t%

LosSS

)

MORE ON LOSS FUNCTIONS

Visualizing Loss Functions

* |f you look at one of the example loss functions:

L; = Z max (0, W]-Txl- — ngxi + 1)
J#Yi
* Since W has too many dimensions, this is difficult
to plot.
* We can visualize this for one weight direction

though, which can give us some intuition about
the shape of the function.

— E.g., start from an arbitrary W,, choose a direction W;
and plot L(W, + aW;) for different values of a.

http://cs231n.github.io/

Visualizing Loss Functions

 Example:

Lo = max({],w:fmn — wgmn +1) + ma,x({],wgmu — w§$u + 1)
Ly =max(0,wl'z; — wlz; +1) + max(0, wl'z; — wiz, + 1)
Lo = max(ﬂ,wgmg — wgmg +1) + ma.x({],w{mg — w%ﬂmg +1)
L =(Lo+ Ly + Ly)/3
* |f we consider just wgy, we have many linear functions
in terms of wy and loss is a linear combination of

them.

sum

76

http://cs231n.github.io/

Visualizing Loss Functions

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

 You see that this is a convex function.
— Nice and easy for optimization

 When you combine many of them in a neural network,
it becomes non-convex.

77

http://cs231n.github.io/

Another approach for visualizing loss
functions

e 0-1loss:

L=1(f(x) #y)

or equivalently as:

L=1(f(x) > 0)
e Square loss:

L= (f(x)—y)?
in binary case:
L=(1-yf()’
* Hinge-loss
L = max(1 — yf(x),0)

* I—OgiStiC loss: Various loss functions used in classification. Here ¢ = yf(x).
L=(>On2)"tIn(1+ e—yf(x)) Rosacco et al., 2003

78

SUMMARY OF LOSS FUNCTIONS

Linear Classifier: SVM

Input: xeR’
Binary label: V E{— 1,+1
Parameters: w e R”

Output prediction: w' x
1.
Loss: L:EHW +Amax[0,1—w' xy]
A
L

Hinge Loss

44

T]
1 W Xy Ftanzato""

Linear Classifier: Logistic Regression

Input: x & R”

Binary label: E{— 1,+1

Parameters: w & R” A

- 1 |
Output prediction: p(y=1|x)= —

L 1 +e T o
Loss: L= ||w|}~Alog(p(y}x))

A
L
Log Loss

%
1 wrxy Ftanzato"’

Side Note: Different Losses
Logistic regression: Boosting :

3 IN(1 + exp(—vy; f(z;))) %ZQXD(_yif(xi)) = []Z
—1 2 t

2

SVM:
minimizey , w.w+4CY;¢;
(W.Xj - b) Yj il ‘Sj» Vi

Hinge loss:

&= (1— flxi)yi)+

0-1 Loss:
SCH (z) £ 9| =

..................

yif ()

All our new losses approximate 0/1 loss!

1.0 1.5 20

§; 20, V)

82

3ar

25+

83

Sum up

0-1 loss is not differentiable/helpful at training
— |t is used in testing

Other losses try to cover the “weakness” of 0-1
loss

Hinge-loss imposes weaker constraint compared
to cross-entropy

~or classification: use hinge-loss or cross-entropy
0SS

-or regression: use squared-error loss, or
absolute difference loss

SO, WHAT DO WE DO WITH A LOSS
FUNCTION?

Optimization strategies

e We want to find W that minimizes the loss
function.

— Remember that W has lots of dimensions.

 Naive idea: random search

— For a number of iterations:

* Select a W randomly
 Ifit leads to better loss than the previous ones, select it.

— This yields 15.5% accuracy on CIFAR after 1000
iterations (chance: 10%)

http://cs231n.github.io/

Optimization strategies

e Second idea: random local search
— Start at an arbitrary position (weight W)

— Select an arbitrary direction W + 0W and see if it
leads to a better loss

* If yes, move along
— This leads to 21.4% accuracy after 1000 iterations
— This is actually a variation of simulated annealing

* A better idea: follow the gradient

http://cs231n.github.io/

A quick reminder on gradients / partial derivatives

Af(x) _ o fOrth)—f ()

— In one dimension:

h—-0 h
— In practice:
, 4fIn] _ finth|-f[n]
dn h
. dﬁl] ["+h]2h n—h] (centered difference — works better)

— In many dimensions:

1. Compute gradient numerically with finite differences
— Slow
— Easy
— Approximate

2. Compute the gradient analytically
— Fast
— Exact
— Error-prone to implement

* In practice: implement (2) and check against (1) before testing

http://cs231n.github.io/

A quick reminder on gradients / partial
derivatives

 If you have a many-variable function, e.g., f(x,y) = x + y, you can
take its derivative wrt either x or y:

af (x,y) — lim f(x+hy)—f(xy) 1

dx h—0
.. af (x,y) _
— Similarly, e 1

— In fact, we should denote them as follows since they are “partial
derivatives” or “gradients on x or y”:

* Partial derivative tells you the rate of change along a single dimension
at a point.

— E.g., if df /0x=1, it means that a change of x; in x leads to the same
amount of change in the value of the function.

* Gradient is a vector of partial derivatives:

_ppo (LY

http://cs231n.github.io/

A quick reminder on gradients / partial derivatives

 Asimple example:

- f(xy) = max(x, y)
- Vf=[1kxzy), 1(y =z x)]
e Chaining:
— What if we have a composition of functions?
- Eg., f(x,y,2) =q(x,y)zand q(x,y) =x +y

df _afaq _

B ax_aqax_
of _ 0fadq _

9y dqay
of

-5, =qxy) =x+y
* Back propagation

— Local processing to improve the system globally

— Each gate locally determines to increase or decrease the inputs

http://cs231n.github.io/

Partial derivatives and backprop

B 1
f(w? m) o 1 4 6—{1ﬂu$ﬂ+wlml+w2}

 Which has many gates:

fz) =+ S Yy

fu@)=c+a = 7y
wo 200 fla) =& - o e
fula) = az 5 o a

w1 -3.00

K1 -7 |:|

w2 -3.00
20 http://cs231n.github.io/

In fact, that was the sigmoid function

L () () e

 We will combine all these gates into a
single gate and call it a neuron

Intuitive effects

e Commonly used operations
— Add gate
— Max gate
— Multiply gate

* Due to the effect of the
multiply gate, when one of

the inputs is large, the small
input gets the large gradient

— This has a negative effect in
NNs

— When one of the weights is
unusually large, it effects the
other weights.

— Therefore, it is better to
normalize the input / weights

-10.00 @ -20.00

200 _/ 100

http://cs231n.github.io/

Optimization strategies: gradient

* Move along the negative gradient (since we wish to go

down) w
w2

ow
— S:step size

e Gradient tells us the direction

— Choosing how much to move along that direction is difficult to
determine

— This is also called the learning rate
— If it is small: too slow to converge
— If it is big: you may overshoot and skip the minimum

94

http://cs231n.github.io/

Optimization strategies: gradient

 Take our loss function:

L; = z max (0, Wiji — Wfl.xi +1)

J#Yi

* Its gradient wrt wj is:
dL;

= 1(WJTXi — W};l.xi +1> O)Xl

* For the “winning” weight, this is:

waiLg- — — (Z 1(11,1?:1:3- — wgzzcz + A > 0)) T;

j?éyi

http://cs231n.github.io/

Gradient Descent

* Update the weight:

dL(W)

w. «— W —s

* This computes the gradient after seeing all examples to update the
weight.

Examples can be on the order of millions or billions

e Alternative:

Mini-batch gradient descent: Update the weights after, e.g., 256 examples

Stochastic (or online) gradient descent: Update the weights after each
example

People usually use batches and call it stochastic.

Performing an update after one example for 100 examples is more

expensive than performing an update at once for 100 examples due to
matrix/vector operations

http://cs231n.github.io/

A GENERAL LOOK AT OPTIMIZATION

Mathematical Optimization

Nonlinear Optimization

Convex Optimization

100

Rong Jin

Mathematical Optimization

(mathematical) optimization problem

minimize fo(x)
subject to fi(x) <b;, i=1,...,m

e = (xy,...,x,): optimization variables
e fo:R" — R: objective function
e /;:R"—=R,i=1,...,m: constraint functions

optimal solution * has smallest value of f; among all vectors that

satisfy the constraints
101

Rong Jin

Convex Optimization

minimize fo(x)
subject to fi(z) <b;, i=1....,m

e objective and constraint functions are convex:
filax +By) < afi(x) + B fily)
fa+0=1a2=>0 =0

e includes least-squares problems and linear programs as special cases

102

Rong Jin

Interpretation

O Function’s value is below the line
connecting two points

My
M) -~ 0.5f(x) + 0.5f(y)
- ,‘ -

- f(y)

f(0.5x + 0.5y)

Mot convex

103

Mark Schmidt

Another interpretation

A differentiable function f is convex if for all x and y we have

f(y) 2 f(x) + VI(x)" (y — x),

@ [he function is globally above the tangent at x.

[0 + 0 Ty%)

104

Mark Schmidt

Example convex functions

Some simple convex functions:

e f(x)=c

o f(x)=alx

e f(x)=xTAx (for A= 0)
e f(x) = exp(ax)

e f(x) = xlogx (for x > 0)
o f(x)=|Ix|]?

o f(x)=lxllp

e f(x) = max;{x}
Some other notable examples:
o f(x,y)=log(eX + &)
e f(X) = logdet X (for X positive-definite).

o f(x,Y)=xTY1x (for Y positive-definite) 106
Mark Schmidt

Operations that conserve convexity

© Non-negative weighted sum:
f(x) = 601f(x) + O21(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:

f(x) = m;_ax{f,-(x)}.

107

Rong Jin

Show that least-residual problems are convex for any £p-norm:
fix) = [[Ax — b|p

We know that || - ||z is 2 norm, so it follows from (2).
lx + 1], <= |IxI|, + [Iyl],

Show that SVMs are convex:

1 in
f(x) = E||.=.:||E +C> max{0,1— ba x}.
i=1

Know first term is convex, for the other terms use (3) on the two

(convex) arguments, then use (1) to put it all together. 108

Rong Jin

Why convex optimization?

« Can’t solve most OPs

- E.g. NP Hard, even high polynomial time too slow

* Convex OPs

* (Generally) No analytic solution

- Efficient algorithms to find (global) solution

- Interior point methods (basically Iterated Newton) can be used:
- ~[10-100|*max{p3, p>m, F} ; F cost eval. obj. and constr. f

- At worst solve with general IP methods (CVX), faster

specialized

INFORMATION
& TELECOMMUNICATION

TECHNOLOGY CENTER

S A KTEC Center of Excellence 109

Convex Function

- Easy to see why convexity allows for

efficient solution

* Just “slide” down the objective function as

far as possible and will reach a minimum

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER

: ‘ A KTEC Center of Excellence 110

The University of Kansas

Convex vs. Non-convex Ex.

- Convex, min. easy to find

KU

Affine — bc
case of con

rder
vexity

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER

The University of Kansas

A KTEC Center of Excellence

111

Convex vs. Non-convex Ex.

« Non-convex, easy to get stuck in a local min.

« Can’t rely on only local search techniques

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER
‘ A KTEC Center of Excellence 112

The University of Kansas

Non-convex

* Some non-convex problems highly multi-modal,
or NP hard

* Could be forced to search all solutions, or hope

stochastic search is successful
- Cannot guarantee best solution, inefficient

- Harder to make performance guarantees with

approximate solutions

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER
: ‘ A KTEC Center of Excellence

The University of Kansas 113

Mathematical Optimization

Nonlinear Optimization

Convex Optimization

e Analytical solution
e Good algorithms and software

minimize || Az — bl|3 e High accuracy and high reliability
e Time complexity: C.n%k

A mature technology!
114

Rong Jin

Mathematical Optimization

Nonlinear Optimization

Convex Optimization

minimize ¢l a2 \

subject to alw < b,

e No analytical solution
e Algorithms and software

i=1,....m e Reliable and efficient
e Time complexity: C-n’m

Also a mature technology!

115

Rong Jin

Mathematical Optimization

Nonlinear Optimization

Convex Optimization

\

e No analytical solution

minimize fo(x) e Algorithms and software

subject to fi(x) < b;, i=1,... e Reliable and efficient

e Time complexity (roughly)
oc max{n’,n’m, F}

F is cost of evaluating f;'s and their first and second derivatives

Almost @ ===—===technology! ;i
Rong Jin

Mathematical Optimization

Nonlinear Optimization

Convex Optimization

e Sadly, no effective methods to solve

e Only approaches with some compromise
e Local optimization: “more art than technology”
e Global optimization: greatly compromised efficiency
e Help from convex optimization
1) Initialization 2) Heuristics 3) Bounds

Far from a technology! (something to avoid)
117

Rong Jin

Why Study Convex Optimization

With only a bit of exaggeration, we can say that, if you formu-
late a practical problem as a convex optimization problem, then you have solved
the original problem. If not. there is little chance you can solve it.

-- Section 1.3.2, p8, Convex Optimization

118

Rong Jin

Recognizing Convex Optimization
Problems

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization

121

Rong Jin

minimize fo(x)
subject to fi(z) < b, 1=1,...,m

Least-squatres

A least-squares problem is an optimization problem with no constraints (i.e., m =
0) and an objective which is a sum of squares of terms of the form af z — b;:

minimize fo(x) = ||Az — b|3 = E?Zl(afat — b;)°. (1.4)

Here 4 € RF*" (with k = n), aiT are the rows of A, and the vector € R"™ is the
optimization variable.

n 1/p 126
Rong Jin il = (k)

Analytical Solution of Least-
squares
Ty — b,)2.

1z

“ !- =

. . oo) e ;
minimize fo(x) = |Ax —blz=>_._(a

e Set the derivative to zero:

. dfO(x) — 0

dx
— (ATA)2x — 24b = 0
— (ATA)x = Ab

* Solve this system of linear equations

Linear Programming (LLP)

Another important class of optimization problems is linear programming. in which
the objective and all constraint functions are linear:

T

minimize ¢ T (1.5)
subject to a?m <b,, i=1,....m. -
Here the vectors ec.aq....,a,, € R" and scalars by.....b,, € R are problem pa-

rameters that specity the objective and constraint functions.

e no analytical formula for solution

e reliable and efficient algorithms and software

128

Rong Jin

To sum up

* We introduced some important concepts in
machine learning and optimization

 We introduced popular machine learning
methods

* We talked about loss functions and how we
can optimize them using gradient descent

