
CENG 793

On Machine Learning and
Optimization

Sinan Kalkan

2

Now

• Introduction to ML
– Problem definition
– Classes of approaches
– K-NN
– Support Vector Machines
– Softmax classification / logistic regression
– Parzen Windows

• Optimization
– Gradient Descent approaches
– A flavor of other approaches

3

Introduction to
Machine learning

Uses many figures and material from the following website:

http://www.byclb.com/TR/Tutorials/neural_networks/ch1_1.htm
4

Testing

Training

Overview

“Learn”

Learned
Models or
Classifiers

Data with label
(label: human, animal etc.)

- Size
- Texture
- Color
- Histogram of

oriented gradients
- SIFT
- Etc.

Test input

Extract
Features

Extract
Features

P
red

ict

Human or Animal or
…

5

Content

• Problem definition

• General approaches

• Popular methods

– kNN

– Linear classification

– Support Vector Machines

– Parzen windows

6

Problem Definition

• Given
– Data: a set of instances 𝐱1, 𝐱2, … , 𝐱𝑛

sampled from a space 𝐗 ∈ ℝ𝑑 .

– Labels: the corresponding labels 𝑦𝑖 for each
𝐱𝑖 . 𝑦𝑖 ∈ 𝐘 ∈ ℝ.

• Goal:
– Learn a mapping from the space of “data”

to the space of labels, i.e.,

• ℳ:𝐗 → 𝐘.

• 𝑦 = 𝑓 𝐱 .

7

Issues in Machine Learning

• Hypothesis space

• Loss / cost / objective function

• Optimization

• Bias vs. variance

• Test / evaluate

• Overfitting, underfitting

8

GenerativeDiscriminative

General Approaches

Find separating line
(in general: hyperplane)

Fit a function to data
(regression).

Learn a model for
each class.

9

Generative

• Regression
• Markov Random Fields
• Bayesian Networks/Learning
• Clustering via Gaussian Mixture Models,

Parzen Windows etc.
• …

Discriminative

• Support Vector Machines
• Artificial Neural Networks
• Conditional Random Fields
• K-NN

General Approaches (cont’d)

10

Supervised

Instance Label

elma

elma

armut

elma

armut

Unsupervised

General Approaches (cont’d)

Extract
Features

Learn a
model

Extract
Features

Learn a
model

e.g. SVM

e.g. k-means
clustering

11

General Approaches (cont’d)

Generative Discriminative

Supervised
Regression

Markov Random Fields
Bayesian Networks

Support Vector Machines
Neural Networks

Conditional Random Fields
Decision Tree Learning

Unsupervised
Gaussian Mixture Models

Parzen Windows
K-means

Self-Organizing Maps

12

Now

Generative Discriminative

Supervised

Unsupervised

Support Vector
Machines

Parzen Windows

Softmax/Logistic
Regression

14

Feature Space

17

General pitfalls/problems

• Overfitting

• Underfitting

• Occams’ razor

18

21

K-NEAREST NEIGHBOR

22

A very simple
algorithm

• Advantages:
– No training
– Simple

• Disadvantages:
– Slow testing time (more efficient

versions exist)
– Needs a lot of memory

Wikipedia

http://cs231n.github.io/classification/
23

PARZEN WINDOWS

A non-parametric method

24

Probability and density

• Probability of a continuous probability function, 𝑝 𝑥 , satisfies the
following:
– Probability to be between two values:

𝑃 𝑎 < 𝑥 < 𝑏 =
𝑎

𝑏

𝑝 𝑥 𝑑𝑥

– 𝑝 𝑥 > 0 for all real 𝑥.
– And

−∞

∞

𝑝 𝑥 𝑑𝑥 = 1

• In 2-D:
– Probability for 𝐱 to be inside region 𝑅:

𝑃 =
𝑅

𝑝 𝐱 𝑑𝐱

– 𝑝 𝐱 > 0 for all real 𝐱.
– And

−∞

∞

𝑝 𝐱 𝑑𝐱 = 1

26

Density Estimation

• Basic idea:

𝑃 =
𝑅

𝑝 𝐱 𝑑𝐱

• If 𝑅 is small enough, so
that 𝑝(𝐱) is almost
constant in 𝑅:

– 𝑃 = 𝑅 𝑝 𝐱 𝑑𝐱 ≈

p 𝐱 𝑅 𝑑𝐱 = 𝑝 𝐱 𝑉

– 𝑉: volume of region 𝑅.

• If 𝑘 out of 𝑛 samples fall
into 𝑅, then

𝑃 = 𝑘/𝑛

• From which we can
write:

𝑘

𝑛
= 𝑝 𝐱 𝑉 ⇒ 𝑝 𝐱 =

𝑘/𝑛

𝑉
27

Parzen Windows

• Assume that:
– 𝑅 is a hypercube centered at 𝐱.
– ℎ is the length of an edge of the hypercube.
– Then, 𝑉 = ℎ2 in 2D and 𝑉 = ℎ3 in 3D etc.

• Let us define the following window function:

𝑤
𝐱𝑖 − 𝐱𝑘

ℎ
=

1, |𝐱𝑖 − 𝐱𝑘|/ℎ < 1/2
0, otherwise

• Then, we can write the number of samples falling
into 𝑅 as follows:

𝑘 =

𝑖=1

𝑛

𝑤
𝐱𝑖 − 𝐱𝑘

ℎ
28

Parzen Windows (cont’d)

• Remember: 𝑝 𝐱 =
𝑘/𝑛

𝑉
.

• Using this definition of 𝑘, we can rewrite 𝑝(𝐱)
(in 2D):

𝑝 𝐱 =
1

𝑛

𝑖=1

𝑛
1

ℎ2
𝑤

𝐱𝑖 − 𝐱

ℎ

• Interpretation: Probability is the contribution
of window functions fitted at each sample!

29

Parzen Windows (cont’d)

• The type of the window function can add
different flavors.

• If we use Gaussian for the window function:

𝑝 𝐱 =
1

𝑛

𝑖=1

𝑛
1

𝜎√2𝜋
exp −

𝐱𝑖 − 𝐱 𝟐

2𝜎2

• Interpretation: Fit a Gaussian to each sample.

30

31

LINEAR CLASSIFICATION

32

Linear classification
• Linear classification relies on the following score function:

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏
Or

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖
• where the bias is implicitly represented in 𝑊 and 𝑥𝑖

http://cs231n.github.io/linear-classify/
One row per class 33

Linear classification

• We can rewrite the score function as:
𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖

• where the bias is implicitly represented in 𝑊
and 𝑥𝑖

http://cs231n.github.io/linear-classify/
34

Linear classification:
One interpretation

• Since an image can be thought as a vector, we can consider them as points
in high-dimensional space.

http://cs231n.github.io/linear-classify/

One interpretation of:

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏

- Each row describes a
line for a class, and “b”

35

Linear classification:
Another interpretation

• Each row in 𝑊 can be interpreted as a
template of that class.

– 𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏 calculates the inner
product to find which template best fits 𝑥𝑖.

– Effectively, we are doing Nearest Neighbor with
the “prototype” images of each class.

http://cs231n.github.io/linear-classify/
36

Loss function
• A function which measures how good our weights are.

– Other names: cost function, objective function

• Let 𝑠𝑗 = 𝑓 𝑥𝑖;𝑊 𝑗

• An example loss function:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0, 𝑠𝑗 − 𝑠𝑦𝑖 + Δ)

Or equivalently:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0, 𝑤𝑗
𝑇𝑥𝑖 − 𝑤𝑦𝑖

𝑇 𝑥𝑖 + Δ)

• This directs the distances to other classes to be more than
Δ (the margin)

http://cs231n.github.io/linear-classify/
37

Example

• Consider our scores for 𝑥𝑖 to be 𝑠 =
[13, −7,11] and assume Δ as 10.

• Then,
𝐿𝑖 = max 0,−7 − 13 + 10 +max(0,11 − 13 + 10)

http://cs231n.github.io/linear-classify/ 38

Regularization

• In practice, there are many possible solutions
leading to the same loss value.
– Based on the requirements of the problem, we

might want to penalize certain solutions.

• E.g.,

𝑅 𝑊 =

𝑖

𝑗

𝑊𝑖,𝑗
2

– which penalizes large weights.
• Why do we want to do that?

39http://cs231n.github.io/linear-classify/

Combined Loss
Function

• The loss function becomes:

• If you expand it:

𝐿 =
1

𝑁

𝑖

𝑗≠𝑦𝑖

max 0, 𝑓 𝑥𝑖 ,𝑊 𝑗 − 𝑓 𝑥𝑖 ,𝑊 𝑦𝑖 + Δ + 𝜆

𝑖

𝑗

𝑊𝑖,𝑗
2

Hyper parameters
(estimated using validation set)40http://cs231n.github.io/linear-classify/

Hinge Loss, or Max-Margin Loss

𝐿 =
1

𝑁

𝑖

𝑗≠𝑦𝑖

max 0, 𝑓 𝑥𝑖 ,𝑊 𝑗 − 𝑓 𝑥𝑖 ,𝑊 𝑦𝑖 + Δ + 𝜆

𝑖

𝑗

𝑊𝑖,𝑗
2

41http://cs231n.github.io/linear-classify/

Interactive Demo

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/ 42

SUPPORT VECTOR MACHINES

An alternative formulation of

Barrowed mostly from the slides of:
- Machine Learning Group, University of Texas at Austin.
- Mingyue Tan, The University of British Columbia

43

Linear Separators

• Binary classification can be viewed as the task of
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

44

Linear Separators

• Which of the linear separators is optimal?

45

Classification Margin

• Distance from example xi to the separator is

• Examples closest to the hyperplane are support vectors.

• Margin ρ of the separator is the distance between support
vectors.

w

xw b
r i

T 


r

ρ

46

Maximum Margin Classification

• Maximizing the margin is good according to intuition.

• Implies that only support vectors matter; other training
examples are ignorable.

47

Linear SVM Mathematically

What we know:

• w . x+ + b = +1

• w . x- + b = -1

• w . (x+-x-) = 2

X-

x+

ww

wxx 2)(









ρ=Margin Width

49

Linear SVMs Mathematically (cont.)

• Then we can formulate the optimization problem:

Which can be reformulated as:

Find w and b such that

is maximized

and for all (xi, yi), i=1..n : yi(w
Txi + b) ≥ 1

w

2


Find w and b such that

Φ(w) = ||w||2=wTw is minimized

and for all (xi, yi), i=1..n : yi (wTxi + b) ≥ 1

50

Lagrange Multipliers

• Given the following optimization problem:
minimize 𝑓 𝑥, 𝑦 subject to 𝑔 𝑥, 𝑦 = 𝑐

• We can formulate it as:
𝐿 𝑥, 𝑦, 𝜆 = 𝑓 𝑥, 𝑦 + 𝜆(𝑔 𝑥, 𝑦 − 𝑐)

• and set the derivative to zero:
𝛻𝑥,𝑦,𝜆𝐿 𝑥, 𝑦, 𝜆 = 0

51

Lagrange Multipliers

• Main intuition:

– The gradients of f and g are parallel at the
maximum

𝛻𝑓 = 𝜆𝛻𝑔

52

Fig: http://mathworld.wolfram.com/LagrangeMultiplier.html

Lagrange Multipliers

• See the following for proof
– http://ocw.mit.edu/courses/mathematics/18-02sc-

multivariable-calculus-fall-2010/2.-partial-
derivatives/part-c-lagrange-multipliers-and-
constrained-differentials/session-40-proof-of-
lagrange-multipliers/MIT18_02SC_notes_22.pdf

• A clear example:
– http://tutorial.math.lamar.edu/Classes/CalcIII/Lagrang

eMultipliers.aspx

• More intuitive explanation:
– http://www.slimy.com/~steuard/teaching/tutorials/La

grange.html

53

http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/2.-partial-derivatives/part-c-lagrange-multipliers-and-constrained-differentials/session-40-proof-of-lagrange-multipliers/MIT18_02SC_notes_22.pdf
http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

54

Non-linear SVMs

• Datasets that are linearly separable with some noise work
out great:

• But what are we going to do if the dataset is just too hard?

• How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

55

SOFTMAX OR LOGISTIC CLASSIFIERS

56

Cross-entropy

• Uses cross-entropy (𝑡: target probabilities, 𝑜: estimated
probabilities):

𝐻 𝑝, 𝑞 = 𝐸𝑝 − log 𝑞 = −

𝑗

𝑝𝑗 log 𝑞𝑗

• Wikipedia:
– “the cross entropy between two probability distributions 𝑝 and 𝑞 over

the same underlying set of events measures the average number of
bits needed to identify an event drawn from the set, if a coding
scheme is used that is optimized for an "unnatural" probability
distribution 𝑞, rather than the "true" distribution 𝑝”

57

Softmax classifier – cross-entropy loss

• Cross-entropy: 𝐻 𝑝, 𝑞 = 𝐸𝑝 − log 𝑞 = − 𝑗 𝑝𝑗 log 𝑞𝑗

• In our case,
– 𝑝 denotes the correct probabilities of the categories. In other words,

𝑝𝑗 = 1 for the correct label and 𝑝𝑗 = 0 for other categories.

– 𝑞 denotes the estimated probabilities of the categories

• But, our scores are not probabilities!

– One solution: Softmax function: 𝑓 𝑧𝑖 =
𝑒𝑧𝑖

 𝑗 𝑒
𝑧𝑗

– It maps arbitrary ranges to probabilities

• Using the normalized values, we can define the cross-entropy
loss for classification problem now:

𝐿𝑖 = − log
𝑒𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗

= −𝑓𝑦𝑖 + log

𝑗

𝑒𝑓𝑗

58
http://cs231n.github.io/

logistic loss

• A special case of cross-entropy for binary classification:

𝐻 𝑝, 𝑞 = −

𝑗

𝑝𝑗 log 𝑞𝑗 = −𝑝𝑗 log 𝑞𝑗 − 1 − 𝑝𝑗 log 1 − 𝑞𝑗

• Softmax function reduces to the logistic function:
1

1 + 𝑒𝑥

• And the loss becomes:

𝐿𝑖 = − log
1

1 + 𝑒𝑓

59
http://cs231n.github.io/

Why take logarithm of probabilities?

• Maps probability space to logarithmic space

• Multiplication becomes addition

– Multiplication is a very frequent operation with
probabilities

• Speed:

– Addition is more efficient

• Accuracy:

– Considering loss in representing real numbers, addition is
friendlier

• Since log-probability is negative, to work with positive
numbers, we usually negate the log-probability

62

Softmax classifier:
One interpretation

• Information theory

– Cross-entropy between a true distribution and an
estimated one:

𝐻 𝑝, 𝑞 = −

𝑥

𝑝 𝑥 log 𝑞 𝑥 .

– In our case, 𝑝 = [0,… , 1,0, . . 0], containing only
one 1, at the correct label.

– Since 𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷𝐾𝐿(𝑝||𝑞), we are
minimizing the Kullback-Leibler divergence.

63
http://cs231n.github.io/

Softmax classifier:
Another interpretation

• Probabilistic view

𝑃 𝑦𝑖 𝑥𝑖;𝑊) =
𝑒𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗
.

• In our case, we are minimizing the negative
log likelihood.

• Therefore, this corresponds to Maximum
Likelihood Estimation (MLE).

64
http://cs231n.github.io/

Numerical Stability

• Exponentials may become very large. A trick:

• Set log 𝐶 = −max
𝑗

𝑓𝑗.

65
http://cs231n.github.io/

SVM loss vs. cross-entropy loss

• SVM is happy when the classification satisfies
the margin

– Ex: if score values = [10, 9, 9] or [10, -10, -10]

• SVM loss is happy if the margin is 1

– SVM is local

• cross-entropy always wants better

– cross-entropy is global

66

0-1 Loss

• Minimize the # of cases where the prediction is wrong:

𝐿 =

𝒊

𝟏 𝑓 𝑥𝑖;𝑊, 𝑏 𝑦𝑖 ≠ 𝑦𝑖

Or equivalently,

𝐿 =

𝒊

𝟏 𝑦𝑖𝑓 𝑥𝑖;𝑊, 𝑏 𝑦𝑖 < 0

68

Absolute Value Loss, Squared Error
Loss

𝐿𝑖 =

𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: absolute
value loss

• 𝑞 = 2: square
error loss.

69Bishop

MORE ON LOSS FUNCTIONS

70

Visualizing Loss Functions

• If you look at one of the example loss functions:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0, 𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1)

• Since 𝑊 has too many dimensions, this is difficult
to plot.

• We can visualize this for one weight direction
though, which can give us some intuition about
the shape of the function.
– E.g., start from an arbitrary 𝑊0, choose a direction 𝑊1

and plot 𝐿(𝑊0 + 𝛼𝑊1) for different values of 𝛼.

75
http://cs231n.github.io/

Visualizing Loss Functions

• Example:

• If we consider just 𝑤0, we have many linear functions
in terms of 𝑤0 and loss is a linear combination of
them.

76
http://cs231n.github.io/

Visualizing Loss Functions

• You see that this is a convex function.
– Nice and easy for optimization

• When you combine many of them in a neural network,
it becomes non-convex.

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

77
http://cs231n.github.io/

• 0-1 loss:
𝐿 = 1(𝑓 𝑥 ≠ 𝑦)

or equivalently as:
𝐿 = 1(𝑦𝑓 𝑥 > 0)

• Square loss:
𝐿 = 𝑓 𝑥 − 𝑦 2

in binary case:

𝐿 = 1 − 𝑦𝑓 𝑥
2

• Hinge-loss
𝐿 = max(1 − 𝑦𝑓 𝑥 , 0)

• Logistic loss:

𝐿 = ln 2 −1ln(1 + 𝑒−𝑦𝑓 𝑥)

Another approach for visualizing loss
functions

78

Rosacco et al., 2003

SUMMARY OF LOSS FUNCTIONS

79

80

81

82

83

Sum up

• 0-1 loss is not differentiable/helpful at training
– It is used in testing

• Other losses try to cover the “weakness” of 0-1
loss

• Hinge-loss imposes weaker constraint compared
to cross-entropy

• For classification: use hinge-loss or cross-entropy
loss

• For regression: use squared-error loss, or
absolute difference loss

84

SO, WHAT DO WE DO WITH A LOSS
FUNCTION?

85

Optimization strategies

• We want to find 𝑊 that minimizes the loss
function.

– Remember that 𝑊 has lots of dimensions.

• Naïve idea: random search

– For a number of iterations:
• Select a 𝑊 randomly

• If it leads to better loss than the previous ones, select it.

– This yields 15.5% accuracy on CIFAR after 1000
iterations (chance: 10%)

86
http://cs231n.github.io/

Optimization strategies

• Second idea: random local search

– Start at an arbitrary position (weight 𝑊)

– Select an arbitrary direction 𝑊 + 𝛿𝑊 and see if it
leads to a better loss

• If yes, move along

– This leads to 21.4% accuracy after 1000 iterations

– This is actually a variation of simulated annealing

• A better idea: follow the gradient

87
http://cs231n.github.io/

A quick reminder on gradients / partial derivatives

– In one dimension:
𝑑𝑓 𝑥

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ

– In practice:

•
𝑑𝑓 𝑛

𝑑𝑛
=

𝑓 𝑛+ℎ −𝑓[𝑛]

ℎ

•
𝑑𝑓 𝑛

𝑑𝑛
=

𝑓 𝑛+ℎ −𝑓[𝑛−ℎ]

2ℎ
(centered difference – works better)

– In many dimensions:

1. Compute gradient numerically with finite differences

– Slow

– Easy

– Approximate

2. Compute the gradient analytically

– Fast

– Exact

– Error-prone to implement

• In practice: implement (2) and check against (1) before testing

88

http://cs231n.github.io/

A quick reminder on gradients / partial
derivatives

• If you have a many-variable function, e.g., 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦, you can
take its derivative wrt either 𝑥 or 𝑦:

–
𝑑𝑓 𝑥,𝑦

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥+ℎ,𝑦 −𝑓(𝑥,𝑦)

ℎ
= 1

– Similarly,
𝑑𝑓 𝑥,𝑦

𝑑𝑦
= 1

– In fact, we should denote them as follows since they are “partial
derivatives” or “gradients on x or y”:

•
𝜕𝑓

𝜕𝑥
and

𝜕𝑓

𝜕𝑦

• Partial derivative tells you the rate of change along a single dimension
at a point.

– E.g., if 𝜕𝑓/𝜕𝑥=1, it means that a change of 𝑥0 in 𝑥 leads to the same
amount of change in the value of the function.

• Gradient is a vector of partial derivatives:

– 𝛻𝑓 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

89
http://cs231n.github.io/

A quick reminder on gradients / partial derivatives

• A simple example:
– 𝑓 𝑥, 𝑦 = max(𝑥, 𝑦)

– 𝛻𝑓 = 𝟏 𝑥 ≥ 𝑦 , 𝟏 𝑦 ≥ 𝑥

• Chaining:
– What if we have a composition of functions?

– E.g., 𝑓 𝑥, 𝑦, 𝑧 = 𝑞 𝑥, 𝑦 𝑧 and 𝑞 𝑥, 𝑦 = 𝑥 + 𝑦

–
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 𝑧

–
𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 𝑧

–
𝜕𝑓

𝜕𝑧
= 𝑞 𝑥, 𝑦 = 𝑥 + 𝑦

• Back propagation
– Local processing to improve the system globally

– Each gate locally determines to increase or decrease the inputs

90
http://cs231n.github.io/

Partial derivatives and backprop

• Which has many gates:

91
http://cs231n.github.io/

In fact, that was the sigmoid function

• We will combine all these gates into a
single gate and call it a neuron

92

Intuitive effects

• Commonly used operations
– Add gate
– Max gate
– Multiply gate

• Due to the effect of the
multiply gate, when one of
the inputs is large, the small
input gets the large gradient
– This has a negative effect in

NNs
– When one of the weights is

unusually large, it effects the
other weights.

– Therefore, it is better to
normalize the input / weights

93
http://cs231n.github.io/

Optimization strategies: gradient

• Move along the negative gradient (since we wish to go
down)

– 𝑊 − 𝑠
𝜕𝐿 𝑊

𝜕𝑊

– 𝑠: step size

• Gradient tells us the direction
– Choosing how much to move along that direction is difficult to

determine

– This is also called the learning rate

– If it is small: too slow to converge

– If it is big: you may overshoot and skip the minimum

94
http://cs231n.github.io/

Optimization strategies: gradient

• Take our loss function:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0,𝑤𝑗
𝑇𝑥𝑖 − 𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1)

• Its gradient wrt 𝑤𝑗 is:
𝜕𝐿𝑖
𝜕𝑤𝑗

= 𝟏 𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1 > 0 𝑥𝑖

• For the “winning” weight, this is:

95
http://cs231n.github.io/

Gradient Descent

• Update the weight:

𝑊𝑛𝑒𝑤 ← 𝑊 − 𝑠
𝜕𝐿 𝑊

𝜕𝑊

• This computes the gradient after seeing all examples to update the
weight.
– Examples can be on the order of millions or billions

• Alternative:
– Mini-batch gradient descent: Update the weights after, e.g., 256 examples

– Stochastic (or online) gradient descent: Update the weights after each
example

– People usually use batches and call it stochastic.

– Performing an update after one example for 100 examples is more
expensive than performing an update at once for 100 examples due to
matrix/vector operations

96
http://cs231n.github.io/

A GENERAL LOOK AT OPTIMIZATION

97

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Rong Jin

100

Mathematical Optimization

101

Rong Jin

Convex Optimization

102

Rong Jin

Interpretation

 Function’s value is below the line
connecting two points

Mark Schmidt
103

Another interpretation

Mark Schmidt
104

Example convex functions

Mark Schmidt
106

Operations that conserve convexity

107

Rong Jin

𝑥 + 𝑦
𝑝

<= 𝑥
𝑝
+ 𝑦

𝑝

108

Rong Jin

A KTEC Center of Excellence 109

Why convex optimization?

• Can’t solve most OPs

• E.g. NP Hard, even high polynomial time too slow

• Convex OPs

• (Generally) No analytic solution

• Efficient algorithms to find (global) solution

• Interior point methods (basically Iterated Newton) can be used:

– ~[10-100]*max{p3 , p2m, F} ; F cost eval. obj. and constr. f

• At worst solve with general IP methods (CVX), faster

specialized

A KTEC Center of Excellence 110

Convex Function

• Easy to see why convexity allows for

efficient solution

• Just “slide” down the objective function as

far as possible and will reach a minimum

A KTEC Center of Excellence 111

Convex vs. Non-convex Ex.

• Convex, min. easy to find

Affine – border

case of convexity

A KTEC Center of Excellence 112

Convex vs. Non-convex Ex.

• Non-convex, easy to get stuck in a local min.

• Can’t rely on only local search techniques

A KTEC Center of Excellence 113

Non-convex

• Some non-convex problems highly multi-modal,

or NP hard

• Could be forced to search all solutions, or hope

stochastic search is successful

• Cannot guarantee best solution, inefficient

• Harder to make performance guarantees with

approximate solutions

• Analytical solution
• Good algorithms and software
• High accuracy and high reliability
• Time complexity:

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

knC 2

A mature technology!

114

Rong Jin

• No analytical solution
• Algorithms and software
• Reliable and efficient
• Time complexity:

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

mnC 2

Also a mature technology!

115

Rong Jin

Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Almost a mature technology!

Least-squares LP

• No analytical solution
• Algorithms and software
• Reliable and efficient
• Time complexity (roughly)

},,max{ 23 Fmnn

116

Rong Jin

Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Far from a technology! (something to avoid)

Least-squares LP

• Sadly, no effective methods to solve
• Only approaches with some compromise
• Local optimization: “more art than technology”

• Global optimization: greatly compromised efficiency
• Help from convex optimization

1) Initialization 2) Heuristics 3) Bounds

117

Rong Jin

Why Study Convex Optimization

If not, …… 

-- Section 1.3.2, p8, Convex Optimization

there is little chance you can solve it.

118

Rong Jin

Recognizing Convex Optimization

Problems

121

Rong Jin

Least-squares

126

Rong Jin

Analytical Solution of Least-
squares

• Set the derivative to zero:

–
𝑑𝑓0 𝑥

𝑑𝑥
= 0

– 𝐴𝑇𝐴 2𝑥 − 2𝐴𝑏 = 0

– 𝐴𝑇𝐴 𝑥 = 𝐴𝑏

• Solve this system of linear equations

127

Linear Programming (LP)

128

Rong Jin

To sum up

• We introduced some important concepts in
machine learning and optimization

• We introduced popular machine learning
methods

• We talked about loss functions and how we
can optimize them using gradient descent

135

