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Now

• Introduction to ML
– Problem definition
– Classes of approaches
– K-NN
– Support Vector Machines
– Softmax classification / logistic regression
– Parzen Windows

• Optimization
– Gradient Descent approaches
– A flavor of other approaches
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Introduction to
Machine learning

Uses many figures and material from the following website:

http://www.byclb.com/TR/Tutorials/neural_networks/ch1_1.htm
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Content

• Problem definition

• General approaches

• Popular methods

– kNN

– Linear classification

– Support Vector Machines

– Parzen windows
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Problem Definition

• Given 
– Data: a set of instances 𝐱1, 𝐱2, … , 𝐱𝑛

sampled from a space 𝐗 ∈ ℝ𝑑 .

– Labels: the corresponding labels 𝑦𝑖 for each 
𝐱𝑖 . 𝑦𝑖 ∈ 𝐘 ∈ ℝ.

• Goal: 
– Learn a mapping from the space of “data” 

to the space of labels, i.e.,

• ℳ:𝐗 → 𝐘.

• 𝑦 = 𝑓 𝐱 .
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Issues in Machine Learning

• Hypothesis space

• Loss / cost / objective function

• Optimization

• Bias vs. variance

• Test / evaluate

• Overfitting, underfitting
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GenerativeDiscriminative

General Approaches

Find separating line 
(in general: hyperplane)

Fit a function to data
(regression).

Learn a model for 
each class.
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Generative

• Regression
• Markov Random Fields
• Bayesian Networks/Learning
• Clustering via Gaussian Mixture Models, 

Parzen Windows etc.
• …

Discriminative

• Support Vector Machines
• Artificial Neural Networks
• Conditional Random Fields
• K-NN

General Approaches (cont’d)
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Supervised

Instance Label

elma

elma

armut

elma

armut

Unsupervised

General Approaches (cont’d)

Extract 
Features

Learn a 
model

Extract 
Features

Learn a 
model

e.g. SVM

e.g. k-means
clustering
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General Approaches (cont’d)

Generative Discriminative

Supervised
Regression

Markov Random Fields
Bayesian Networks

Support Vector Machines
Neural Networks

Conditional Random Fields
Decision Tree Learning

Unsupervised
Gaussian Mixture Models

Parzen Windows
K-means

Self-Organizing Maps
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Now

Generative Discriminative

Supervised

Unsupervised

Support Vector
Machines

Parzen Windows

Softmax/Logistic 
Regression
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Feature Space
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General pitfalls/problems

• Overfitting

• Underfitting

• Occams’ razor
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K-NEAREST NEIGHBOR
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A very simple 
algorithm

• Advantages:
– No training
– Simple

• Disadvantages:
– Slow testing time (more efficient 

versions exist)
– Needs a lot of memory

Wikipedia

http://cs231n.github.io/classification/
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PARZEN WINDOWS

A non-parametric method
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Probability and density

• Probability of a continuous probability function, 𝑝 𝑥 , satisfies the 
following:
– Probability to be between two values:

𝑃 𝑎 < 𝑥 < 𝑏 =  
𝑎

𝑏

𝑝 𝑥 𝑑𝑥

– 𝑝 𝑥 > 0 for all real 𝑥.
– And 

 
−∞

∞

𝑝 𝑥 𝑑𝑥 = 1

• In 2-D:
– Probability for 𝐱 to be inside region 𝑅: 

𝑃 =  
𝑅

𝑝 𝐱 𝑑𝐱

– 𝑝 𝐱 > 0 for all real 𝐱.
– And 

 
−∞

∞

𝑝 𝐱 𝑑𝐱 = 1
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Density Estimation

• Basic idea:

𝑃 =  
𝑅

𝑝 𝐱 𝑑𝐱

• If 𝑅 is small enough, so 
that 𝑝(𝐱) is almost 
constant in 𝑅:

– 𝑃 =  𝑅 𝑝 𝐱 𝑑𝐱 ≈

p 𝐱  𝑅 𝑑𝐱 = 𝑝 𝐱 𝑉

– 𝑉: volume of region 𝑅.

• If 𝑘 out of 𝑛 samples fall 
into 𝑅, then 

𝑃 = 𝑘/𝑛

• From which we can 
write:

𝑘

𝑛
= 𝑝 𝐱 𝑉 ⇒ 𝑝 𝐱 =

𝑘/𝑛

𝑉
27



Parzen Windows

• Assume that: 
– 𝑅 is a hypercube centered at 𝐱.
– ℎ is the length of an edge of the hypercube.
– Then, 𝑉 = ℎ2 in 2D and 𝑉 = ℎ3 in 3D etc.

• Let us define the following window function:

𝑤
𝐱𝑖 − 𝐱𝑘

ℎ
=  

1, |𝐱𝑖 − 𝐱𝑘|/ℎ < 1/2
0, otherwise

• Then, we can write the number of samples falling 
into 𝑅 as follows:

𝑘 =  

𝑖=1

𝑛

𝑤
𝐱𝑖 − 𝐱𝑘

ℎ
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Parzen Windows (cont’d)

• Remember: 𝑝 𝐱 =
𝑘/𝑛

𝑉
.

• Using this definition of 𝑘, we can rewrite 𝑝(𝐱)
(in 2D):

𝑝 𝐱 =
1

𝑛
 

𝑖=1

𝑛
1

ℎ2
𝑤

𝐱𝑖 − 𝐱

ℎ

• Interpretation: Probability is the contribution 
of window functions fitted at each sample!
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Parzen Windows (cont’d)

• The type of the window function can add 
different flavors. 

• If we use Gaussian for the window function:

𝑝 𝐱 =
1

𝑛
 

𝑖=1

𝑛
1

𝜎√2𝜋
exp −

𝐱𝑖 − 𝐱 𝟐

2𝜎2

• Interpretation: Fit a Gaussian to each sample.
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LINEAR CLASSIFICATION
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Linear classification
• Linear classification relies on the following score function:

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏
Or 

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖
• where the bias is implicitly represented in 𝑊 and 𝑥𝑖

http://cs231n.github.io/linear-classify/
One row per class 33



Linear classification

• We can rewrite the score function as:
𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖

• where the bias is implicitly represented in 𝑊
and 𝑥𝑖

http://cs231n.github.io/linear-classify/
34



Linear classification: 
One interpretation

• Since an image can be thought as a vector, we can consider them as points 
in  high-dimensional space.

http://cs231n.github.io/linear-classify/

One interpretation of:

𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏

- Each row describes a 
line for a class, and “b” 
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Linear classification:
Another interpretation

• Each row in 𝑊 can be interpreted as a 
template of that class.

– 𝑓(𝑥𝑖;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏 calculates the inner 
product to find which template best fits 𝑥𝑖.

– Effectively, we are doing Nearest Neighbor with 
the “prototype” images of each class.

http://cs231n.github.io/linear-classify/
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Loss function
• A function which measures how good our weights are.

– Other names: cost function, objective function

• Let 𝑠𝑗 = 𝑓 𝑥𝑖;𝑊 𝑗

• An example loss function:

𝐿𝑖 =  

𝑗≠𝑦𝑖

max(0, 𝑠𝑗 − 𝑠𝑦𝑖 + Δ)

Or equivalently:

𝐿𝑖 =  

𝑗≠𝑦𝑖

max(0, 𝑤𝑗
𝑇𝑥𝑖 − 𝑤𝑦𝑖

𝑇 𝑥𝑖 + Δ)

• This directs the distances to other classes to be more than 
Δ (the margin)

http://cs231n.github.io/linear-classify/
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Example

• Consider our scores for 𝑥𝑖 to be 𝑠 =
[13, −7,11] and assume Δ as 10.

• Then, 
𝐿𝑖 = max 0,−7 − 13 + 10 +max(0,11 − 13 + 10)

http://cs231n.github.io/linear-classify/ 38



Regularization

• In practice, there are many possible solutions 
leading to the same loss value.
– Based on the requirements of the problem, we 

might want to penalize certain solutions.

• E.g.,

𝑅 𝑊 =  

𝑖

 

𝑗

𝑊𝑖,𝑗
2

– which penalizes large weights. 
• Why do we want to do that?

39http://cs231n.github.io/linear-classify/



Combined Loss 
Function

• The loss function becomes:

• If you expand it:

𝐿 =
1

𝑁
 

𝑖

 

𝑗≠𝑦𝑖

max 0, 𝑓 𝑥𝑖 ,𝑊 𝑗 − 𝑓 𝑥𝑖 ,𝑊 𝑦𝑖 + Δ + 𝜆 

𝑖

 

𝑗

𝑊𝑖,𝑗
2

Hyper parameters
(estimated using validation set)40http://cs231n.github.io/linear-classify/



Hinge Loss, or Max-Margin Loss

𝐿 =
1

𝑁
 

𝑖

 

𝑗≠𝑦𝑖

max 0, 𝑓 𝑥𝑖 ,𝑊 𝑗 − 𝑓 𝑥𝑖 ,𝑊 𝑦𝑖 + Δ + 𝜆 

𝑖

 

𝑗

𝑊𝑖,𝑗
2

41http://cs231n.github.io/linear-classify/



Interactive Demo

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/ 42



SUPPORT VECTOR MACHINES

An alternative formulation of

Barrowed mostly from the slides of:
- Machine Learning Group, University of Texas at Austin.
- Mingyue Tan, The University of British Columbia
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Linear Separators 

• Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

44



Linear Separators

• Which of the linear separators is optimal? 

45



Classification Margin

• Distance from example xi to the separator is 

• Examples closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the distance between support 
vectors.

w

xw b
r i

T 


r

ρ
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Maximum Margin Classification

• Maximizing the margin is good according to intuition.

• Implies that only support vectors matter; other training 
examples are ignorable. 

47



Linear SVM Mathematically

What we know:

• w . x+ + b = +1 

• w . x- + b = -1 

• w . (x+-x-) = 2 

X-

x+

ww

wxx 2)(









ρ=Margin Width
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Linear SVMs Mathematically (cont.)

• Then we can formulate the optimization problem: 

Which can be reformulated as: 

Find w and b such that

is maximized 

and for all (xi, yi), i=1..n :     yi(w
Txi + b) ≥ 1

w

2


Find w and b such that

Φ(w) = ||w||2=wTw is minimized 

and for all (xi, yi), i=1..n :    yi (wTxi + b) ≥ 1

50



Lagrange Multipliers

• Given the following optimization problem:
minimize 𝑓 𝑥, 𝑦 subject to 𝑔 𝑥, 𝑦 = 𝑐

• We can formulate it as:
𝐿 𝑥, 𝑦, 𝜆 = 𝑓 𝑥, 𝑦 + 𝜆(𝑔 𝑥, 𝑦 − 𝑐)

• and set the derivative to zero:
𝛻𝑥,𝑦,𝜆𝐿 𝑥, 𝑦, 𝜆 = 0

51



Lagrange Multipliers

• Main intuition:

– The gradients of f and g are parallel at the 
maximum

𝛻𝑓 = 𝜆𝛻𝑔

52

Fig: http://mathworld.wolfram.com/LagrangeMultiplier.html



Lagrange Multipliers

• See the following for proof
– http://ocw.mit.edu/courses/mathematics/18-02sc-

multivariable-calculus-fall-2010/2.-partial-
derivatives/part-c-lagrange-multipliers-and-
constrained-differentials/session-40-proof-of-
lagrange-multipliers/MIT18_02SC_notes_22.pdf

• A clear example:
– http://tutorial.math.lamar.edu/Classes/CalcIII/Lagrang

eMultipliers.aspx

• More intuitive explanation:
– http://www.slimy.com/~steuard/teaching/tutorials/La

grange.html

53

http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/2.-partial-derivatives/part-c-lagrange-multipliers-and-constrained-differentials/session-40-proof-of-lagrange-multipliers/MIT18_02SC_notes_22.pdf
http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
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Non-linear SVMs

• Datasets that are linearly separable with some noise work 
out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x
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SOFTMAX OR LOGISTIC CLASSIFIERS

56



Cross-entropy

• Uses cross-entropy (𝑡: target probabilities, 𝑜: estimated 
probabilities):

𝐻 𝑝, 𝑞 = 𝐸𝑝 − log 𝑞 = − 

𝑗

𝑝𝑗 log 𝑞𝑗

• Wikipedia:
– “the cross entropy between two probability distributions 𝑝 and 𝑞 over 

the same underlying set of events measures the average number of 
bits needed to identify an event drawn from the set, if a coding 
scheme is used that is optimized for an "unnatural" probability 
distribution 𝑞, rather than the "true" distribution 𝑝”

57



Softmax classifier – cross-entropy loss

• Cross-entropy: 𝐻 𝑝, 𝑞 = 𝐸𝑝 − log 𝑞 = − 𝑗 𝑝𝑗 log 𝑞𝑗

• In our case, 
– 𝑝 denotes the correct probabilities of the categories. In other words, 

𝑝𝑗 = 1 for the correct label and 𝑝𝑗 = 0 for other categories.

– 𝑞 denotes the estimated probabilities of the categories

• But, our scores are not probabilities!

– One solution: Softmax function: 𝑓 𝑧𝑖 =
𝑒𝑧𝑖

 𝑗 𝑒
𝑧𝑗

– It maps arbitrary ranges to probabilities

• Using the normalized values, we can define the cross-entropy 
loss for classification problem now:

𝐿𝑖 = − log
𝑒𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗

= −𝑓𝑦𝑖 + log 

𝑗

𝑒𝑓𝑗

58
http://cs231n.github.io/



logistic loss

• A special case of cross-entropy for binary classification:

𝐻 𝑝, 𝑞 = − 

𝑗

𝑝𝑗 log 𝑞𝑗 = −𝑝𝑗 log 𝑞𝑗 − 1 − 𝑝𝑗 log 1 − 𝑞𝑗

• Softmax function reduces to the logistic function:
1

1 + 𝑒𝑥

• And the loss becomes:

𝐿𝑖 = − log
1

1 + 𝑒𝑓

59
http://cs231n.github.io/



Why take logarithm of probabilities?

• Maps probability space to logarithmic space

• Multiplication becomes addition

– Multiplication is a very frequent operation with 
probabilities

• Speed:

– Addition is more efficient

• Accuracy:

– Considering loss in representing real numbers, addition is 
friendlier

• Since log-probability is negative, to work with positive 
numbers, we usually negate the log-probability

62



Softmax classifier: 
One interpretation

• Information theory

– Cross-entropy between a true distribution and an 
estimated one:

𝐻 𝑝, 𝑞 = − 

𝑥

𝑝 𝑥 log 𝑞 𝑥 .

– In our case, 𝑝 = [0,… , 1,0, . . 0], containing only 
one 1, at the correct label.

– Since 𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷𝐾𝐿(𝑝||𝑞), we are 
minimizing the Kullback-Leibler divergence.

63
http://cs231n.github.io/



Softmax classifier: 
Another interpretation

• Probabilistic view

𝑃 𝑦𝑖 𝑥𝑖;𝑊) =
𝑒𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗
.

• In our case, we are minimizing the negative 
log likelihood.

• Therefore, this corresponds to Maximum 
Likelihood Estimation (MLE).

64
http://cs231n.github.io/



Numerical Stability

• Exponentials may become very large. A trick:

• Set log 𝐶 = −max
𝑗

𝑓𝑗.

65
http://cs231n.github.io/



SVM loss vs. cross-entropy loss

• SVM is happy when the classification satisfies 
the margin

– Ex: if score values = [10, 9, 9] or [10, -10, -10]

• SVM loss is happy if the margin is 1

– SVM is local

• cross-entropy always wants better

– cross-entropy is global

66



0-1 Loss

• Minimize the # of cases where the prediction is wrong:

𝐿 =  

𝒊

𝟏 𝑓 𝑥𝑖;𝑊, 𝑏 𝑦𝑖 ≠  𝑦𝑖

Or equivalently,

𝐿 =  

𝒊

𝟏  𝑦𝑖𝑓 𝑥𝑖;𝑊, 𝑏 𝑦𝑖 < 0

68



Absolute Value Loss, Squared Error 
Loss

𝐿𝑖 =  

𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: absolute 
value loss

• 𝑞 = 2: square 
error loss.

69Bishop



MORE ON LOSS FUNCTIONS
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Visualizing Loss Functions

• If you look at one of the example loss functions:

𝐿𝑖 =  

𝑗≠𝑦𝑖

max(0, 𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1)

• Since 𝑊 has too many dimensions, this is difficult 
to plot. 

• We can visualize this for one weight direction 
though, which can give us some intuition about 
the shape of the function.
– E.g., start from an arbitrary 𝑊0, choose a direction 𝑊1

and plot 𝐿(𝑊0 + 𝛼𝑊1) for different values of 𝛼.

75
http://cs231n.github.io/



Visualizing Loss Functions

• Example:

• If we consider just 𝑤0, we have many linear functions 
in terms of 𝑤0 and loss is a linear combination of 
them.

76
http://cs231n.github.io/



Visualizing Loss Functions

• You see that this is a convex function.
– Nice and easy for optimization

• When you combine many of them in a neural network, 
it becomes non-convex.

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

77
http://cs231n.github.io/



• 0-1 loss:
𝐿 = 1(𝑓 𝑥 ≠ 𝑦)

or equivalently as:
𝐿 = 1(𝑦𝑓 𝑥 > 0)

• Square loss:
𝐿 = 𝑓 𝑥 − 𝑦 2

in binary case:

𝐿 = 1 − 𝑦𝑓 𝑥
2

• Hinge-loss
𝐿 = max(1 − 𝑦𝑓 𝑥 , 0)

• Logistic loss:

𝐿 = ln 2 −1ln(1 + 𝑒−𝑦𝑓 𝑥 )

Another approach for visualizing loss 
functions

78

Rosacco et al., 2003



SUMMARY OF LOSS FUNCTIONS

79



80



81



82



83



Sum up

• 0-1 loss is not differentiable/helpful at training
– It is used in testing

• Other losses try to cover the “weakness” of 0-1 
loss

• Hinge-loss imposes weaker constraint compared 
to cross-entropy

• For classification: use hinge-loss or cross-entropy 
loss

• For regression: use squared-error loss, or 
absolute difference loss

84



SO, WHAT DO WE DO WITH A LOSS 
FUNCTION?

85



Optimization strategies

• We want to find 𝑊 that minimizes the loss 
function.

– Remember that 𝑊 has lots of dimensions.

• Naïve idea: random search

– For a number of iterations:
• Select a 𝑊 randomly

• If it leads to better loss than the previous ones, select it.

– This yields 15.5% accuracy on CIFAR after 1000 
iterations (chance: 10%)

86
http://cs231n.github.io/



Optimization strategies

• Second idea: random local search

– Start at an arbitrary position (weight 𝑊)

– Select an arbitrary direction 𝑊 + 𝛿𝑊 and see if it 
leads to a better loss

• If yes, move along

– This leads to 21.4% accuracy after 1000 iterations

– This is actually a variation of simulated annealing

• A better idea: follow the gradient

87
http://cs231n.github.io/



A quick reminder on gradients / partial derivatives

– In one dimension: 
𝑑𝑓 𝑥

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ

– In practice:

•
𝑑𝑓 𝑛

𝑑𝑛
=

𝑓 𝑛+ℎ −𝑓[𝑛]

ℎ

•
𝑑𝑓 𝑛

𝑑𝑛
=

𝑓 𝑛+ℎ −𝑓[𝑛−ℎ]

2ℎ
(centered difference – works better)

– In many dimensions:

1. Compute gradient numerically with finite differences

– Slow

– Easy

– Approximate

2. Compute the gradient analytically

– Fast

– Exact

– Error-prone to implement

• In practice: implement (2) and check against (1) before testing

88
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A quick reminder on gradients / partial 
derivatives

• If you have a many-variable function, e.g., 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦, you can 
take its derivative wrt either 𝑥 or 𝑦:

–
𝑑𝑓 𝑥,𝑦

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥+ℎ,𝑦 −𝑓(𝑥,𝑦)

ℎ
= 1

– Similarly, 
𝑑𝑓 𝑥,𝑦

𝑑𝑦
= 1

– In fact, we should denote them as follows since they are “partial 
derivatives” or “gradients on x or y”:

•
𝜕𝑓

𝜕𝑥
and 

𝜕𝑓

𝜕𝑦

• Partial derivative tells you the rate of change along a single dimension 
at a point.

– E.g., if 𝜕𝑓/𝜕𝑥=1, it means that a change of 𝑥0 in 𝑥 leads to the same 
amount of change in the value of the function.

• Gradient is a vector of partial derivatives: 

– 𝛻𝑓 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
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A quick reminder on gradients / partial derivatives

• A simple example:
– 𝑓 𝑥, 𝑦 = max(𝑥, 𝑦)

– 𝛻𝑓 = 𝟏 𝑥 ≥ 𝑦 , 𝟏 𝑦 ≥ 𝑥

• Chaining:
– What if we have a composition of functions?

– E.g., 𝑓 𝑥, 𝑦, 𝑧 = 𝑞 𝑥, 𝑦 𝑧 and 𝑞 𝑥, 𝑦 = 𝑥 + 𝑦

–
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 𝑧

–
𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 𝑧

–
𝜕𝑓

𝜕𝑧
= 𝑞 𝑥, 𝑦 = 𝑥 + 𝑦

• Back propagation
– Local processing to improve the system globally

– Each gate locally determines to increase or decrease the inputs
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Partial derivatives and backprop

• Which has many gates:
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In fact, that was the sigmoid function

• We will combine all these gates into a 
single gate and call it a neuron
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Intuitive effects

• Commonly used operations
– Add gate
– Max gate
– Multiply gate

• Due to the effect of the 
multiply gate, when one of 
the inputs is large, the small 
input gets the large gradient
– This has a negative effect in 

NNs
– When one of the weights is 

unusually large, it effects the 
other weights.

– Therefore, it is better to 
normalize the input / weights
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Optimization strategies: gradient

• Move along the negative gradient (since we wish to go 
down)

– 𝑊 − 𝑠
𝜕𝐿 𝑊

𝜕𝑊

– 𝑠: step size

• Gradient tells us the direction
– Choosing how much to move along that direction is difficult to 

determine

– This is also called the learning rate

– If it is small: too slow to converge

– If it is big: you may overshoot and skip the minimum
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Optimization strategies: gradient

• Take our loss function:

𝐿𝑖 =  

𝑗≠𝑦𝑖

max(0,𝑤𝑗
𝑇𝑥𝑖 − 𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1)

• Its gradient wrt 𝑤𝑗 is:
𝜕𝐿𝑖
𝜕𝑤𝑗

= 𝟏 𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 + 1 > 0 𝑥𝑖

• For the “winning” weight, this is:
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Gradient Descent

• Update the weight:

𝑊𝑛𝑒𝑤 ← 𝑊 − 𝑠
𝜕𝐿 𝑊

𝜕𝑊

• This computes the gradient after seeing all examples to update the 
weight.
– Examples can be on the order of millions or billions

• Alternative:
– Mini-batch gradient descent: Update the weights after, e.g., 256 examples

– Stochastic (or online) gradient descent: Update the weights after each 
example

– People usually use batches and call it stochastic.

– Performing an update after one example for 100 examples is more 
expensive than performing an update at once for 100 examples due to 
matrix/vector operations
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A GENERAL LOOK AT OPTIMIZATION
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Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Rong Jin
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Mathematical Optimization
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Convex Optimization
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Interpretation

 Function’s value is below the line 
connecting two points

Mark Schmidt
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Another interpretation

Mark Schmidt
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Example convex functions

Mark Schmidt
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Operations that conserve convexity
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𝑥 + 𝑦
𝑝

<= 𝑥
𝑝
+ 𝑦

𝑝
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Why convex optimization?

• Can’t solve most OPs 

• E.g. NP Hard, even high polynomial time too slow

• Convex OPs

• (Generally) No analytic solution

• Efficient algorithms to find (global) solution

• Interior point methods (basically Iterated Newton) can be used:

– ~[10-100]*max{p3 , p2m, F} ; F cost eval. obj. and constr. f

• At worst solve with general IP methods (CVX),  faster 

specialized
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Convex Function

• Easy to see why convexity allows for 

efficient solution

• Just “slide” down the objective function as 

far as possible and will reach a minimum 
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Convex vs. Non-convex Ex.

• Convex, min. easy to find

Affine – border 

case of convexity
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Convex vs. Non-convex Ex.

• Non-convex, easy to get stuck in a local min. 

• Can’t rely on only local search techniques
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Non-convex

• Some non-convex problems highly multi-modal, 

or NP hard

• Could be forced to search all solutions, or hope 

stochastic search is successful

• Cannot guarantee best solution, inefficient

• Harder to make performance guarantees with 

approximate solutions



• Analytical solution
• Good algorithms and software
• High accuracy and high reliability
• Time complexity: 

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

knC 2

A mature technology!
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• No analytical solution
• Algorithms and software
• Reliable and efficient
• Time complexity: 

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

mnC 2

Also a mature technology!
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Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Almost a mature technology!

Least-squares LP

• No analytical solution
• Algorithms and software
• Reliable and efficient
• Time complexity (roughly) 

},,max{ 23 Fmnn
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Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Far from a technology! (something to avoid)

Least-squares LP

• Sadly, no effective methods to solve
• Only approaches with some compromise
• Local optimization: “more art than technology”

• Global optimization: greatly compromised efficiency 
• Help from convex optimization

1) Initialization 2) Heuristics 3) Bounds
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Why Study Convex Optimization

If not,  …… 

-- Section 1.3.2, p8, Convex Optimization

there is little chance you can solve it.
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Recognizing Convex Optimization 

Problems
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Least-squares
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Analytical Solution of Least-
squares

• Set the derivative to zero:

–
𝑑𝑓0 𝑥

𝑑𝑥
= 0

– 𝐴𝑇𝐴 2𝑥 − 2𝐴𝑏 = 0

– 𝐴𝑇𝐴 𝑥 = 𝐴𝑏

• Solve this system of linear equations
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Linear Programming (LP)
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To sum up

• We introduced some important concepts in 
machine learning and optimization

• We introduced popular machine learning 
methods

• We talked about loss functions and how we 
can optimize them using gradient descent
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