
Artificial neural
networks

Now

• Neurons

• Neuron models

• Perceptron learning

• Multi-layer perceptrons

• Backpropagation

4

It all starts with
a neuron

5

Some facts about human brain

• ~ 86 billion neurons

• ~ 1015 synapses

•

Fig: I. Goodfellow
6

Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-

Rate-Neural-Plug-in/Neuron-Basics

The basic information
processing element of neural
systems. The neuron

• receives input signals
generated by other neurons
through its dendrites,

• integrates these signals in its
body,

• then generates its own signal
(a series of electric pulses)
that travel along the axon
which in turn makes contacts
with dendrites of other
neurons.

• The points of contact
between neurons are called
synapses.

7

8

Neuron

• The pulses
generated by the
neuron travels along
the axon as an
electrical wave.

• Once these pulses
reach the synapses
at the end of the
axon open up
chemical vesicles
exciting the other
neuron.

Slide credit: Erol Sahin

Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-

Basics

(Carlson, 1992)

(Carlson, 1992)

9

10

The biological neuron - 2

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-

Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)

http://www.billconnelly.net/?p=291 11

Artificial neuron

12

History of artificial neurons

• Threshold Logic Unit, or Linear Threshold Unit, a.k.a.
McCulloch Pitts Neurons – 1943

• Perceptron by Rosenblatt

 “This model already considered more flexible weight values in the
neurons, and was used in machines with adaptive capabilities. The
representation of the threshold values as a bias term was
introduced by Bernard Widrow in 1960 – see ADALINE.”

• “In the late 1980s, when research on neural networks
regained strength, neurons with more continuous shapes
started to be considered. The possibility of differentiating the
activation function allows the direct use of the gradient
descent and other optimization algorithms for the adjustment
of the weights. Neural networks also started to be used as a
general function approximation model. The best known
training algorithm called backpropagation has been
rediscovered several times but its first development goes back
to the work of Paul Werbos” 13

© Erol Şahin 14

15

16

McCulloch-Pitts Neuron
(McCulloch & Pitts, 1943)

• Binary input-output

• Can represent Boolean
functions.

• No training.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

net =

17

McCulloch-Pitts Neuron

• Implement AND:

 Let 𝑤𝑥1 and 𝑤𝑥2 to be 1,
and 𝑤𝑥𝑏 to be -2.

• When input is 1 & 1; net
is 0.

• When one input is 0; net
is -1.

• When input is 0 & 0; net
is -2.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

19

McCulloch-Pitts Neuron

Wikipedia:

• “Initially, only a simple model was considered, with binary inputs
and outputs, some restrictions on the possible weights, and a more
flexible threshold value. Since the beginning it was already noticed
that any boolean function could be implemented by networks of
such devices, what is easily seen from the fact that one can
implement the AND and OR functions, and use them in the
disjunctive or the conjunctive normal form. Researchers also soon
realized that cyclic networks, with feedbacks through neurons,
could define dynamical systems with memory, but most of the
research concentrated (and still does) on strictly feed-forward
networks because of the smaller difficulty they present.”

20

https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Feedback

McCulloch-Pitts Neuron

• Binary input-output is a big limitation

• Also called

“[…] caricature models since they are intended to reflect
one or more neurophysiological observations, but
without regard to realism […]”

-- Wikipedia

• No training! No learning!

• They were useful in inspiring research into
connectionist models

21

Hebb’s Postulate (Hebb, 1949)

• “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A's efficiency, as one of the cells firing B, is increased”

In short: Neurons that

fire together, wire

together.

In other words:

𝑤𝑖𝑗 ∝ 𝑥𝑖𝑥𝑗
22

23

Hebb’s Learning Law

• Very simple to formulate as a learning rule:

• If the activation of the neurons, y1 and y2 , are both on (+1) then

the weight between the two neurons grow. (Off: 0)

• Else the weight between remains the same.

• However, when bipolar activation {-1,+1} scheme is used, then the

weights can also decrease when the activation of two neurons does

not match.

Slide credit: Erol Sahin

24

25

https://www.youtube.com/watch?v=cNxadbrN_aI

https://www.youtube.com/watch?v=aygSMgK3BEM

And many others

• Widrow & Hoff, 1962

• Grossberg, 1969

• Kohonen, 1972

• von der Malsburg, 1973

• Narendra & Thathtchar, 1974

• Palm, 1980

• Hopfield, 1982

26

Let’s go back to a biological neuron

• A biological neuron has:

 Dendrites

 Soma

 Axon

• Firing is continuous,
unlike most artificial
neurons

• Rather than the
response function, the
firing rate is critical

27

• Neurone vs. Node

• Very crude abstraction
• Many details overseen

“Spherical cow” problem!

28

Spherical cow

https://en.wikipedia.org/wiki/Spherical_cow

Q: How does a physicist milk a cow?

A: Well, first let us consider a spherical cow...

Or

“Milk production at a dairy farm was low, so the farmer wrote

to the local university, asking for help from academia. A

multidisciplinary team of professors was assembled, headed

by a theoretical physicist, and two weeks of intensive on-site

investigation took place. The scholars then returned to the

university, notebooks crammed with data, where the task of

writing the report was left to the team leader. Shortly

thereafter the physicist returned to the farm, saying to the

farmer, "I have the solution, but it only works in the case of

spherical cows in a vacuum".”

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/

29

Let us take a closer look at perceptrons
• Initial proposal of connectionist networks

• Rosenblatt, 50’s and 60’s

• Essentially a linear discriminant composed of nodes and weights

𝑥1

𝑥2

𝑤1

𝑤2

𝑜

or

Activation Function

𝑤0

𝑜 𝐱 =
1, 𝑤0 + 𝑤1𝑥1+. . 𝑤𝑛𝑥𝑛 > 0
0, otherwise

…

𝑥𝑛

𝑤𝑛

𝑥1

𝑥2

𝑤1

𝑤2

𝑜

𝑤0

…

𝑥𝑛

𝑤𝑛

1

Or, simply 𝑜 𝐱 = sgn(𝐰 ⋅ 𝐱)

where
30

31

Perceptron – clearer structure

Retina

Associative

units

Response unit

Fixed weights

Variable weights

Step activation function























iny

iny

iny

inyf

_ if1

_ if0

_ if1

)_(

Slide adapted from Dr. Nigel Crook from Oxford Brookes University

Slide credit: Erol Sahin

33

Perceptron - activation

X1

X2

Y1

Y2

w1,1

w2,1

w1,2

w2,2































































2

1
,2

2

1
,1

22,211,2

22,111,1

2

1

2,21,2

2,11,1

j
jj

j
jj

xw

xw

xwxw

xwxw

x

x

ww

ww
Wx

Slide adapted from Dr. Nigel Crook from Oxford Brookes University
Slide credit: Erol Sahin

Simple matrix multiplication, as we have seen in the previous lecture

Motivation for perceptron learning

• We have estimated an output 𝑜
– But the target was 𝑡

• Error (simply): 𝑡 − 𝑜

• Let us update each weight such that we “learn” from the
error:

– 𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

– where Δ𝑤𝑖 ∝ (𝑡 − 𝑜)

• We somehow need to distribute the error to the weights.
How?
– Distribute the error according to how much they contributed to

the error: Bigger input contributes more to the error.

– Therefore: Δ𝑤𝑖 ∝ 𝑡 − 𝑜 𝑥𝑖

36

(No gradient descent yet)

An example

• Consider 𝑥𝑖 = 0.8, 𝑡 = 1, 𝑜 = −1

– Then, 𝑡 − 𝑜 𝑥𝑖 = 1.6

– Which will increase the weight

– Which makes sense considering the output and
the target

37

Perceptron training rule

• Update weights
𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

• How to determine Δ𝑤𝑖?
Δ𝑤𝑖 ← 𝜂 𝑡 − 𝑜 𝑥𝑖

– 𝜂: learning rate – can be slowly decreased

– 𝑡: target/desired output

– 𝑜: current output

38

Perceptron - intuition

• A perceptron defines a hyperplane in N-1 space: a line in 2-D
(two inputs), a plane in 3-D (three inputs),….

• The perceptron is a linear classifier: It’s output is -1 on one
side of the plane, and 1 for the other.

• Given a linearly separable problem, the perceptron learning
rule guarantees convergence.

39
Slide credit: Erol Sahin

Problems with perceptron

• Perceptron unit is non-linear

• However, it is not differentiable (due to
thresholding), which makes it unsuitable to
gradient descent in multi-layer networks.

40

Problems with perceptron learning

• Can only learn linearly separable classification.

41

linearly separable not linearly separable

Gradient Descent

• Consider unthresholded perceptron:
𝑜 𝐱 = 𝐰 ⋅ 𝐱

• We can calculate the error of the perceptron:

𝐸 𝒘 =
1

2

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
2

• We can guide the search for better weights by using the
gradient of this error function.

44
T. M. Mitchell, “Machine Learning”

Gradient Descent Rule

𝒘 ← 𝒘+ Δ𝒘

• Determine Δ𝒘 based
on the error function:
Δ𝒘 ← −𝜂𝛻𝐸(𝒘)

• For the individual
weights:

Δ𝑤𝑖 ← −𝜂
𝜕𝐸

𝜕𝑤𝑖

Δ𝑤𝑖 ← 𝜂

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑥𝑖𝑑
45

T. M. Mitchell, “Machine Learning”

Gradient Descent Training Algorithm

T. M. Mitchell, “Machine Learning”
46

Stochastic Gradient Descent
or Incremental Gradient Descent

• Difficulties of gradient descent:

– Convergence to a local minimum can be quite slow

– If there are multiple local minima, no guarantee on finding
the global minimum

• One alternative:

– update the weight after seeing each sample.

Δ𝑤𝑖 ← 𝜂 𝑡 − 𝑜 𝑥𝑖 Compare to (in standard GD):

Δ𝑤𝑖 ← 𝜂

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑥𝑖𝑑

(Delta rule, least-mean-square-rule, Adaline rule or Widrof-Hoff rule)

- Error effectively becomes (per data):

𝐸𝑑 𝑤 =
1

2
𝑡𝑑 − 𝑜𝑑

2

47

Notes on convergence

• Perceptron learning:
– Output is thresholded

– Converges after a finite number of iterations to a hypothesis
that perfectly classifies the data

– Condition: data is linearly separable

• Gradient descent (delta rule):
– Output is not thresholded

– Converges asymptotically to the minimum error hypothesis

– Condition: unbounded time

– Does not require linear separation.

48

The limitations of a perceptron:
A hidden neuron may help

© Erol Şahin 49

LET’S GET MULTI-LAYER

50

Multi-layer Networks

Information flow is unidirectional

Data is presented to Input layer

Passed on to Hidden Layer

Passed on to Output layer

Information is distributed

Information processing is parallel

Internal representation (interpretation) of data

51

Multi-layered Networks

• To be able to have solutions for linearly non-separable cases,
we need a non-linear and differentiable unit.

where:

- Sigmoid (logistic) function
- Output is in (0,1)
- Since it maps a large domain

to (0,1) it is also called
squashing function

- Alternatives: tanh
(Eq: M. Percy)

52

Perceptron with sigmoid function

53

Why do we need to learn
backpropagation?

• “Many frameworks implement backpropagation
for us, why do we need to learn?”
– This is not a blackbox. There are many

problems/issues involved. You can only deal with
them if you have a good understanding of
backpropagation.

https://medium.com/@karpathy/yes-you-should-
understand-backprop-e2f06eab496b#.7zawffou2

54

Backpropagation algorithm
• Let us re-define the error function since we have many outputs:

𝐸 𝒘 =
1

2

𝑑∈𝐷

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑡𝑘𝑑 − 𝑜𝑘𝑑
2

- For one data:

𝐸𝑑 𝒘 =
1

2

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑡𝑘𝑑 − 𝑜𝑘𝑑
2

- For each output unit 𝑘, calculate its error term 𝛿𝑘:
𝛿𝑘 = −𝜕𝐸𝑑(𝑤)/𝜕𝑜𝑘

𝛿𝑘 = 𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)

- For each hidden unit ℎ, calculate its error term 𝛿ℎ:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑤𝑘ℎ𝛿𝑘

- Update every weight 𝑤𝑗𝑖

𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖

Derivative of the
Sigmoid function

55

Derivation of backpropagation
• Derivation of the output unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

- Expand
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
:

𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

=
𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

- Expand
𝜕𝐸𝑑

𝜕𝑛𝑒𝑡𝑗
:

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

=
𝜕𝐸𝑑
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗

𝑥𝑗𝑖

Derivative of sigmoid:
𝑜𝑗(1 − 𝑜𝑗)

𝜕

𝜕𝑜𝑗

1

2

𝑘

𝑡𝑘 − 𝑜𝑘
2 =

𝜕

𝜕𝑜𝑗

1

2
𝑡𝑘 − 𝑜𝑘

2 = − tj − oj

Therefore:

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

= 𝜂 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗
56

Derivation of backpropagation

• Derivation of the output unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

Therefore:

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

= 𝜂 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗

𝛿𝑗
(error term for unit j)

57

Derivation of backpropagation
• Derivation of the hidden unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

- Expand
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
:

𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

=
𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

- Expand
𝜕𝐸𝑑

𝜕𝑛𝑒𝑡𝑗
:

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

=

𝑘

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑛𝑒𝑡𝑗

𝑥𝑗𝑖

−𝛿𝑘
=

𝜕𝑛𝑒𝑡𝑘
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
= 𝑤𝑘𝑗𝑜𝑗(1 − 𝑜𝑗)Therefore:

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
= 𝜂𝛿𝑗𝑥𝑗𝑖 = 𝜂𝑥𝑗𝑖 𝑜𝑗 1 − 𝑜𝑗 𝑘 𝛿𝑘𝑤𝑘𝑗

58

Forward pass

59

Backpropagation vs. numerical
differentiation

• Backpropagation:

– 𝑂 𝑊

• Numerical differentiation

– 𝑂 𝑊 2

61

Problems of back propagation with
sigmoid

• It is extremely slow, if it does converge.

• It may get stuck in a local minima.

• It is sensitive to initial conditions.

• It may start oscillating.

62

Backprop in deep networks

• Local minima may not be as severe as it is feared

– If one weight gets into local minima, other weights
provide escape routes

– The more weights, the more escape routes

• Add a momentum term

• Use stochastic gradient descent, rather than true
gradient descent

– This means we have different error surfaces for each data

– If stuck in local minima in one of them, the others might
help

• Train multiple networks with different initial weights

– Select the best one 63

Backprop

• Very powerful - can learn any function, given enough hidden
units!

• Have the same problems of Generalization vs.
Memorization.

– With too many units, we will tend to memorize the input and not
generalize well. Some schemes exist to “prune” the neural network.

• Networks require extensive training, many parameters to
fiddle with. Can be extremely slow to train. May also fall
into local minima.

• Inherently parallel algorithm, ideal for multiprocessor
hardware.

• Despite the cons, a very powerful algorithm that has seen
widespread successful deployment.

64

Now, let us look at alternative aspects

• Loss functions
– Hinge-loss, softmax loss, squared-error loss, …

– We will not look at them here again

• Activation functions
– Sigmoid, tanh, ReLU, Leaky ReLU, parametric ReLU, maxout

• Backpropagation strategy:
– True Gradient Descent, Stochastic Gradient Descent, Mini-

batch Gradient Descent, RMSpop, AdaDelta, AdaGrad,
Adam

65

Activation Functions

Activation function

• Sigmoid / logistic function

67

Activation function

68

Activation Functions

• sigmoid vs tanh

69

Derivative: 𝜎(𝑥)(1 − 𝜎 𝑥) Derivative: (1 − tanh2(𝑥))

Pros and Cons
• Sigmoid is an historically important activation function

– But nowadays, rarely used

• Sigmoid drawbacks

1. It gets saturated, if the activation is close to zero or one

• This leads to very small gradient, which disallows
“transfer”ing the feedback to earlier layers

• Initialization is also very important for this reason

2. It is not zero-centered (not very severe)

• Tanh

– Similar to the sigmoid, it saturates

– However, it is zero-centered.

– Tanh is always preferred over sigmod

– Note: tanh 𝑥 = 2𝜎 2𝑥 − 1
70

http://cs231n.github.io/neural-networks-1/

Rectified Linear Units (ReLU)

72

[Krizhevsky et al., NIPS12]

𝑓 𝑥 = max(0, 𝑥)

Derivative: 𝟏(𝑥 > 0)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve
restricted Boltzmann machines, ICML.

ReLU: biological
motivation

74
Glorot et al., “Deep Sparse Rectier Neural Networks”, 2011.

Rectified Linear Units: Another Perspective

Hinton argues that this is a form of model averaging

75

ReLU: Pros and Cons

• Pros:
– It converges much faster (claimed to be 6x faster than

sigmoid/tanh)
• It overfits very fast and when used with e.g. dropout, this

leads to very fast convergence

– It is simpler and faster to compute (simple
comparison)

• Cons:
– A ReLU neuron may “die” during training
– A large gradient may update the weights such that the

ReLU neuron may never activate again
• Avoid large learning rate

76

ReLU

• See the following site for more in-depth
analysis

http://www.jefkine.com/general/2016/08/24/fo
rmulating-the-relu/

77

Leaky ReLU

• 𝑓 𝑥 = 𝟏 𝑥 < 0 𝛼𝑥 + 𝟏(𝑥 ≥ 0)(𝑥)

– When 𝑥 is negative, have a non-zero slope (𝛼)

• If you learn 𝛼 during training, this is called
parametric ReLU (PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun (2015) Delving Deep into
Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification

Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng
(2014). Rectifier Nonlinearities Improve Neural
Network Acoustic Models

78

Maxout

• max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2)

• ReLU, Leaky ReLU and PReLU are special cases
of this

• Drawback: More parameters to learn!

“Maxout Networks” by Ian J. Goodfellow, David
Warde-Farley, Mehdi Mirza, Aaron Courville,
Yoshua Bengio, 2013.

79

Softplus

• A smooth
approximation to
the ReLU unit:
𝑓 𝑥 = ln 1 + 𝑒𝑥

• Its derivative is the
sigmoid function:

𝑓′ 𝑥 = 1/(1 + 𝑒−𝑥)

80

Activation Functions: To sum up

• Don’t use sigmoid

• If you really want, use tanh but it is worse
than ReLU and its variants

• ReLU: be careful about dying neurons

• Leaky ReLU and Maxout: Worth trying

84

DEMO

• http://playground.tensorflow.org/#activation=tan
h®ularization=L2&batchSize=10&dataset=circl
e®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&
noise=0&networkShape=4,2&seed=0.24725&sho
wTestData=false&discretize=false&percTrainData
=50&x=true&y=true&xTimesY=false&xSquared=f
alse&ySquared=false&cosX=false&sinX=false&cos
Y=false&sinY=false&collectStats=false&problem=
classification

85

Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-
guide-basics-neural-networks/

86

BACK PROPAGATION /
MINIMIZATION STRATEGIES

87

Schemes of training

• True/Standard Gradient Descent

• Stochastic Gradient Descent

• Steepest Gradient Descent

• Momentum Gradient Descent

• Curricular training

88

89Jonathan Richard Shewchuk

90

91

Stochastic Gradient Descent

Batch Gradient Descent

92

Gradient descent

93
https://en.wikipedia.org/wiki/Gradient_descent

Second order methods

• Newton’s method for optimization:

– 𝑤 ← 𝑤 − 𝐻𝑓 𝑤 −1𝛻𝑓 𝑤

– where 𝐻𝑓 𝑤 is the Hessian

• Hessian gives a better feeling about the surface

– It gives information about the curvature of surface
94

Hessian for an image window

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

The eigenvalues of the Hessian matrix:

Source: R. Szeliski
95

Newton’s method for optimization

• 𝑤 ← 𝑤 − 𝐻𝑓 𝑤 −1𝛻𝑓 𝑤

– Makes bigger steps in shallow curvature

– Smaller steps in steep curvature

• Note that there is no hyper-parameter!

• Disadvantage:

– Too much memory requirement

– For 1 million parameters, this means a matrix of 1 million x
1 million  ~ 3725 GB RAM

– Alternatives exist to get around the memory problem
(quasi-Newton methods, Limited-memory BFGS)

• Active research area  A suitable project topic 

96

RPROP (Resilience Propagation)

• Instead of the magnitude, use the sign of the gradients

• Motivation: If the sign of a weight has changed, that means
we have “overshot” a minima

• Advantage: Faster to run/converge

• Disadvantage: More complex to implement

97
1993

RPROP (Resilience Propagation)

98
1993

Gradient Descent with Line Search

• Gradient descent:

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

where 𝑑𝑖𝑟𝑖𝑗
𝑡−1 = −𝜕𝐸/𝜕𝑤𝑖𝑗

• Gradient descent with line search:

– Choose 𝑠 such that 𝐸 is minimized along 𝑑𝑖𝑟𝑖𝑗
𝑡−1.

– Set
𝑑𝐸 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

99

100Jonathan Richard Shewchuk

101Jonathan Richard Shewchuk

Gradient Descent with Line Search

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

• Set
𝑑𝐸 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

•
𝑑𝐸 𝑤𝑖𝑗

𝑡 =𝑤𝑖𝑗
𝑡−1+𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

• Interpretation:
– Choose 𝑠 such that: the gradient direction at the new position is orthogonal to

the current direction

• This is called steepest gradient descent
• Problem: makes zig-zag

102

103Jonathan Richard Shewchuk

Conjugate Gradient Descent

• Motivation

104Jonathan Richard Shewchuk

Conjugate Gradient Descent
• Two vectors are conjugate (A-orthogonal) if:

𝑢𝑇𝐴𝑣 = 0
• We assume that the error surface has the quadratic form:

𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐

105

Jonathan Richard Shewchuk

Conjugate Gradient Descent

• 𝑑𝑖𝑟𝑖𝑗
𝑡 = −

𝜕𝐸 𝑤𝑖𝑗
𝑡

𝜕𝑤𝑖𝑗
𝑡 + 𝛽 𝑑𝑖𝑟𝑖𝑗

𝑡−1

• By assuming quadratic form etc.:

106Jonathan Richard Shewchuk

Conjugate Gradient Descent

• Or simply as:

• Interpretation:
– Rewrite this as:

𝛽 =
𝛻𝐸𝑛𝑒𝑤

2

𝛻𝐸𝑜𝑙𝑑
2 −

𝛻𝐸𝑜𝑙𝑑 . 𝛻𝐸𝑛𝑒𝑤

𝛻𝐸𝑜𝑙𝑑
2

– If the new direction suggests a radical turn, rely more on
the old direction!

• For more detailed motivation and derivations, see:
Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”, 1994.

107

Steepest and Conjugate Gradient
Descent: Cons and Pros

• Pros:
– Faster to converge than,

e.g., stochastic gradient
descent (even mini-batch)

• Cons:
– They don’t work well on

saddle points
– Computationally more

expensive
– In 2D:

• Steepest descent is 𝑂 𝑛2

• Conjugate descent is
𝑂(𝑛3/2)

108

Le et al., “On optimization methods

for deep learning”, 2011.

Online Interactive Tutorial

http://www.benfrederickson.com/numerical-
optimization/

109

110
Slide credit: E. Sahin

CHALLENGES OF THE ERROR
SURFACE

111

Challenges

• Local minima

• Saddle points

• Cliffs

• Valleys

112

Local minima

• Solutions
– Momentum

• Make weight update depend on the previous one as well:

Δ𝑤𝑖𝑗 𝑛 = 𝜂𝛿𝑗𝑥𝑗𝑖 + 𝛼Δ𝑤𝑗𝑖 𝑛 − 1
• 0 ≤ 𝛼 < 1: momentum (constant)

– Incremental update

– Large training data

– Adaptive learning rate

– Good initialization

– Different minimization strategies

113

• For smaller networks, local minima are more
problematic

114

I. Goodfellow
115

116
I. Goodfellow

Valleys, Cliffs and Exploding Gradients

117

Valleys, Cliffs and Exploding Gradients

118

Valleys, Cliffs and Exploding Gradients

119

USING MOMENTUM TO IMPROVE
STEPS

120

Momentum

• Maintain a “memory”
Δ𝑤 𝑡 + 1 ← 𝜇 Δ𝑤 𝑡 − 𝜂 𝛻𝐸

where 𝜇 is called the momentum term

• Momentum filters oscillations on gradients
(i.e., oscillatory movements on the error
surface)

• 𝜇 is typically initialized to 0.9.
– It is better if it anneals from 0.5 to 0.99 over

multiple epochs

121

Momentum

122

Nesterov Momentum

• Use a “lookahead” step to update:
𝑤ahead ← 𝑤 + 𝜇 Δ𝑤 𝑡

Δ𝑤 𝑡 + 1 ← 𝜇 Δ𝑤 𝑡 − 𝜂 𝛻𝐸ahead
𝑤 ← 𝑤 + Δ𝑤(𝑡 + 1)

where 𝜇 is called the momentum term

http://cs231n.github.io/neural-networks-3/
123

Momentum vs. Nesterov Momentum

• When the learning rate is very small, they are
equivalent.

• When the learning rate is sufficiently large,
Nesterov Momentum performs better (it is
more responsive).

• See for an in-depth comparison:

124

SETTING THE LEARNING RATE

125

Alternatives

• Single global learning rate
– Adaptive Learning Rate

– Adaptive Learning Rate with Momentum

• Per-parameter learning rate
– AdaGrad

– RMSprop

– Adam

– AdaDelta

126

Adaptive Learning Rate (Global)

127

Annealing the learning rate (Global)

• Step decay
– 𝜂′ ← 𝜂 × 𝑐, where 𝑐 could be

0.5, 0.4, 0.3, 0.2, 0.1 etc.

• Exponential decay:
– 𝜂 = 𝜂0𝑒

−𝑘𝑡, where 𝑡 is
iteration number

– 𝜂0, 𝑘: hyperparameters

• 1/t decay:

– 𝜂 = 𝜂0/(1 + 𝑘𝑡)

• If you have time, keep decay
small and train longer

128

Adagrad (Per
parameter)

• Higher the gradient, lower
the learning rate

• Accumulate square of
gradients elementwise
(initially 𝑟 = 0):

𝑟 ← 𝑟 +

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖;𝑊, 𝑏

𝜕𝑊

2

• Update each
parameter/weight based on
the gradient on that:

Δ𝑊 ← −
𝜂

𝑟

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖 ;𝑊, 𝑏

𝜕𝑊

129

RMSprop (Per parameter)

• Similar to Adagrad
• Calculates a moving average of

square of the gradients
• Accumulate square of gradients

(initially 𝑟 = 0):

𝑟 ← 𝜌𝑟 + (1 − 𝜌)

𝑖=1:𝑀

𝜕𝐿(𝑥𝑖;𝑊, 𝑏)/𝜕𝑊

2

• 𝜌 is typically [0.9, 0.99, 0.999]
• Update each parameter/weight

based on the gradient on that:

Δ𝑊 ← −
𝜂

𝑟

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖 ;𝑊, 𝑏

𝜕𝑊

Currently, unpublished.
131

RMSprop with Nesterov Momentum

132

Adam (per parameter)
• Similar to RMSprop + momentum

• Incorporates first & second order moments

• Bias correction needed to get rid of bias towards zero at initialization

133

Adadelta (per parameter)

• Incorporates second-order gradient
information

134

Comparison

https://twitter.com/alecrad135

NAG: Nesterov’s Accelerated Gradient

Comparison

136

To sum up

• Different problems seem to favor different
per-parameter methods

• Adam seems to perform better among per-
parameter adaptive learning rate algorithms

• SGD+Nesterov momentum seems to be a fair
alternative

137

OVERFITTING, CONVERGENCE, AND
WHEN TO STOP

138

Overfitting

• Occurs when training procedure fits not only
regularities in training data but also noise.
– Like memorizing the training examples instead of

learning the statistical regularities

• Leads to poor performance on test set
• Most of the practical issues with neural nets

involve avoiding overfitting

Adapted from Michael Mozer
139

Avoiding Overfitting

• Increase training set size
– Make sure effective size is growing;

redundancy doesn’t help

• Incorporate domain-appropriate bias into model
– Customize model to your problem

• Set hyperparameters of model
– number of layers, number of hidden units per layer,

connectivity, etc.

• Regularization techniques
– “smoothing” to reduce model complexity

Slide Credit: Michael Mozer
140

Incorporating Domain-Appropriate
Bias Into Model

• Input representation

• Output representation
– e.g., discrete probability distribution

• Architecture
– # layers, connectivity

– e.g., family trees net; convolutional nets

• Activation function

• Error function

Slide Credit: Michael Mozer
141

Customizing Networks

• Neural nets can be customized based on
understanding of problem domain

– choice of error function

– choice of activation function

• Domain knowledge can be used to impose
domain-appropriate bias on model

– bias is good if it reflects properties of the data set

– bias is harmful if it conflicts with properties of data

Slide Credit: Michael Mozer
142

Adding bias into a model

• Adding hidden layers or direct connections
based on the problem

Slide Credit: Michael Mozer
143

Adding bias into a model

• Modular
architectures

– Specialized hidden
units for special
problems

Slide Credit: Michael Mozer
144

Adding bias into a model
• Local or specialized receptive fields

– E.g., in CNNs

• Constraints on activities

• Constraints on weights

Slide Credit: Michael Mozer
145

Adding bias into a
model

• Use different error
functions (e.g.,
cross entropy)

• Use specialized
activation
functions

Slide Credit: Michael Mozer
146

Adding bias
into a model

• Introduce other
parameters

– Temperature

– Saliency of
input

Slide Credit: Michael Mozer
147

Regularization

• Regularization strength can effect overfitting
1

2
𝜆𝑤2

148

Regularization

• L2 regularization:
1

2
𝜆𝑤2

– Very common
– Penalizes peaky weight vector, prefers diffuse weight

vectors

• L1 regularization: 𝜆|𝑤|
– Enforces sparsity (some weights become zero)
– Leads to input selection (makes it noise robust)
– Use it if you require sparsity / feature selection

• Can be combined: 𝜆1 𝑤 + 𝜆2𝑤
2

• Regularization is not performed on the bias; it
seems to make no significant difference

149

L0 regularization

• 𝐿0 = 𝑖 𝑥𝑖
0 1/0

• How to compute the zeroth power
and zeroth-root?

• Mathematicians approximate this
as:

– 𝐿0 = # 𝑖 𝑥𝑖 ≠ 0)

– The cardinality of non-zero
elements

• This is a strong enforcement of
sparsity.

• However, this is non-convex

– L1 norm is the closest convex
form 150

Regularization

• Enforce an upper bound
on weights:
– Max norm:

• 𝑤
2
< 𝑐

• Helps the gradient explosion
problem

• Improvements reported

• Dropout:
– At each iteration, drop a

number of neurons in the
network

– Use a neuron’s activation
with probability 𝑝 (a
hyperparameter)

– Adds stochasticity!

http://cs231n.github.io/neural-networks-2/

Fig: Srivastava et al., 2014

153

Regularization: Dropout

• Feed-forward only on active units

• Can be trained using SGD with mini-batch
– Back propagate only “active” units.

• One issue:
– Expected output 𝑥 with dropout:

– 𝐸 𝑥 = 𝑝𝑥 + 1 − 𝑝 0

• To have the same scale at testing time (no dropout),
multiply test-time activations with 𝑝.

Fig: Srivastava et al., 2014154

Regularization: Dropout

Test-time:

Training-time:

http://cs231n.github.io/neural-networks-2/
155

Regularization: Inverted Dropout

Test-time:

Training-time:

http://cs231n.github.io/neural-networks-2/

Perform scaling while dropping at training time!

156

Regularization Summary

• L2 regularization

• Inverted dropout with 𝑝 = 0.5 (tunable)

157

When To Stop Training

• 1. Train n epochs; lower learning rate; train m
epochs
– bad idea: can’t assume one-size-fits-all approach

• 2. Error-change criterion
– stop when error isn’t dropping

– recommendation: criterion based on % drop over a
window of, say, 10 epochs

• 1 epoch is too noisy

• absolute error criterion is too problem dependent

– Another idea: train for a fixed number of epochs after
criterion is reached (possibly with lower learning
rate)

Slide Credit: Michael Mozer
158

When To Stop Training

• 3. Weight-change criterion

– Compare weights at epochs (𝑡 − 10) and 𝑡 and
test:

– Don’t base on length of overall weight change
vector

– Possibly express as a percentage of the weight

– Be cautious: small weight changes at critical
points can result in rapid drop in error

maxi wi
t -wi

t-10 <q

Slide Credit: Michael Mozer
159

DATA PREPROCESSING AND
WEIGHT INITIALIZATION

162

Data Preprocessing

• Mean subtraction

• Normalization

• PCA and whitening

163

Data Preprocessing: Mean subtraction

• Subtract the mean for each dimension:
𝑥𝑖
′ = 𝑥𝑖 − 𝑥𝑖

• Effect: Move the data center (mean) to coordinate
center

http://cs231n.github.io/neural-networks-2/
164

Data Preprocessing:
Normalization (or conditioning)

• Necessary if you believe that your dimensions have different scales
– Might need to reduce this to give equal importance to each dimension

• Normalize each dimension by its std. dev. after mean subtraction:
𝑥𝑖
′ = 𝑥𝑖 − 𝜇𝑖
𝑥𝑖
′′ = 𝑥𝑖

′/𝜎𝑖
• Effect: Make the dimensions have the same scale

http://cs231n.github.io/neural-networks-2/
165

Data Preprocessing:
Principle Component Analysis

• First center the data
• Find the eigenvectors 𝑒1, … , 𝑒𝑛
• Project the data onto the eigenvectors:

– 𝑥𝑖
𝑅 = 𝑥𝑖 ⋅ [𝑒1, … , 𝑒𝑛]

• This corresponds to rotating the data to have the eigenvectors as
the axes

• If you take the first 𝑀 eigenvectors, it corresponds to
dimensionality reduction

http://cs231n.github.io/neural-networks-2/
166

Reminder: PCA

• Principle axes are the
eigenvectors of the covariance
matrix:

167

Data Preprocessing: Whitening

• Normalize the scale with the norm of the eigenvalue:

𝑥𝑖
𝑤 = 𝑥𝑖

𝑅/(𝜆1, … , 𝜆𝑛 + 𝜖)

• 𝜖: a very small number to avoid division by zero

• This stretches each dimension to have the same
scale.

• Side effect: this may exaggerate noise.

http://cs231n.github.io/neural-networks-2/
168

Data Preprocessing: Example

169

Data Preprocessing: Summary

• We mostly don’t use PCA or whitening

– They are computationally very expensive

– Whitening has side effects

• It is quite crucial and common to zero-center
the data

• Most of the time, we see normalization with
the std. deviation

170

Weight Initialization

• Zero weights
– Wrong!

– Leads to updating weights by the same amounts for
every input

– Symmetry!

• Initialize the weights randomly to small values:
– Sample from a small range, e.g., Normal(0,0.01)

– Don’t initialize too small

• The bias may be initialized to zero
– For ReLU units, this may be a small number like 0.01.

171
Note: None of these provide guarantees. Moreover, there is no guarantee that one of these

will always be better.

More on weight initialization

• Integrate the following

• http://www.jefkine.com/deep/2016/08/08/ini
tialization-of-deep-networks-case-of-
rectifiers/

172

Initial Weight
Normalization

• Problem:
– Variance of the output

changes with the number
of inputs

– If 𝑠 = 𝑖𝑤𝑖𝑥𝑖:

Glorot & Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, 2010.

174

Initial Weight Normalization

• Solution:
– Get rid of 𝑛 in
𝑉𝑎𝑟 𝑠 = (𝑛 Var(w))Var(x)

– How?

• 𝑤𝑖 = 𝑟𝑎𝑛𝑑(0,1)/√𝑛
– Why?

– 𝑉𝑎𝑟 𝑎𝑋 = 𝑎2𝑉𝑎𝑟 𝑋

• If the number of inputs &
outputs are not fixed:

– 𝑤𝑖 = 𝑟𝑎𝑛𝑑 0,1 ×
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Glorot & Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, 2010.

175

Alternative: Batch Normalization

• Normalization is
differentiable
– So, make it part

of the model (not
only at the
beginning)

– I.e., perform
normalization
during every step
of processing

• More robust to
initialization

Ioffe & Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, 2015.

176

To sum up

• Initialization and normalization are crucial

• Different initialization & normalization
strategies may be needed for different deep
learning methods

– E.g., in CNNs, normalization might be performed
only on convolution etc.

• More on this later

177

Today

• Finish up the first part of the course

– Loss functions again

– Representational capacity

– Other practical issues

• A crash course on Computer Vision & Human
Vision

– What can we learn from Human Vision?

• Autoencoders

178

LOSS FUNCTIONS, AGAIN

179

Loss functions

• A single correct label case (classification):

– Hinge loss:

• 𝐿𝑖 = 𝑗≠𝑦𝑖
max 0, 𝑓𝑗 − 𝑓𝑦𝑖 + 1

– Squared hinge loss:

• 𝐿𝑖 = 𝑗 𝑓𝑗 − 𝑦𝑗𝑖
2

– Soft-max:

• 𝐿𝑖 = − log
𝑒
𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗

180

Loss functions

• Many correct labels case:

– Binary prediction for each label, independently:

• 𝐿𝑖 = 𝑗max 0,1 − 𝑦𝑖𝑗𝑓𝑗

• 𝑦𝑖𝑗 = +1 if example 𝑖 is labeled with label 𝑗; otherwise

𝑦𝑖𝑗 = −1.

– Alternatively, train logistic regression classifier for
each label (0 or 1):

181

Loss functions

• Regression case (a continuous label):

– L2 Norm squared (L2 Loss):

• 𝐿𝑖 = 𝑓 − 𝑦𝑖 2

2

•
𝜕𝐿𝑖

𝜕𝑓𝑗
= 𝑓𝑗 − 𝑦𝑖 𝑗

– L1 Norm:

• 𝐿𝑖 = 𝑓 − 𝑦𝑖 1
= 𝑗 𝑓𝑗 − 𝑦𝑖 𝑗

•
𝜕𝐿𝑖

𝜕𝑓𝑗
= 𝑠𝑖𝑔𝑛 𝑓𝑗 − 𝑦𝑖 𝑗

Reminder:

182

L2 Loss: Caution

• L2 loss asks for a more difficult constraint:

– Learn to output a response that is exactly the
same as the correct label

– This is harder to train

• Compare, e.g., softmax:

– Which asks only one response to be maximum
than others.

183

Loss functions

• What if we want to predict a graph, tree etc?
Something that has structure.

– Structured loss: formulate loss such that you
minimize the distance to a correct structure

– Not very common

184

REPRESENTATIONAL CAPACITY

185

Representational capacity

• Boolean functions:
– Every Boolean function can be represented exactly by

a neural network
– The number of hidden layers might need to grow with

the number of inputs

• Continuous functions:
– Every bounded continuous function can be

approximated with small error with two layers

• Arbitrary functions:
– Three layers can approximate any arbitrary function

186

Representational Capacity:
Why go deeper if 3 layers is sufficient?

• Going deeper helps convergence in “big”
problems.

• Going deeper in “old-fashion trained” ANNs
does not help much in accuracy

– However, with different training strategies or with
Convolutional Networks, going deeper matters

187

Representational Capacity

• More hidden neurons  capacity to represent more complex
functions

• Problem: overfitting vs. generalization
– We will discuss the different strategies to help here (L2 regularization,

dropout, input noise, using a validation set etc.)

188

What the hidden units represent

189

Number of hidden neurons

• Several rule of thumbs (Jeff Heaton)

– The number of hidden neurons should be
between the size of the input layer and the size of
the output layer.

– The number of hidden neurons should be 2/3 the
size of the input layer, plus the size of the output
layer.

– The number of hidden neurons should be less
than twice the size of the input layer.

190

Number of hidden layers

• Depends on the nature of the problem

– Linear classification?  No hidden layers needed

– Non-linear classification?

191

Model Complexity

• Models range in their flexibility to fit arbitrary data

complex model

unconstrained

large capacity may
allow it to memorize
data and fail to
capture regularities

simple model

constrained

small capacity may
prevent it from
representing all
structure in data

low bias

high variance

high bias

low variance

Slide Credit: Michael Mozer
192

Training Vs. Test Set Error

Test Set

Training Set

Slide Credit: Michael Mozer
193

Bias-Variance Trade Off

image credit: scott.fortmann-roe.com

underfit overfit

Er
ro

r
o

n
 T

e
st

 S
et

Slide Credit: Michael Mozer
194

ISSUES & PRACTICAL ADVICES

195

Issues & tricks

• Vanishing gradient

– Saturated units block gradient propagation (why?)

– A problem especially present in recurrent networks or
networks with a lot of layers

• Overfitting

– Drop-out, regularization and other tricks.

• Tricks:

– Unsupervised pretraining

• Batch normalization (each unit’s preactivation is normalized)

– Helps keeping the preactivation non-saturated

– Do this for mini-batches (adds stochasticity)

– Backprop needs to be updated
196

Unsupervised pretraining

197

Unsupervised pretraining

198

What if things are not working?

• Check your gradients by comparing them against
numerical gradients
– More on this at: http://cs231n.github.io/neural-networks-3/
– Check whether you are using an appropriate floating point

representation
• Be aware of floating point precision/loss problems

– Turn off drop-out and other “extra” mechanisms during
gradient check

– This can be performed only on a few dimensions

• Regularization loss may dominate the data loss
– First disable regularization loss & make sure data loss works
– Then add regularization loss with a big factor
– And check the gradient in each case

199

What if things are not working?

• Have a feeling of the initial loss value

– For CIFAR-10 with 10 classes: because each class
has probability of 0.1, initial loss is –ln(0.1)=2.302

– For hinge loss: since all margins are violated (since
all scores are approximately zero), loss should be
around 9 (+1 for each margin).

• Try to overfit on a tiny subset of the dataset

– The cost should reach to zero if things are working
properly

200

What if things are not working?

Learning rate might be too low;
Batch size might be too small

201

What if things are not working?

202

What if things are not working?

• Track the gradients and updates

– E.g., the ratio between the norm of the update
and the norm of the gradients for each weight.

– This should be around 1e-3

• If it is lower  your learning rate might be too low

• If it is higher  your learning rate might be too high

• Plot the histogram of activations per layer

– E.g., for tanh functions, we expect to see a diverse
distribution of values between [-1,1]

203

What if things are not working?

• Visualize your layers (the weights)

204

Andrew Ng’s
suggestions

• “In DL, the coupling
between bias & variance is
weaker compared to other
ML methods:
– We can train a network to

have high bias and
variance.”

• Dev(validation) and test sets
should come from the same
distribution. Dev&test sets
are like problem
specifications.
– This requires especially

attention if you have a lot
of data from simulated
environments etc. but little
data from the real test
environment.

205https://www.youtube.com/watch?v=F1ka6a13S9I

Andrew Ng’s
suggestions

• Knowing the human
performance level gives
information about the problem
of your network: If training
error is far from human
performance, then there is a
bias error. If they are close but
validation has more error
(compared to the diff between
human and training error),
then there is variance problem.

• After surpassing human level,
performance increases only
very slowly very difficult-ly.
One reason: There is not much
space for improvement (only
tiny little details). Problem gets
much harder. Another reason:
We get labels from humans.

206https://www.youtube.com/watch?v=F1ka6a13S9I

What is best then?

• Which algorithm to choose?

– No answer yet

– See Tom Schaul (2014)

– RMSprop and AdaDelta seems to be slightly
favorable; however, no best algorithm

• SGD, SGD+momentum, RMSprop,
RMSprop+momentum, AdaDelta and Adam
are the most widely used ones

208

Luckily, deep networks are very powerful

209

Regularization is turned off in the experiments.
When you turn on regularization, the networks
perform worse.

Concluding remarks for the first part

• Loss functions

• Gradients of loss functions for minimizing
them
– All operations in the network should be

differentiable

• Gradient descent and its variants

• Initialization, normalization, adaptive learning
rate, …

• Overall, you have learned most of the tools
you will use in the rest of the course.

210

