
Artificial neural 
networks



Now

• Neurons

• Neuron models

• Perceptron learning

• Multi-layer perceptrons

• Backpropagation
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It all starts with 
a neuron
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Some facts about human brain

• ~ 86 billion neurons

• ~ 1015 synapses

•

Fig: I. Goodfellow
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Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-

Rate-Neural-Plug-in/Neuron-Basics

The basic information 
processing element of neural 
systems. The neuron

• receives input signals 
generated by other neurons 
through its dendrites,

• integrates these signals in its 
body,

• then generates its own signal 
(a series of electric pulses) 
that travel along the axon 
which in turn makes contacts 
with dendrites of other 
neurons.

• The points of contact 
between neurons are called 
synapses.

7
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Neuron

• The pulses 
generated by the 
neuron travels along 
the axon as an 
electrical wave.

• Once these pulses 
reach the synapses 
at the end of the 
axon open up 
chemical vesicles 
exciting the other 
neuron.

Slide credit: Erol Sahin



Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-

Basics

(Carlson, 1992)

(Carlson, 1992)
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The biological neuron - 2

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-

Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)



http://www.billconnelly.net/?p=291 11



Artificial neuron
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History of artificial neurons

• Threshold Logic Unit, or Linear Threshold Unit, a.k.a. 
McCulloch Pitts Neurons – 1943

• Perceptron by Rosenblatt

 “This model already considered more flexible weight values in the 
neurons, and was used in machines with adaptive capabilities. The 
representation of the threshold values as a bias term was 
introduced by Bernard Widrow in 1960 – see ADALINE.”

• “In the late 1980s, when research on neural networks 
regained strength, neurons with more continuous shapes 
started to be considered. The possibility of differentiating the 
activation function allows the direct use of the gradient 
descent and other optimization algorithms for the adjustment 
of the weights. Neural networks also started to be used as a 
general function approximation model. The best known 
training algorithm called backpropagation has been 
rediscovered several times but its first development goes back 
to the work of Paul Werbos” 13
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McCulloch-Pitts Neuron 
(McCulloch & Pitts, 1943)

• Binary input-output

• Can represent Boolean 
functions.

• No training.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

net =

17



McCulloch-Pitts Neuron

• Implement AND:

 Let 𝑤𝑥1 and 𝑤𝑥2 to be 1, 
and 𝑤𝑥𝑏 to be -2.

• When input is 1 & 1; net 
is 0. 

• When one input is 0; net 
is -1. 

• When input is 0 & 0; net 
is -2. 

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
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McCulloch-Pitts Neuron

Wikipedia: 

• “Initially, only a simple model was considered, with binary inputs 
and outputs, some restrictions on the possible weights, and a more 
flexible threshold value. Since the beginning it was already noticed 
that any boolean function could be implemented by networks of 
such devices, what is easily seen from the fact that one can 
implement the AND and OR functions, and use them in the 
disjunctive or the conjunctive normal form. Researchers also soon 
realized that cyclic networks, with feedbacks through neurons, 
could define dynamical systems with memory, but most of the 
research concentrated (and still does) on strictly feed-forward 
networks because of the smaller difficulty they present.”

20

https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Feedback


McCulloch-Pitts Neuron

• Binary input-output is a big limitation

• Also called 

“[…] caricature models since they are intended to reflect 
one or more neurophysiological observations, but 
without regard to realism […]”

-- Wikipedia

• No training! No learning!

• They were useful in inspiring research into 
connectionist models

21



Hebb’s Postulate (Hebb, 1949)

• “When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells such 
that A's efficiency, as one of the cells firing B, is increased”

In short: Neurons that 

fire together, wire 

together.

In other words:

𝑤𝑖𝑗 ∝ 𝑥𝑖𝑥𝑗
22
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Hebb’s Learning Law

• Very simple to formulate as a learning rule:

• If the activation of the neurons, y1 and y2 , are both on (+1) then 

the weight between the two neurons grow. (Off: 0)

• Else the weight between remains the same.

• However, when bipolar activation {-1,+1} scheme is used, then the 

weights can also decrease when the activation of two neurons does 

not match. 

Slide credit: Erol Sahin
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https://www.youtube.com/watch?v=cNxadbrN_aI

https://www.youtube.com/watch?v=aygSMgK3BEM



And many others

• Widrow & Hoff, 1962

• Grossberg, 1969

• Kohonen, 1972

• von der Malsburg, 1973

• Narendra & Thathtchar, 1974

• Palm, 1980

• Hopfield, 1982

26



Let’s go back to a biological neuron

• A biological neuron has:

 Dendrites

 Soma

 Axon

• Firing is continuous, 
unlike most artificial 
neurons

• Rather than the 
response function, the 
firing rate is critical

27



• Neurone vs. Node

• Very crude abstraction
• Many details overseen

“Spherical cow” problem!

28



Spherical cow

https://en.wikipedia.org/wiki/Spherical_cow

Q: How does a physicist milk a cow?

A: Well, first let us consider a spherical cow...

Or

“Milk production at a dairy farm was low, so the farmer wrote

to the local university, asking for help from academia. A

multidisciplinary team of professors was assembled, headed

by a theoretical physicist, and two weeks of intensive on-site

investigation took place. The scholars then returned to the

university, notebooks crammed with data, where the task of

writing the report was left to the team leader. Shortly

thereafter the physicist returned to the farm, saying to the

farmer, "I have the solution, but it only works in the case of

spherical cows in a vacuum".”

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/
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Let us take a closer look at perceptrons
• Initial proposal of connectionist networks

• Rosenblatt, 50’s and 60’s

• Essentially a linear discriminant composed of nodes and weights

𝑥1

𝑥2

𝑤1

𝑤2

𝑜

or

Activation Function

𝑤0

𝑜 𝐱 =  
1, 𝑤0 + 𝑤1𝑥1+. . 𝑤𝑛𝑥𝑛 > 0
0, otherwise

…

𝑥𝑛

𝑤𝑛

𝑥1

𝑥2

𝑤1

𝑤2

𝑜

𝑤0

…

𝑥𝑛

𝑤𝑛

1

Or, simply 𝑜 𝐱 = sgn(𝐰 ⋅ 𝐱)

where
30
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Perceptron – clearer structure

Retina

Associative

units

Response unit

Fixed weights

Variable weights

Step activation function
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Slide adapted from Dr. Nigel Crook from Oxford Brookes University

Slide credit: Erol Sahin
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Perceptron - activation
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Slide adapted from Dr. Nigel Crook from Oxford Brookes University
Slide credit: Erol Sahin

Simple matrix multiplication, as we have seen in the previous lecture



Motivation for perceptron learning

• We have estimated an output 𝑜
– But the target was 𝑡

• Error (simply): 𝑡 − 𝑜

• Let us update each weight such that we “learn” from the 
error:

– 𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

– where Δ𝑤𝑖 ∝ (𝑡 − 𝑜)

• We somehow need to distribute the error to the weights. 
How?
– Distribute the error according to how much they contributed to 

the error: Bigger input contributes more to the error.

– Therefore: Δ𝑤𝑖 ∝ 𝑡 − 𝑜 𝑥𝑖

36

(No gradient descent yet)



An example

• Consider 𝑥𝑖 = 0.8, 𝑡 = 1, 𝑜 = −1

– Then, 𝑡 − 𝑜 𝑥𝑖 = 1.6

– Which will increase the weight

– Which makes sense considering the output and 
the target

37



Perceptron training rule

• Update weights
𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

• How to determine Δ𝑤𝑖?
Δ𝑤𝑖 ← 𝜂 𝑡 − 𝑜 𝑥𝑖

– 𝜂: learning rate – can be slowly decreased

– 𝑡: target/desired output

– 𝑜: current output

38



Perceptron - intuition

• A perceptron defines a hyperplane in N-1 space: a line in 2-D 
(two inputs), a plane in 3-D (three inputs),….

• The perceptron is a linear classifier: It’s output is -1 on one 
side of the plane, and 1 for the other.

• Given a linearly separable problem, the perceptron learning 
rule guarantees convergence.

39
Slide credit: Erol Sahin



Problems with perceptron

• Perceptron unit is non-linear

• However, it is not differentiable (due to 
thresholding), which makes it unsuitable to 
gradient descent in multi-layer networks.

40



Problems with perceptron learning

• Can only learn linearly separable classification.

41

linearly separable not linearly separable 



Gradient Descent

• Consider unthresholded perceptron:
𝑜 𝐱 = 𝐰 ⋅ 𝐱

• We can calculate the error of the perceptron:

𝐸 𝒘 =
1

2
 

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
2

• We can guide the search for better weights by using the 
gradient of this error function.

44
T. M. Mitchell, “Machine Learning”



Gradient Descent Rule

𝒘 ← 𝒘+ Δ𝒘

• Determine Δ𝒘 based 
on the error function:
Δ𝒘 ← −𝜂𝛻𝐸(𝒘)

• For the individual 
weights:

Δ𝑤𝑖 ← −𝜂
𝜕𝐸

𝜕𝑤𝑖

Δ𝑤𝑖 ← 𝜂  

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑥𝑖𝑑
45

T. M. Mitchell, “Machine Learning”



Gradient Descent Training Algorithm

T. M. Mitchell, “Machine Learning”
46



Stochastic Gradient Descent
or Incremental Gradient Descent

• Difficulties of gradient descent:

– Convergence to a local minimum can be quite slow

– If there are multiple local minima, no guarantee on finding 
the global minimum

• One alternative: 

– update the weight after seeing each sample.

Δ𝑤𝑖 ← 𝜂 𝑡 − 𝑜 𝑥𝑖 Compare to (in standard GD):

Δ𝑤𝑖 ← 𝜂  

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑥𝑖𝑑

(Delta rule, least-mean-square-rule, Adaline rule or Widrof-Hoff rule)

- Error effectively becomes (per data):

𝐸𝑑 𝑤 =
1

2
𝑡𝑑 − 𝑜𝑑

2

47



Notes on convergence

• Perceptron learning:
– Output is thresholded

– Converges after a finite number of iterations to a hypothesis 
that perfectly classifies the data

– Condition: data is linearly separable

• Gradient descent (delta rule):
– Output is not thresholded

– Converges asymptotically to the minimum error hypothesis

– Condition: unbounded time

– Does not require linear separation.

48



The limitations of a perceptron:
A hidden neuron may help

© Erol Şahin 49



LET’S GET MULTI-LAYER

50



Multi-layer Networks

Information flow is unidirectional

Data is presented to Input layer

Passed on to Hidden Layer

Passed on to Output layer

Information is distributed

Information processing is parallel

Internal representation (interpretation) of data

51



Multi-layered Networks

• To be able to have solutions for linearly non-separable cases, 
we need a non-linear and differentiable unit.

where:

- Sigmoid (logistic) function
- Output is in (0,1)
- Since it maps a large domain 

to (0,1) it is also called 
squashing function

- Alternatives: tanh
(Eq: M. Percy)

52



Perceptron with sigmoid function

53



Why do we need to learn 
backpropagation?

• “Many frameworks implement backpropagation 
for us, why do we need to learn?”
– This is not a blackbox. There are many 

problems/issues involved. You can only deal with 
them if you have a good understanding of 
backpropagation.

https://medium.com/@karpathy/yes-you-should-
understand-backprop-e2f06eab496b#.7zawffou2

54



Backpropagation algorithm
• Let us re-define the error function since we have many outputs:

𝐸 𝒘 =
1

2
 

𝑑∈𝐷

 

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑡𝑘𝑑 − 𝑜𝑘𝑑
2

- For one data:

𝐸𝑑 𝒘 =
1

2
 

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑡𝑘𝑑 − 𝑜𝑘𝑑
2

- For each output unit 𝑘, calculate its error term 𝛿𝑘:
𝛿𝑘 = −𝜕𝐸𝑑(𝑤)/𝜕𝑜𝑘

𝛿𝑘 = 𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)

- For each hidden unit ℎ, calculate its error term 𝛿ℎ:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ  

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑤𝑘ℎ𝛿𝑘

- Update every weight 𝑤𝑗𝑖

𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖

Derivative of the
Sigmoid function

55



Derivation of backpropagation
• Derivation of the output unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

- Expand 
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
:

𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

=
𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

- Expand 
𝜕𝐸𝑑

𝜕𝑛𝑒𝑡𝑗
:

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

=
𝜕𝐸𝑑
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗

𝑥𝑗𝑖

Derivative of sigmoid:
𝑜𝑗(1 − 𝑜𝑗)

𝜕

𝜕𝑜𝑗

1

2
 

𝑘

𝑡𝑘 − 𝑜𝑘
2 =

𝜕

𝜕𝑜𝑗

1

2
𝑡𝑘 − 𝑜𝑘

2 = − tj − oj

Therefore:

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

= 𝜂 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗
56



Derivation of backpropagation

• Derivation of the output unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

Therefore:

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

= 𝜂 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗

𝛿𝑗
(error term for unit j)
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Derivation of backpropagation
• Derivation of the hidden unit weights

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

- Expand 
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
:

𝜕𝐸𝑑
𝜕𝑤𝑗𝑖

=
𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

- Expand 
𝜕𝐸𝑑

𝜕𝑛𝑒𝑡𝑗
:

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑗

=  

𝑘

𝜕𝐸𝑑
𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑛𝑒𝑡𝑗

𝑥𝑗𝑖

−𝛿𝑘
=

𝜕𝑛𝑒𝑡𝑘
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
= 𝑤𝑘𝑗𝑜𝑗(1 − 𝑜𝑗)Therefore: 

Δ𝑤𝑗𝑖 = −𝜂
𝜕𝐸𝑑

𝜕𝑤𝑗𝑖
= 𝜂𝛿𝑗𝑥𝑗𝑖 = 𝜂𝑥𝑗𝑖 𝑜𝑗 1 − 𝑜𝑗  𝑘 𝛿𝑘𝑤𝑘𝑗
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Forward pass

59



Backpropagation vs. numerical 
differentiation

• Backpropagation: 

– 𝑂 𝑊

• Numerical differentiation

– 𝑂 𝑊 2

61



Problems of back propagation with 
sigmoid

• It is extremely slow, if it does converge.

• It may get stuck in a local minima.

• It is sensitive to initial conditions.

• It may start oscillating.

62



Backprop in deep networks

• Local minima may not be as severe as it is feared

– If one weight gets into local minima, other weights 
provide escape routes

– The more weights, the more escape routes

• Add a momentum term

• Use stochastic gradient descent, rather than true 
gradient descent

– This means we have different error surfaces for each data

– If stuck in local minima in one of them, the others might 
help

• Train multiple networks with different initial weights

– Select the best one 63



Backprop

• Very powerful - can learn any function, given enough hidden 
units! 

• Have the same problems of Generalization vs. 
Memorization.  

– With too many units, we will tend to memorize the input and not 
generalize well.  Some schemes exist to “prune” the neural network.

• Networks require extensive training, many parameters to 
fiddle with.  Can be extremely slow to train.  May also fall 
into local minima.

• Inherently parallel algorithm, ideal for multiprocessor 
hardware.

• Despite the cons, a very powerful algorithm that has seen 
widespread successful deployment.

64



Now, let us look at alternative aspects

• Loss functions
– Hinge-loss, softmax loss, squared-error loss, …

– We will not look at them here again

• Activation functions
– Sigmoid, tanh, ReLU, Leaky ReLU, parametric ReLU, maxout

• Backpropagation strategy:
– True Gradient Descent, Stochastic Gradient Descent, Mini-

batch Gradient Descent, RMSpop, AdaDelta, AdaGrad, 
Adam

65



Activation Functions



Activation function

• Sigmoid / logistic function

67



Activation function

68



Activation Functions

• sigmoid vs tanh

69

Derivative: 𝜎(𝑥)(1 − 𝜎 𝑥 ) Derivative: (1 − tanh2(𝑥))



Pros and Cons
• Sigmoid is an historically important activation function

– But nowadays, rarely used

• Sigmoid drawbacks

1. It gets saturated, if the activation is close to zero or one

• This leads to very small gradient, which disallows 
“transfer”ing the feedback to earlier layers

• Initialization is also very important for this reason

2. It is not zero-centered (not very severe)

• Tanh

– Similar to the sigmoid, it saturates

– However, it is zero-centered.

– Tanh is always preferred over sigmod

– Note: tanh 𝑥 = 2𝜎 2𝑥 − 1
70

http://cs231n.github.io/neural-networks-1/



Rectified Linear Units (ReLU)

72

[Krizhevsky et al., NIPS12]

𝑓 𝑥 = max(0, 𝑥)

Derivative: 𝟏(𝑥 > 0)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve 
restricted Boltzmann machines, ICML.



ReLU: biological 
motivation

74
Glorot et al., “Deep Sparse Rectier Neural Networks”, 2011.



Rectified Linear Units: Another Perspective

Hinton argues that this is a form of model averaging

75



ReLU: Pros and Cons

• Pros:
– It converges much faster (claimed to be 6x faster than 

sigmoid/tanh)
• It overfits very fast and when used with e.g. dropout, this 

leads to very fast convergence

– It is simpler and faster to compute (simple 
comparison)

• Cons:
– A ReLU neuron may “die” during training
– A large gradient may update the weights such that the 

ReLU neuron may never activate again
• Avoid large learning rate

76



ReLU

• See the following site for more in-depth 
analysis

http://www.jefkine.com/general/2016/08/24/fo
rmulating-the-relu/

77



Leaky ReLU

• 𝑓 𝑥 = 𝟏 𝑥 < 0 𝛼𝑥 + 𝟏(𝑥 ≥ 0)(𝑥)

– When 𝑥 is negative, have a non-zero slope (𝛼)

• If you learn 𝛼 during training, this is called 
parametric ReLU (PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, 
Jian Sun (2015) Delving Deep into 
Rectifiers: Surpassing Human-Level 
Performance on ImageNet Classification

Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng 
(2014). Rectifier Nonlinearities Improve Neural 
Network Acoustic Models
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Maxout

• max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2)

• ReLU, Leaky ReLU and PReLU are special cases 
of this

• Drawback: More parameters to learn!

“Maxout Networks” by Ian J. Goodfellow, David 
Warde-Farley, Mehdi Mirza, Aaron Courville, 
Yoshua Bengio, 2013.
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Softplus

• A smooth 
approximation to 
the ReLU unit:
𝑓 𝑥 = ln 1 + 𝑒𝑥

• Its derivative is the 
sigmoid function:

𝑓′ 𝑥 = 1/(1 + 𝑒−𝑥)
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Activation Functions: To sum up

• Don’t use sigmoid

• If you really want, use tanh but it is worse 
than ReLU and its variants

• ReLU: be careful about dying neurons

• Leaky ReLU and Maxout: Worth trying
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DEMO

• http://playground.tensorflow.org/#activation=tan
h&regularization=L2&batchSize=10&dataset=circl
e&regDataset=reg-
plane&learningRate=0.03&regularizationRate=0&
noise=0&networkShape=4,2&seed=0.24725&sho
wTestData=false&discretize=false&percTrainData
=50&x=true&y=true&xTimesY=false&xSquared=f
alse&ySquared=false&cosX=false&sinX=false&cos
Y=false&sinY=false&collectStats=false&problem=
classification
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Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-
guide-basics-neural-networks/
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BACK PROPAGATION / 
MINIMIZATION STRATEGIES
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Schemes of training

• True/Standard Gradient Descent

• Stochastic Gradient Descent

• Steepest Gradient Descent

• Momentum Gradient Descent

• Curricular training
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Stochastic Gradient Descent

Batch Gradient Descent
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Gradient descent

93
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Second order methods

• Newton’s method for optimization:

– 𝑤 ← 𝑤 − 𝐻𝑓 𝑤 −1𝛻𝑓 𝑤

– where 𝐻𝑓 𝑤 is the Hessian

• Hessian gives a better feeling about the surface

– It gives information about the curvature of surface
94



Hessian for an image window

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

The eigenvalues of the Hessian matrix:

Source: R. Szeliski
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Newton’s method for optimization

• 𝑤 ← 𝑤 − 𝐻𝑓 𝑤 −1𝛻𝑓 𝑤

– Makes bigger steps in shallow curvature

– Smaller steps in steep curvature

• Note that there is no hyper-parameter!

• Disadvantage:

– Too much memory requirement

– For 1 million parameters, this means a matrix of 1 million x 
1 million  ~ 3725 GB RAM

– Alternatives exist to get around the memory problem 
(quasi-Newton methods, Limited-memory BFGS)

• Active research area  A suitable project topic 
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RPROP (Resilience Propagation)

• Instead of the magnitude, use the sign of the gradients

• Motivation: If the sign of a weight has changed, that means 
we have “overshot” a minima

• Advantage: Faster to run/converge

• Disadvantage: More complex to implement

97
1993



RPROP (Resilience Propagation)
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Gradient Descent with Line Search

• Gradient descent:

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

where 𝑑𝑖𝑟𝑖𝑗
𝑡−1 = −𝜕𝐸/𝜕𝑤𝑖𝑗

• Gradient descent with line search:

– Choose 𝑠 such that 𝐸 is minimized along 𝑑𝑖𝑟𝑖𝑗
𝑡−1.

– Set 
𝑑𝐸 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.
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Gradient Descent with Line Search

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

• Set 
𝑑𝐸 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

•
𝑑𝐸 𝑤𝑖𝑗

𝑡 =𝑤𝑖𝑗
𝑡−1+𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐸

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

• Interpretation:
– Choose 𝑠 such that: the gradient direction at the new position is orthogonal to 

the current direction

• This is called steepest gradient descent
• Problem: makes zig-zag
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Conjugate Gradient Descent

• Motivation

104Jonathan Richard Shewchuk



Conjugate Gradient Descent
• Two vectors are conjugate (A-orthogonal) if:

𝑢𝑇𝐴𝑣 = 0
• We assume that the error surface has the quadratic form:

𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐

105
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Conjugate Gradient Descent

• 𝑑𝑖𝑟𝑖𝑗
𝑡 = −

𝜕𝐸 𝑤𝑖𝑗
𝑡

𝜕𝑤𝑖𝑗
𝑡 + 𝛽 𝑑𝑖𝑟𝑖𝑗

𝑡−1

• By assuming quadratic form etc.:

106Jonathan Richard Shewchuk



Conjugate Gradient Descent

• Or simply as:

• Interpretation:
– Rewrite this as:

𝛽 =
𝛻𝐸𝑛𝑒𝑤

2

𝛻𝐸𝑜𝑙𝑑
2 −

𝛻𝐸𝑜𝑙𝑑 . 𝛻𝐸𝑛𝑒𝑤

𝛻𝐸𝑜𝑙𝑑
2

– If the new direction suggests a radical turn, rely more on 
the old direction!

• For more detailed motivation and derivations, see:
Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient 
Method Without the Agonizing Pain”, 1994.
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Steepest and Conjugate Gradient 
Descent: Cons and Pros

• Pros:
– Faster to converge than, 

e.g., stochastic gradient 
descent (even mini-batch)

• Cons:
– They don’t work well on 

saddle points
– Computationally more 

expensive
– In 2D: 

• Steepest descent is 𝑂 𝑛2

• Conjugate descent is 
𝑂(𝑛3/2)

108

Le et al., “On optimization methods 

for deep learning”, 2011.



Online Interactive Tutorial

http://www.benfrederickson.com/numerical-
optimization/
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CHALLENGES OF THE ERROR 
SURFACE
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Challenges

• Local minima

• Saddle points

• Cliffs

• Valleys
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Local minima

• Solutions
– Momentum

• Make weight update depend on the previous one as well:

Δ𝑤𝑖𝑗 𝑛 = 𝜂𝛿𝑗𝑥𝑗𝑖 + 𝛼Δ𝑤𝑗𝑖 𝑛 − 1
• 0 ≤ 𝛼 < 1: momentum (constant)

– Incremental update

– Large training data

– Adaptive learning rate

– Good initialization

– Different minimization strategies
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• For smaller networks, local minima are more 
problematic

114



I. Goodfellow
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Valleys, Cliffs and Exploding Gradients
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Valleys, Cliffs and Exploding Gradients
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Valleys, Cliffs and Exploding Gradients
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USING MOMENTUM TO IMPROVE 
STEPS
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Momentum

• Maintain a “memory”
Δ𝑤 𝑡 + 1 ← 𝜇 Δ𝑤 𝑡 − 𝜂 𝛻𝐸

where 𝜇 is called the momentum term 

• Momentum filters oscillations on gradients 
(i.e., oscillatory movements on the error 
surface)

• 𝜇 is typically initialized to 0.9.
– It is better if it anneals from 0.5 to 0.99 over 

multiple epochs
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Momentum
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Nesterov Momentum

• Use a “lookahead” step to update:
𝑤ahead ← 𝑤 + 𝜇 Δ𝑤 𝑡

Δ𝑤 𝑡 + 1 ← 𝜇 Δ𝑤 𝑡 − 𝜂 𝛻𝐸ahead
𝑤 ← 𝑤 + Δ𝑤(𝑡 + 1)

where 𝜇 is called the momentum term 

http://cs231n.github.io/neural-networks-3/
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Momentum vs. Nesterov Momentum

• When the learning rate is very small, they are 
equivalent.

• When the learning rate is sufficiently large, 
Nesterov Momentum performs better (it is 
more responsive).

• See for an in-depth comparison:
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SETTING THE LEARNING RATE
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Alternatives

• Single global learning rate
– Adaptive Learning Rate

– Adaptive Learning Rate with Momentum

• Per-parameter learning rate
– AdaGrad

– RMSprop

– Adam

– AdaDelta
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Adaptive Learning Rate (Global)
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Annealing the learning rate (Global)

• Step decay
– 𝜂′ ← 𝜂 × 𝑐, where 𝑐 could be 

0.5, 0.4, 0.3, 0.2, 0.1 etc.

• Exponential decay:
– 𝜂 = 𝜂0𝑒

−𝑘𝑡, where 𝑡 is 
iteration number

– 𝜂0, 𝑘: hyperparameters

• 1/t decay:

– 𝜂 = 𝜂0/(1 + 𝑘𝑡)

• If you have time, keep decay 
small and train longer

128



Adagrad (Per 
parameter)

• Higher the gradient, lower 
the learning rate

• Accumulate square of 
gradients elementwise 
(initially 𝑟 = 0):

𝑟 ← 𝑟 +  

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖;𝑊, 𝑏

𝜕𝑊

2

• Update each 
parameter/weight based on 
the gradient on that:

Δ𝑊 ← −
𝜂

𝑟
 

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖 ;𝑊, 𝑏

𝜕𝑊
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RMSprop (Per parameter)

• Similar to Adagrad
• Calculates a moving average of 

square of the gradients
• Accumulate square of gradients 

(initially 𝑟 = 0):

𝑟 ← 𝜌𝑟 + (1 − 𝜌)  

𝑖=1:𝑀

𝜕𝐿(𝑥𝑖;𝑊, 𝑏)/𝜕𝑊

2

• 𝜌 is typically [0.9, 0.99, 0.999]
• Update each parameter/weight 

based on the gradient on that:

Δ𝑊 ← −
𝜂

𝑟
 

𝑖=1:𝑀

𝜕𝐿 𝑥𝑖 ;𝑊, 𝑏

𝜕𝑊

Currently, unpublished.
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RMSprop with Nesterov Momentum
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Adam (per parameter)
• Similar to RMSprop + momentum

• Incorporates first & second order moments

• Bias correction needed to get rid of bias towards zero at initialization
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Adadelta (per parameter)

• Incorporates second-order gradient 
information
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Comparison

https://twitter.com/alecrad135

NAG: Nesterov’s Accelerated Gradient



Comparison
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To sum up

• Different problems seem to favor different 
per-parameter methods

• Adam seems to perform better among per-
parameter adaptive learning rate algorithms

• SGD+Nesterov momentum seems to be a fair 
alternative
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OVERFITTING, CONVERGENCE, AND 
WHEN TO STOP
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Overfitting

• Occurs when training procedure fits not only 
regularities in training data but also noise.
– Like memorizing the training examples instead of 

learning the statistical regularities 

• Leads to poor performance on test set
• Most of the practical issues with neural nets 

involve avoiding overfitting

Adapted from Michael Mozer
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Avoiding Overfitting

• Increase training set size
– Make sure effective size is growing;

redundancy doesn’t help

• Incorporate domain-appropriate bias into model
– Customize model to your problem

• Set hyperparameters of model
– number of layers, number of hidden units per layer, 

connectivity, etc.

• Regularization techniques
– “smoothing” to reduce model complexity

Slide Credit: Michael Mozer
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Incorporating Domain-Appropriate
Bias Into Model

• Input representation

• Output representation
– e.g., discrete probability distribution

• Architecture 
– # layers, connectivity

– e.g., family trees net; convolutional nets

• Activation function

• Error function

Slide Credit: Michael Mozer
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Customizing Networks

• Neural nets can be customized based on 
understanding of problem domain

– choice of error function

– choice of activation function

• Domain knowledge can be used to impose 
domain-appropriate bias on model

– bias is good if it reflects properties of the data set

– bias is harmful if it conflicts with properties of data

Slide Credit: Michael Mozer
142



Adding bias into a model

• Adding hidden layers or direct connections 
based on the problem

Slide Credit: Michael Mozer
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Adding bias into a model

• Modular 
architectures

– Specialized hidden 
units for special 
problems

Slide Credit: Michael Mozer
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Adding bias into a model
• Local or specialized receptive fields

– E.g., in CNNs

• Constraints on activities

• Constraints on weights

Slide Credit: Michael Mozer
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Adding bias into a 
model

• Use different error 
functions (e.g., 
cross entropy)

• Use specialized 
activation 
functions

Slide Credit: Michael Mozer
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Adding bias 
into a model

• Introduce other 
parameters

– Temperature

– Saliency of 
input

Slide Credit: Michael Mozer
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Regularization

• Regularization strength can effect overfitting
1

2
𝜆𝑤2
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Regularization

• L2 regularization: 
1

2
𝜆𝑤2

– Very common
– Penalizes peaky weight vector, prefers diffuse weight 

vectors

• L1 regularization: 𝜆|𝑤|
– Enforces sparsity (some weights become zero)
– Leads to input selection (makes it noise robust)
– Use it if you require sparsity / feature selection

• Can be combined: 𝜆1 𝑤 + 𝜆2𝑤
2

• Regularization is not performed on the bias; it 
seems to make no significant difference
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L0 regularization

• 𝐿0 =  𝑖 𝑥𝑖
0 1/0

• How to compute the zeroth power 
and zeroth-root?

• Mathematicians approximate this 
as:

– 𝐿0 = # 𝑖 𝑥𝑖 ≠ 0)

– The cardinality of non-zero 
elements

• This is a strong enforcement of 
sparsity.

• However, this is non-convex

– L1 norm is the closest convex 
form 150



Regularization

• Enforce an upper bound 
on weights:
– Max norm:

• 𝑤
2
< 𝑐

• Helps the gradient explosion 
problem

• Improvements reported

• Dropout:
– At each iteration, drop a 

number of neurons in the 
network

– Use a neuron’s activation 
with probability 𝑝 (a 
hyperparameter)

– Adds stochasticity!

http://cs231n.github.io/neural-networks-2/

Fig: Srivastava et al., 2014
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Regularization: Dropout

• Feed-forward only on active units

• Can be trained using SGD with mini-batch
– Back propagate only “active” units.

• One issue:
– Expected output 𝑥 with dropout: 

– 𝐸 𝑥 = 𝑝𝑥 + 1 − 𝑝 0

• To have the same scale at testing time (no dropout), 
multiply test-time activations with 𝑝.

Fig: Srivastava et al., 2014154



Regularization: Dropout

Test-time:

Training-time:

http://cs231n.github.io/neural-networks-2/
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Regularization: Inverted Dropout

Test-time:

Training-time:

http://cs231n.github.io/neural-networks-2/

Perform scaling while dropping at training time!
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Regularization Summary

• L2 regularization

• Inverted dropout with 𝑝 = 0.5 (tunable)
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When To Stop Training

• 1. Train n epochs; lower learning rate; train m
epochs
– bad idea: can’t assume one-size-fits-all approach

• 2. Error-change criterion
– stop when error isn’t dropping

– recommendation: criterion based on % drop over a 
window of, say, 10 epochs

• 1 epoch is too noisy

• absolute error criterion is too problem dependent

– Another idea: train for a fixed number of epochs after 
criterion is reached (possibly with lower learning 
rate)

Slide Credit: Michael Mozer
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When To Stop Training

• 3. Weight-change criterion

– Compare weights at epochs (𝑡 − 10) and 𝑡 and 
test:

– Don’t base on length of overall weight change 
vector

– Possibly express as a percentage of the weight

– Be cautious: small weight changes at critical 
points can result in rapid drop in error

maxi wi
t -wi

t-10 <q

Slide Credit: Michael Mozer
159



DATA PREPROCESSING AND 
WEIGHT INITIALIZATION

162



Data Preprocessing

• Mean subtraction

• Normalization

• PCA and whitening
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Data Preprocessing: Mean subtraction

• Subtract the mean for each dimension:
𝑥𝑖
′ = 𝑥𝑖 −  𝑥𝑖

• Effect: Move the data center (mean) to coordinate 
center

http://cs231n.github.io/neural-networks-2/
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Data Preprocessing: 
Normalization (or conditioning)

• Necessary if you believe that your dimensions have different scales
– Might need to reduce this to give equal importance to each dimension

• Normalize each dimension by its std. dev. after mean subtraction:
𝑥𝑖
′ = 𝑥𝑖 − 𝜇𝑖
𝑥𝑖
′′ = 𝑥𝑖

′/𝜎𝑖
• Effect: Make the dimensions have the same scale

http://cs231n.github.io/neural-networks-2/
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Data Preprocessing: 
Principle Component Analysis

• First center the data
• Find the eigenvectors 𝑒1, … , 𝑒𝑛
• Project the data onto the eigenvectors:

– 𝑥𝑖
𝑅 = 𝑥𝑖 ⋅ [𝑒1, … , 𝑒𝑛]

• This corresponds to rotating the data to have the eigenvectors as 
the axes

• If you take the first 𝑀 eigenvectors, it corresponds to 
dimensionality reduction

http://cs231n.github.io/neural-networks-2/
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Reminder: PCA

• Principle axes are the 
eigenvectors of the covariance 
matrix:
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Data Preprocessing: Whitening

• Normalize the scale with the norm of the eigenvalue:

𝑥𝑖
𝑤 = 𝑥𝑖

𝑅/( 𝜆1, … , 𝜆𝑛 + 𝜖)

• 𝜖: a very small number to avoid division by zero

• This stretches each dimension to have the same 
scale.

• Side effect: this may exaggerate noise.

http://cs231n.github.io/neural-networks-2/
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Data Preprocessing: Example
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Data Preprocessing: Summary

• We mostly don’t use PCA or whitening

– They are computationally very expensive

– Whitening has side effects

• It is quite crucial and common to zero-center 
the data

• Most of the time, we see normalization with 
the std. deviation
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Weight Initialization

• Zero weights
– Wrong!

– Leads to updating weights by the same amounts for 
every input

– Symmetry!

• Initialize the weights randomly to small values:
– Sample from a small range, e.g., Normal(0,0.01)

– Don’t initialize too small

• The bias may be initialized to zero
– For ReLU units, this may be a small number like 0.01.

171
Note: None of these provide guarantees. Moreover, there is no guarantee that one of these

will always be better.



More on weight initialization

• Integrate the following

• http://www.jefkine.com/deep/2016/08/08/ini
tialization-of-deep-networks-case-of-
rectifiers/
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Initial Weight 
Normalization

• Problem: 
– Variance of the output 

changes with the number 
of inputs

– If 𝑠 =  𝑖𝑤𝑖𝑥𝑖:

Glorot & Bengio, “Understanding the difficulty of training deep 
feedforward neural networks”, 2010. 
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Initial Weight Normalization

• Solution:
– Get rid of 𝑛 in
𝑉𝑎𝑟 𝑠 = (𝑛 Var(w))Var(x)

– How? 

• 𝑤𝑖 = 𝑟𝑎𝑛𝑑(0,1)/√𝑛
– Why?

– 𝑉𝑎𝑟 𝑎𝑋 = 𝑎2𝑉𝑎𝑟 𝑋

• If the number of inputs & 
outputs are not fixed:

– 𝑤𝑖 = 𝑟𝑎𝑛𝑑 0,1 ×
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Glorot & Bengio, “Understanding the difficulty of training deep 
feedforward neural networks”, 2010. 
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Alternative: Batch Normalization

• Normalization is 
differentiable
– So, make it part 

of the model (not 
only at the 
beginning)

– I.e., perform 
normalization 
during every step 
of processing

• More robust to 
initialization

Ioffe & Szegedy, “Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift”, 2015.

176



To sum up

• Initialization and normalization are crucial

• Different initialization & normalization 
strategies may be needed for different deep 
learning methods

– E.g., in CNNs, normalization might be performed 
only on convolution etc.

• More on this later
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Today

• Finish up the first part of the course

– Loss functions again

– Representational capacity

– Other practical issues

• A crash course on Computer Vision & Human 
Vision

– What can we learn from Human Vision?

• Autoencoders
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LOSS FUNCTIONS, AGAIN
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Loss functions

• A single correct label case (classification):

– Hinge loss:

• 𝐿𝑖 =  𝑗≠𝑦𝑖
max 0, 𝑓𝑗 − 𝑓𝑦𝑖 + 1

– Squared hinge loss:

• 𝐿𝑖 =  𝑗 𝑓𝑗 − 𝑦𝑗𝑖
2

– Soft-max:

• 𝐿𝑖 = − log
𝑒
𝑓𝑦𝑖

 𝑗 𝑒
𝑓𝑗
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Loss functions

• Many correct labels case:

– Binary prediction for each label, independently:

• 𝐿𝑖 =  𝑗max 0,1 − 𝑦𝑖𝑗𝑓𝑗

• 𝑦𝑖𝑗 = +1 if example 𝑖 is labeled with label 𝑗; otherwise 

𝑦𝑖𝑗 = −1.

– Alternatively, train logistic regression classifier for 
each label (0 or 1):
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Loss functions

• Regression case (a continuous label):

– L2 Norm squared (L2 Loss):

• 𝐿𝑖 = 𝑓 − 𝑦𝑖 2

2

•
𝜕𝐿𝑖

𝜕𝑓𝑗
= 𝑓𝑗 − 𝑦𝑖 𝑗

– L1 Norm:

• 𝐿𝑖 = 𝑓 − 𝑦𝑖 1
=  𝑗 𝑓𝑗 − 𝑦𝑖 𝑗

•
𝜕𝐿𝑖

𝜕𝑓𝑗
= 𝑠𝑖𝑔𝑛 𝑓𝑗 − 𝑦𝑖 𝑗

Reminder:
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L2 Loss: Caution

• L2 loss asks for a more difficult constraint:

– Learn to output a response that is exactly the 
same as the correct label

– This is harder to train

• Compare, e.g., softmax:

– Which asks only one response to be maximum 
than others.
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Loss functions

• What if we want to predict a graph, tree etc? 
Something that has structure.

– Structured loss: formulate loss such that you 
minimize the distance to a correct structure

– Not very common
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REPRESENTATIONAL CAPACITY

185



Representational capacity

• Boolean functions:
– Every Boolean function can be represented exactly by 

a neural network
– The number of hidden layers might need to grow with 

the number of inputs

• Continuous functions:
– Every bounded continuous function can be 

approximated with small error with two layers

• Arbitrary functions:
– Three layers can approximate any arbitrary function
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Representational Capacity:
Why go deeper if 3 layers is sufficient?

• Going deeper helps convergence in “big” 
problems.

• Going deeper in “old-fashion trained” ANNs 
does not help much in accuracy

– However, with different training strategies or with 
Convolutional Networks, going deeper matters
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Representational Capacity

• More hidden neurons  capacity to represent more complex 
functions

• Problem: overfitting vs. generalization
– We will discuss the different strategies to help here (L2 regularization, 

dropout, input noise, using a validation set etc.)
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What the hidden units represent
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Number of hidden neurons

• Several rule of thumbs (Jeff Heaton)

– The number of hidden neurons should be 
between the size of the input layer and the size of 
the output layer. 

– The number of hidden neurons should be 2/3 the 
size of the input layer, plus the size of the output 
layer. 

– The number of hidden neurons should be less 
than twice the size of the input layer.
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Number of hidden layers

• Depends on the nature of the problem

– Linear classification?  No hidden layers needed

– Non-linear classification? 
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Model Complexity

• Models range in their flexibility to fit arbitrary data

complex model

unconstrained

large capacity may
allow it to memorize
data and fail to
capture regularities

simple model

constrained

small capacity may
prevent it from 
representing all
structure in data

low bias

high variance

high bias

low variance

Slide Credit: Michael Mozer
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Training Vs. Test Set Error

Test Set

Training Set

Slide Credit: Michael Mozer
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Bias-Variance Trade Off

image credit: scott.fortmann-roe.com

underfit overfit
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Slide Credit: Michael Mozer
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ISSUES & PRACTICAL ADVICES
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Issues & tricks

• Vanishing gradient

– Saturated units block gradient propagation (why?)

– A problem especially present in recurrent networks or 
networks with a lot of layers

• Overfitting

– Drop-out, regularization and other tricks.

• Tricks:

– Unsupervised pretraining

• Batch normalization (each unit’s preactivation is normalized)

– Helps keeping the preactivation non-saturated

– Do this for mini-batches (adds stochasticity)

– Backprop needs to be updated
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Unsupervised pretraining

197



Unsupervised pretraining
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What if things are not working?

• Check your gradients by comparing them against 
numerical gradients
– More on this at: http://cs231n.github.io/neural-networks-3/
– Check whether you are using an appropriate floating point 

representation
• Be aware of floating point precision/loss problems

– Turn off drop-out and other “extra” mechanisms during 
gradient check

– This can be performed only on a few dimensions

• Regularization loss may dominate the data loss
– First disable regularization loss & make sure data loss works
– Then add regularization loss with a big factor
– And check the gradient in each case
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What if things are not working?

• Have a feeling of the initial loss value

– For CIFAR-10 with 10 classes: because each class 
has probability of 0.1, initial loss is –ln(0.1)=2.302

– For hinge loss: since all margins are violated (since 
all scores are approximately zero), loss should be 
around 9 (+1 for each margin). 

• Try to overfit on a tiny subset of the dataset

– The cost should reach to zero if things are working 
properly
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What if things are not working?

Learning rate might be too low; 
Batch size might be too small
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What if things are not working?

202



What if things are not working?

• Track the gradients and updates

– E.g., the ratio between the norm of the update 
and the norm of the gradients for each weight.

– This should be around 1e-3

• If it is lower  your learning rate might be too low

• If it is higher  your learning rate might be too high

• Plot the histogram of activations per layer

– E.g., for tanh functions, we expect to see a diverse 
distribution of values between [-1,1]
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What if things are not working?

• Visualize your layers (the weights)
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Andrew Ng’s 
suggestions

• “In DL, the coupling 
between bias & variance is 
weaker compared to other 
ML methods:
– We can train a network to 

have high bias and 
variance.”

• Dev(validation) and test sets 
should come from the same 
distribution. Dev&test sets 
are like problem 
specifications.
– This requires especially 

attention if you have a lot 
of data from simulated 
environments etc. but little 
data from the real test 
environment.
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Andrew Ng’s 
suggestions

• Knowing the human 
performance level gives 
information about the problem 
of your network: If training 
error is far from human 
performance, then there is a 
bias error. If they are close but 
validation has more error 
(compared to the diff between 
human and training error), 
then there is variance problem.

• After surpassing human level, 
performance increases only 
very slowly very difficult-ly. 
One reason: There is not much 
space for improvement (only 
tiny little details). Problem gets 
much harder. Another reason: 
We get labels from humans.
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What is best then?

• Which algorithm to choose? 

– No answer yet

– See Tom Schaul (2014)

– RMSprop and AdaDelta seems to be slightly 
favorable; however, no best algorithm

• SGD, SGD+momentum, RMSprop, 
RMSprop+momentum, AdaDelta and Adam 
are the most widely used ones
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Luckily, deep networks are very powerful

209

Regularization is turned off in the experiments.
When you turn on regularization, the networks 
perform worse.



Concluding remarks for the first part

• Loss functions

• Gradients of loss functions for minimizing 
them
– All operations in the network should be 

differentiable

• Gradient descent and its variants

• Initialization, normalization, adaptive learning 
rate, …

• Overall, you have learned most of the tools 
you will use in the rest of the course.
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