Artificial neural
networks




Now

- Neurons

- Neuron models

- Perceptron learning

- Multi-layer perceptrons

- Backpropagation




It all starts with
a neuron




Some facts about human brain

~ 86 billion neurons

~ 10'° synapses

Number of connections per neuron over time
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Neuron

The basic information
processing element of neural

systems. The neuron \ \
y >\£ 4. T =Dcndrites

- receives input signals
generated by other neurons
through its dendrites,

- Integrates these signals in its s
body,

Myelin
Axon sheath

Termiral buit.;wnﬁ.i

- then generates its own signal
(a series of electric pulses |
that travel along the axon /ﬁ |
which in turn makes contacts

with dendrites of other
neurons.

- The points of contact
between neurons are called
synapses.

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-
Rate-Neural-Plug-in/Neuron-Basics




Neuron

ACTON
POTENTIAL

- The pulses
generated by the
neuron travels along
the axon as an
electrical wave.

- Once these pulses
reach the synapses
at the end of the
axon open up
chemical vesicles
exciting the other
neuron.

Slide credit: Erol Sahin




Neuron
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http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-
Basics



The biological neuron - 2

Weak stimulus

Action | I |
potentials | I T T |

On Off
Stimulus 1 |

Action | [ |
potentials | '

On Off
Stimulus _ !

Timg——

(Carlson, 1992)

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-
Rate-Neural-Plug-in/Neuron-Basics




Face selec’rivi’ry inIT

/a\ /R\ /R\ §
t% i \ w /*g‘ '111

NO (‘()l OrR

5

3 Aé ) "‘( . ‘\ " -8 S
0° :I)° 60° 80’ 100 180° NO E~VES
. SRUSH

)
5°

http://www.billconnelly.net/?p=291



Artificial neuron




History of artificial neurons

- Threshold Logic Unit, or Linear Threshold Unit, a.k.a.
McCulloch Pitts Neurons — 1943

- Perceptron by Rosenblatt

* “This model already considered more flexible weight values in the
neurons, and was used 1n machines with adaptive capabilities. The

representation of the threshold values as a bias term was
introduced by Bernard Widrow in 1960 — see ADALINE.”

- “In the late 1980s, when research on neural networks
regained strength, neurons with more continuous shapes
started to be considered. The possibility of differentiating the
activation function allows the direct use of the gradient
descent and other optimization algorithms for the adjustment
of the weights. Neural networks also started to be used as a
general function approximation model. The best known
training algorithm called backpropagation has been
rediscovered several times but its first development goes back
to the work of Paul Werbos”




The history

® 1962 - Frank Rosenblatt: “Back-propagating error-correction
procedures”. In Principles of Neurodynamics.

e 1974 - Paul Werbos: “Beyond regression: new tools for prediction
and analysis in the behavioral sciences”. Ph.D. thesis. Harvard
University.

e 1986 - D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning
Internal Representations by Error Propagation”, published in “Parallel
Distributed Processing” volume | and Il, by the PDP group of UCSD.

® 1986- today - the interest about the neural networks is on the rise..

CENG 569/Lecture 2: Backpropagation (€) Erol Sahin; 2002, METU — p.2/37

© Erol Sahin



BRATIN AND COGNITION 33, 295-305 (1997)
ARTICLE NOo. BR970869

Bain on Neural Networks

A1 AN L. WiLKES AND Nicuoras J. WADE

University of Dundee, Dundee, Scotland

In his book Mind and body (1873), Bain set out an account in which he related
the processes of associative memory to the distribution of activity in neural group-
ings—or neural networks as they are now termed. In the course of this account,
Bain anticipated certain aspects of connectionist ideas that are normally attributed
to 20th-century authors—most notably Hebb (1949). In this paper we reproduce
Bain’s arguments relating neural activity to the workings of associative memory S .
which include an early version of the principles enshrined in Hebb’s neurophysio- Fic. 1. Alexander Bain in 1892 from a photograph in his Autobiography (1904).
logical postulate. Nonetheless, despite their prescience, these specific contributions
to the connectionist case have been almost entirely ignored. Eventually, Bain came
to doubt the practicality of his own arguments and, in so doing, he seems to have
ensured that his ideas concerning neural groupings exerted little or no influence on
the subsequent course of theorizing in this area. © 1997 Academic Press

Alexander Bain (1818-1903). see Fig. 1. 1s best known for his textbooks
The senses and the intellect (1855) and The emotions and the will (1859).
in which he offered an interpretation of mental phenomena within an associa-
tionist framework (for further biographical detail. see Hearnshaw. 1964).
Specifically. he tried to match quantitative estimates of the associations held
in memory to the neural structure of the brain. It was this exercise that first
drew Bain into confronting the potential properties of neural groupings or
networks. In the course of thinking about these issues. he was led to speculate
on how the internal structure of neural groupings could phvsically grow to
reflect the contingencies of experience and how this same internal structure
could come to support the variety of associative links typically found in
memory.
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F1G. 2. Bain's diagram illustrating the way in which the connections in a neural network
can channel activation in different directions:

It requires us to assume. not merely fibres multiplying by ramification through the
cell junctions. but also an extensive arrangement of cross connections. We can typify
it 1n this way. Suppose a enters a cell junction, and 1s replaced by several branches,
a’. a’ etc; b in like manner. 1s multiplied into 5", 5" etc. Let one of the branches of
a or a’. pass mnto some second cell. and a branch of b, or b, pass into the same.
and let one of the emerging branches be X, we have then a means of connecting
umted a and b with X and in some other crossing, a branch of » may unite with a
branch of ¢, from which crossing I emerges and so on. . . . By this plan we comply
with the primary condition of assigning a separate outcome to every different comba-
nation of sensory impressions.

The diagram shows the arrangement. The fibre @ branches into two a’. a”; the
fibre b into &', b"; ¢’. ¢’. One of the branches of a unites with one of the branches
of bora’. b’ inacell X; b ¢ unite in ¥; a’, ¢ in Z. (1873, pp. 110, 111)




McCulloch-Pitts Neuron
(McCulloch & Pitts, 1943)

- Binary input-output

- Can represent Boolean

functions. weights
inputs —
. T X} s W ‘}\\
No training. ‘ \ activation
T functon
- rf;L_ \‘\H net input
F e N e -

i

N
\ ) T _— net; q_}
net = > (Wya@i) + Wy, Y o — i ; activation

P 'Il-'i -

i - /ranﬁfer [

: function

{4
Yow '{ED/ threshald
0, net <0 -

f(net) = {1 net > 0

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html



McCulloch-Pitts Neuron

- Implement AND:

- Let w,; and w,, to be 1,
and w,, to be -2.

XANDY XORY NOT X
- When inputis 1 & 1; net I
1s 0.
- When one input is 0; net +1 +] -2 ] K] - -1
is -1. /N /TN
X Y +1 X Y +] X
° When input iS 0 & 0; net http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
1s -2.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html



McCulloch-Pitts Neuron

Wikipedia:

- “Initially, only a simple model was considered, with binary inputs
and outputs, some restrictions on the possible weights, and a more
flexible threshold value. Since the beginning it was already noticed
that any boolean function could be implemented by networks of
such devices, what 1s easily seen from the fact that one can
1mplement the AND and OR functions, and use them in the

or the . Researchers also soon
realized that cyclic networks, with through neurons,
could define dynamical systems with memory, but most of the
research concentrated (and still does) on strictly feed-forward
networks because of the smaller difficulty they present.”



https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Feedback

McCulloch-Pitts Neuron

- Binary input-output 1s a big limitation
- Also called

“[...] caricature models since they are intended to reflect
one or more neurophysiological observations, but
without regard to realism [...]”

-- Wikipedia
- No training! No learning!

- They were useful in 1nspiring research into
connectionist models




Hebb’s Postulate (Hebb, 1949)

- “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A's efficiency, as one of the cells firing B, 1s increased”

THISTRLSO/APPLIES'TO/NIGHT:S
.. WATCH

In short: Neurons that
fire together, wire
together.

In other words:

Wi X XjXj £
J J N GHTSMEN THAT FIGHT TOGETHER DIE
ToﬁETHEBnemegenerator.net




Hebb’s Learning Law

- Very simple to formulate as a learning rule:

Yi Yy
Awij o yiy;

If the activation of the neurons, y1 and y2, are both on (+1) then
the weight between the two neurons grow. (Off: 0)

Else the weight between remains the same.

However, when bipolar activation {-1,+1} scheme is used, then the
welghts can also decrease when the activation of two neurons does
not match.

Slide credit: Erol Sahin




Psychological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!

F. ROSENBLATT
Cornell Aeronautical Laboratory

LOCALITID (RANDON
CONNELTIONE) CONNELTIONE)

Ar =
RETINA l"ﬂ::::;'lﬂﬂ -.\“;:- (AED RIRFONRED Perceptron (195 7)

F16. 1. Organization of a perceptron.

Frank Rosenblatt
(1928-1971)

; P
Original Perceptron Wi

(From Perceptrons by M. L Minsky and S. Papert,
1969, Cambridge, MA: MIT Press. Copyright 1969
by MIT Press. ~ W2

Simplified model: 3 2 4




https://www.youtube.com/watch?v=cNxadbrN_al

https://www.youtube.com/watch?v=aygSMgK3BEM




And many others

- Widrow & Hoff, 1962

- Grossberg, 1969

- Kohonen, 1972

- von der Malsburg, 1973

- Narendra & Thathtchar, 1974
- Palm, 1980

- Hopfield, 1982




Let’s go back to a biological neuron

1

Cell body
- A biological neuron has: Nucleus é

- Dendrites

- Soma
- Axon \ -

Dendrites

- Firing 1s continuous, Input Node Output
unlike most artificial
neurons

- Rather than the
response function, the

firing rate 1s critical
SUM + squash




* Neurone vs. Node

—

Cell body
Nucleus ﬁ

& Axon
Dendrites

Input Node Qutput

SUM + squash

* Very crude abstraction
* Many details overseen

“Spherical cow” problem!

28



Spherical cow

Q: How does a physicist milk a cow?
A: Well, first let us consider a spherical cow...

Or
https://en.wikipedia.org/wiki/Spherical_cow

“Milk production at a dairy farm was low, so the farmer wrote
to the local university, asking for help from academia. A
multidisciplinary team of professors was assembled, headed
by a theoretical physicist, and two weeks of intensive on-site
investigation took place. The scholars then returned to the
university, notebooks crammed with data, where the task of
writing the report was left to the team leader. Shortly
thereafter the physicist returned to the farm, saying to the
farmer, "l have the solution, but it only works in the case of

n”n

spherical cows in a vacuum®.

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/

29



Let us take a closer look at perceptrons

* Initial proposal of connectionist networks
 Rosenblatt, 50’s and 60’s
* Essentially a linear discriminant composed of nodes and weights

ST

Activation Function
IR ..., JECRR
OX) = i 1ify>0

0, otherwise _
where sgn(y) = -1 otherwise



Perceptron — clearer structure

Associative
_ units
Retina
e
/ /}< Response unit
P 1 ify_in>6
L]
1 f(y_in)={0 if-60<y_ in<o
T 1 ify in<-6
//4
P _ :
i Variable weights

Fixed weights -

Step activation function

Slide adapted from Dr. Nigel Crook from Oxford Brookes University
Slide credit: Erol Sahin




Perceptron - activation

Simple matrix multiplication, as we have seen in the previous lecture
W1 W2 | X

Wx =| ’ { 1}
Wo1 W22 [ X

| WX W 20X
W2 1% + W2 2X7

2

2, W jX]
]=1

2
2 Wo jX]
j=1 ]

Slide adapted from Dr. Nigel Crook from Oxford Brookes University
Slide credit: Erol Sahin




Motivation for perceptron learning
(No gradient descent yet)

We have estimated an output o

— But the target was ¢

Error (simply): t — o

Let us update each weight such that we “learn” from the
error:

— W; < W; + AWl'

— where Aw; « (t —o0)
We somehow need to distribute the error to the weights.
How?

— Distribute the error according to how much they contributed to
the error: Bigger input contributes more to the error.

— Therefore: Aw; o« (t —0)x;

36



An example

Considerx; = 0.8, t =1,0 = —1
—Then, (t —o0)x; = 1.6
— Which will increase the weight

— Which makes sense considering the output and
the target

37



Perceptron training rule

* Update weights
w; <« w; + Aw;
* How to determine Aw;?
Aw; « n(t — 0)x;
— 1: learning rate — can be slowly decreased
— t: target/desired output
— 0: current output

38



Perceptron - intuition

* A perceptron defines a hyperplane in N-1 space: a line in 2-D
(two inputs), a plane in 3-D (three inputs),....

* The perceptron is a linear classifier: It’s output is -1 on one
side of the plane, and 1 for the other.

* Q@Given alinearly separable problem, the perceptron learning

rule guarantees convergence. Zoh

, flwg + wix1 +wozp) =0
zg = 1 (bias)

Slide credit: Erol Sahin



Problems with perceptron

* Perceptron unit is non-linear

 However, it is not differentiable (due to
thresholding), which makes it unsuitable to
gradient descent in multi-layer networks.



Problems with perceptron learning

* Can only learn linearly separable classification.

xo M

Ij 'rj

linearly separable not linearly separable



Gradient Descent

* Consider unthresholded perceptron:
o(X) =w-X
 We can calculate the error of the perceptron:

1
E(w) = 52(% — 0g)°
deD
* We can guide the search for better weights by using the
gradient of this error function.

T. M. Mitchell,

44



Gradient Descent Rule

oE a 1
wew+ Aw Yt
. ! P deD
e Determine Aw based
on the error function: 2;_(t"—0")
_ 1
Aw « TIVE(W) = 522(@—0@)*—(&—%)
 For the individual <P ;
: = Z(Q—Ud)——(fd—f)'ﬁf)
weights: = w;
0E SE
) — = ) (ta —0a)(—x;
AWl- ¢ n P 5w, d;}(d 0g¢)(—Xia)
l

\ /
Wi <1 z (tg — 0g4)xXiq

T. M. Mitchell, “Machine Learning” deD

45



Gradient Descent Training Algorithm

GRADIENT-DESCENT(training _examples, )

Each training example is a pair of the form (X, t), where % is the vector of input vaiue.s* and
t is the target output value. n is the learning rate (e.g., .05).
« Initialize each w; to some small random value
o« Until the termination condition is met, Do
o Initialize each Aw; to zero.
e For each (X, t) in training_examples, Do
e Input the instance x to the unit and compute the output o
e For each linear unit weight w;, Do

Aw; — Aw; +n(t — 0)x; (T4.1)
o For each linear unit weight w;, Do

w; — w; + Aw; (T4.2)

| | _ 46
T. M. Mitchell, “Machine Learning”



Stochastic Gradient Descent
or Incremental Gradient Descent

e Difficulties of gradient descent:
— Convergence to a local minimum can be quite slow

— If there are multiple local minima, no guarantee on finding
the global minimum

* One alternative:
— update the weight after seeing each sample.

Aw; <« n(t —o)x; Compare to (in standard GD):
- Error effectively becomes (per data): AWL- —n 2 (td — od)xid
1
E;(w) = > (tg — 0g)° deD

(Delta rule, least-mean-square-rule, Adaline rule or Widrof-Hoff rule) 47



Notes on convergence

* Perceptron learning:
— Output is thresholded

— Converges after a finite number of iterations to a hypothesis
that perfectly classifies the data

— Condition: data is linearly separable

 Gradient descent (delta rule):
— Output is not thresholded
— Converges asymptotically to the minimum error hypothesis
— Condition: unbounded time
— Does not require linear separation.



The limitations of a perceptron:
A hidden neuron may help

Input Output
001 0

010
100
110

el

1
1
0

© Erol Sahin



LET’S GET MULTI-LAYER



Multi-layer Networks

Input Hidden Output

Information flow is unidirectional
Data is presented to Input layer
Passed on to Hidden Layer

Passed on to Output layer

Information is distributed

Information processing is parallel

Internal representation (interpretation) of data

Information

—

51



Multi-layered Networks

* To be able to have solutions for linearly non-separable cases,
we need a non-linear and differentiable unit.

0o=oc(Ww-X)

where:

1

o(y) =

Sigmoid (logistic) function

Outputisin (0,1)

Since it maps a large domain
to (0,1) it is also called

squashing function
Alternatives: tanh

1 +eY

B =00 - (L-o()

1
1+e®’

Let's denote the sigmoid function as () =

The derivative of the sigmoid is % o(z) = o(z)(1 — o(z)).

Here's a detailed derivation:

d d 1
a"(”):a[ue:]
d .o
=a(l+e )
= —(1+e?) (e )

1

0.2

ES

(1+e=)?
B 1 e’
1+e?® .l—i—ez
1 1+e*) -1
:1+e= ) 1+e*

1 L1
T 1t+e=T 1+e?

— o(z)- (1 —a(z)%z

(Eg: M. Percy)



Perceptron with sigmoid function

53



Why do we need to learn
backpropagation?

* “Many frameworks implement backpropagation
for us, why do we need to learn?”
— This is not a blackbox. There are many
problems/issues involved. You can only deal with

them if you have a good understanding of
backpropagation.

https://medium.com/@karpathy/yes-you-should-
understand-backprop-e2f06eab496b#.7zawffou2

54



Backpropagation algorithm

Let us re-define the error function since we have many outputs:

E(w) = %Z 2 (tka — Oka)?

deD keoutputs
For one data:

Eq(w) = % Z (tka — Oka)?
keoutputs
For each output unit k, calculate its error term dy:
Op=—0Eq(w)/00y
O =[O0k (1 — o) (tr=-y)

: : , - Derivative of the
For each hidden unit h, calculate its error term §y,: Sigmoid function
6p = op(1 — op) z Win O
keoutputs

Update every weight wj;

Wji = Wji + 10;%;; 55



0
do;

Derivation of backpropagation

* Derivation of the output unit weights
0E,

Wi = —1n
Jt
aWji

- Expand

awﬂ

JEg;  O0E4 pnet;

aWji anetj aW]l

0E4
-Expandane
aEd _aEd 601

aneq aqianeq

Derivative of sigmoid

1

d
Zz(tk — 0p)? _0_ _(tk —o0y)’ = (tj - Oj)

—
0](1 — 0])
Therefore:
A _ d0E,
Wji - 1 aW]l

= n\(tj —0j)0;(1 - szxij
Y 5




Derivation of backpropagation

Derivation of the output unit weights

. OE,
Jt aW]l
Therefore:
A B 0E,
W]l - 1 aW]l
=1(t; — 0j)0;(1 — 05)x;;
\ }
|
S

J
(error term for unit j)

57



Derivation of backpropagation

* Derivation of the hidden unit weights

0Eq
aWji.

- Expand

JEg ]
anetj

- Expand

Therefore:

AWji =

. oE,
Wi = —T]

Jt aW]l
dE;  O0E, pnet;

aWji anetj aW]l

JE,

6neq

_5k

JEg4

Mow,: n8jxji = nxji [0 (1 — 0;) X Siewej |

Z 0E; Pnet;
~ dnet Pnet;

_ dnet;, 00;

60]- anetj

= Wk]O](l — O])

58



Forward pass

QA
X
«%‘«{

XX

@‘&
N\
X5
®

‘ output layer

input layer
hidden layer 1 hidden layer 2

# forward-pass of a 3-layer ne
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation

¥ = np.random.randn (3, 1) # random input

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
hZz = f(np.dot (W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot (W3, h2) + b3 # output neuron (IxI)

59



Backpropagation vs. numerical
differentiation

* Backpropagation:
- o0(|W1)

* Numerical differentiation
- o(|W|?)

61



Problems of back propagation with
sigmoid

t is extremely slow, if it does converge.
t may get stuck in a local minima.

t is sensitive to initial conditions.

t may start oscillating.

62



Backprop in deep networks

Local minima may not be as severe as it is feared

— If one weight gets into local minima, other weights
provide escape routes

— The more weights, the more escape routes
Add a momentum term

Use stochastic gradient descent, rather than true
gradient descent
— This means we have different error surfaces for each data

— If stuck in local minima in one of them, the others might
help

Train multiple networks with different initial weights

— Select the best one 63



Backprop

Very powerful - can learn any function, given enough hidden
units!

Have the same problems of Generalization vs.
Memorization.
— With too many units, we will tend to memorize the input and not
generalize well. Some schemes exist to “prune” the neural network.
Networks require extensive training, many parameters to
fiddle with. Can be extremely slow to train. May also fall
into local minima.

Inherently parallel algorithm, ideal for multiprocessor
hardware.

Despite the cons, a very powerful algorithm that has seen
widespread successful deployment.

64



Now, let us look at alternative aspects

e Loss functions
— Hinge-loss, softmax loss, squared-error loss, ...
— We will not look at them here again

e Activation functions
— Sigmoid, tanh, RelLU, Leaky RelLU, parametric ReLU, maxout

* Backpropagation strategy:

— True Gradient Descent, Stochastic Gradient Descent, Mini-
batch Gradient Descent, RMSpop, AdaDelta, AdaGrad,
Adam

65



Activation Functions



Activation function

» Sigmoid / logistic function

The computational power is increased by the use of a squashing function.
In the original paper the logistic function:

IS used.

67



Activation function

Logistic function o %,1 has nice features:

Pi = Tte

® The derivative is expressable in terms of the function itself:

= 0pi(1 —0,;)
A i PJ
dnet

® The derivative is a “bump” that pushes uncommitted nodes to change
weights.

e Likewise, weights are prevented from blowing up.

® The downside is that it is hard to change large weights!

()

N

e How about f(.) = tanh(-) which squashes the input into the
—1:41]?

e All we need to make sure it that f(.) is differentiable.

68



Activation Functions

* sigmoid vs tanh

1.OF r—eeeeee

o8F /

Derivative: a(x)(1 — o(x))

Derivative: (1 — tanh?(x))

69



Pros and Cons

e Sigmoid is an historically important activation fun¢

— But nowadays, rarely used f_
/’,nz-

* Sigmoid drawbacks sl
1. It gets saturated, if the activation is close to zero or one

* This leads to very small gradient, which disallows
“transfer”ing the feedback to earlier layers

* |Initialization is also very important for this reason
2. ltis not zero-centered (not very severe)
* Tanh
— Similar to the sigmoid, it saturates
— However, it is zero-centered.
— Tanhis always preferred over sigmod
— Note: tanh(x) = 20(2x) — 1

http://cs231n.github.io/neural-networks-1/
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Rectified Linear Units (ReLU)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve
restricted Boltzmann machines, ICML.

—RelLU

— Logisti S SN SN AR SR S,

Training error rate

f(x) = max(0, x)

Derivative: 1(x > 0)

0.75q
0.5+
b
—
— —
— — —_—
0.25 4 i
U Li Li Li T T 1
0 10 15 20 25 30 35
Epochs

[Krizhevsky et al., NIPS12]

72
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. —1

RelLU: biological o (Bt <
. . JI) = if £+ RI > Vi,
motivation

0, it £+ RI < Vi,

where t,.5 is the refractory period (minimal time
between two action potentials), I the input cur-
rent, V). the resting potential and V};, the thresh-
old potential (with Vi > V,), and R, E., 7
the membrane resistance. potent.i-al and time con-
stant. The most commonly used activation func-

1 Sy
200f - : — Sigmoid P
—Tanh

3 150} 05—
P ~
2100t o0
2 = /
5 sof / 05

ﬂ 1 1 1 1 1 -]

0 2 4 6 8 10
| tc t (A -9
nput current (A) 10 x

Figure 1: Left: Common neural activation function motivated by biological data. Right: Commonly
used activation functions in neural networks literature: logistic sigmoid and hyperbolic tangent (tanh).
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Rectified Linear Units: Another Perspective

Hinton argues that this is a form of model averaging

A fast approximation

/e

e

2logistic( x+05-n) ~ log(l+e")
ne= output = max(0, input )

« Rectified linear units are much faster to compute than the
sum of many logistic units.

» They learn much faster than ordinary logistic units and they
produce sparse activity vectors.
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RelLU: Pros and Cons

* Pros:

— It converges much faster (claimed to be 6x faster than
sigmoid/tanh)

* It overfits very fast and when used with e.g. dropout, this
leads to very fast convergence

— It is simpler and faster to compute (simple
comparison)

* Cons:
— A RelLU neuron may “die” during training

— A large gradient may update the weights such that the
RelLU neuron may never activate again

* Avoid large learning rate
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RelLU

* See the following site for more in-depth
analysis

http://www.jefkine.com/general/2016/08/24/fo
rmulating-the-relu/
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Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng
(2014). Rectifier Nonlinearities Improve Neural

Lea ky Re LU Network Acoustic Models

e f(x)=1(x < 0)(ax) +1(x = 0)(x)

— When x is negative, have a non-zero slope («)

If you learn a during training, this is called
parametric ReLU (PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun (2015) Delving Deep into
Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification



“Maxout Networks” by lan J. Goodfellow, David

M aXO Ut Warde-Farley, Mehdi Mirza, Aaron Courville,

Yoshua Bengio, 2013.

« max(w{ x + by, wlx + by)

* RelU, Leaky RelLU and PRelLU are special cases
of this

* Drawback: More parameters to learn!
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Softplus

* A smooth
approximation to
the RelLU unit:
f(x) =In(1+e*)

e |ts derivative is the
sigmoid function:

ffix)=1/(1+e™)

Honlinearities
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Activation Functions: To sum up

Don’t use sigmoid

If you really want, use tanh but it is worse
than RelLU and its variants

RelLU: be careful about dying neurons
Leaky ReLU and Maxout: Worth trying
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DEMO

* http://playground.tensorflow.org/#activation=tan
h&regularization=L2&batchSize=10&dataset=circl
e&regDataset=reg-
plane&learningRate=0.03&regularizationRate=0&
noise=0&networkShape=4,2&seed=0.24725&sho
wTestData=false&discretize=false&percTrainData
=50&x=true&y=true&xTimesY=false&xSquared=f
alse&ySquared=false&cosX=false&sinX=false&cos
Y=false&sinY=false&collectStats=false&problem=
classification
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Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-
guide-basics-neural-networks/



BACK PROPAGATION /
MINIMIZATION STRATEGIES



Schemes of training

True/Standard Gradient Descent
Stochastic Gradient Descent
Steepest Gradient Descent
Momentum Gradient Descent

Curricular training
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W,

Error contours

Ww;

Error contours

© John A Bullinaria, 2015
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F. Bach

Stochastic Gradient Descent

Batch Gradient Descent
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On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima

Nitish Shirish Keskar® Dheevatsa Mudigere
Northwestern University Inte]l Corporation

Evanston, IL 60208 Bangalore, India

kegkar.nitish®u.northwestern.edu dheevatsa.mudigere@intel. com
Jorge Nocedal Mikhail Smelyanskiy
Northwestern University Intel Corporation
Evanston, IL 60208 Santa Clara, CA 95054
j-nocedal@northwestern.edu mikhail.smelyanskiy@intel.com

Ping Tak Peter Tang
Inte]l Corporation
Santa Clara, CA 95054

peter.tang@intel.com
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Gradient descent

1

https://en.wikipedia.org/wiki/Gradient_descent



Second order methods

* Newton’s method for optimization:
—wew—[HfW]Vf(w)
— where Hf (w) is the Hessian

_ Oﬂf Oﬂf dzf -

dx? Jx1 019 dxy Oz,
T TR

H = Oy Oxy O3 drgo dxy, |
o5

_(‘-}In aI]_ Zﬁ‘:rn 3:?:3 (‘;,’Ii i

* Hessian gives a better feeling about the surface

— |t gives information about the curvature of surface
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Hessian for an image window

The eigenvalues of the Hessian matrix:

Ay

Aq and A, are small;

E is almost constant :>

in all directions

Source: R. Szeliski



Newton’s method for optimization

* wew—[HfW]Vf(w)
— Makes bigger steps in shallow curvature
— Smaller steps in steep curvature

* Note that there is no hyper-parameter!
e Disadvantage:

— Too much memory requirement

— For 1 million parameters, this means a matrix of 1 million x
1 million =» ~ 3725 GB RAM

— Alternatives exist to get around the memory problem
(quasi-Newton methods, Limited-memory BFGS)
 Active research area =» A suitable project topic ©

96



RPROP (Resilience Propagation)

Instead of the magnitude, use the sign of the gradients

ot * /_\_S-l) if %%(‘-1) . _837”%(0 S0
t - : -1 t
A‘(-J-):: "*Ag b lfft-f;(t )*%%()<0 (4)
Al-D else

o
where 0 <~ <1 < gt

Motivation: If the sign of a weight has changed, that means

we have “overshot” a minima

Advantage: Faster to run/converge

Disadvantage: More complex to implement

A Direct Adaptive Method for Faster Backpropagation Learning:
The RPROP Algorithm

1993

Martin Riedmiller Heinrich Braun



RPROP (Resilience Propagation)

For all weights and biases{

if (£ (1 - 1)+ £E(t) > 0) then {
Ai;(t) = minimum (A(t - 1) * 9%, Amar)
Awi;(t) = — sign {Bi[f:{t}] * Dgj(t)
wi;(t + 1) = wij(t) + LHwy;(t)

}

else if (FE-(t — 1)« %(i) < 0) then {
Hii(t) = maximum (A;(t = 1) * 77, Bmin)
wij(t + 1) = wi;(t) — Awy;(t = 1)
s (1) =0

}

else if {%{t ~1)= ﬁ%[t} = () then {
Awii(t) = — sign (g=(1)) * Lij(1)
wii(t + 1) = wi;(t) + Awy;(t)

A Direct Adaptive Method for Faster Backpropagation Learning:
The RPROP Algorithm

Martin Riedmiller Heinrich Braun 1993



Gradient Descent with Line Search

e Gradient descent:

t t—1 t—1
WU Wi s diry;
where dl?‘] = —0E /0w;;

e Gradient descent with line search:

— Choose s such that E is minimized along dir t 1,

aE(wi)

ds

— Set

= 0 to find the optimal s.
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(a) b
p - (b
2
4 -2 2 4
(0) &0
o
6
. )
Sl + argy) (c) p (d)
140
120 2
100 N
80 4 20 % 2 gt
|60 PR
4o N
= S 3
02 04 06
6

Figure 6: The method of Steepest Descent. (a) Starting at |2, —2]7, take a step in the direction of steepest
descent of f. (b) Find the point on the intersection of these two surfaces that minimizes f. (c) This parabola
is the intersection of surfaces. The bottommaost point is our target. (d) The gradient at the bottommost point
Is orthogonal to the gradient of the previous step.

Jonathan Richard Shewchuk 100



X o

-3F

Figure 7: The gradient f' is shown at several locations along the search line (solid arrows). Each gradient's
projection onto the line is also shown (dotted arrows). The gradient vectors represent the direction of

steepest increase of [, and the projections represent the rate of increase as one traverses the search line.
On the search line, f is minimized where the gradient is orthogonal to the search line.

Jonathan Richard Shewchuk 101



Gradient Descent with Line Search

wl = wi 1+Sdl7‘t 1

ij ij
Set ——= = 0 to find the optimal s.
ar(wiwi s ) _ a awly_ ap oq_ o
das - dwf] ds - dwitj lrij -
dE dwitj dE Jirt=1 — 0
= lr =
t iLj
dwy; ds dwU

Interpretation:

— Choose s such that: the gradient direction at the new position is orthogonal to
the current direction

This is called steepest gradient descent
Problem: makes zig-zag
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T and converges at [2, -2

Figure 8: Here, the method of Steepest Descent starts at |2,

103

Jonathan Richard Shewchuk



Conjugate Gradient Descent

* Motivation

(a)

Jonathan Richard Shewchuk 104




Conjugate Gradient Descent

 Two vectors are conjugate (A-orthogonal) if:
ulAv =0
* We assume that the error surface has the quadratic form:

1
flx) = ExTAx —bTx+c

iy

(@)

Figure 22: These pairs of vectors are A-orthogonal . .. because these pairs of vectors are orthogonal.
105
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Conjugate Gradient Descent

0E(wf;) - dirt

ij — al]

* By assuming quadratic form etc.:

. dlr

3 GE(w, (1)) JE(w;(1=1))) JE(w,(1))

g o, (1) ow, (1 1) (1)
S GE(w; (1 =1)) JE(w; (1 -1))

~ ow,(t-1)  dw,(t-1)

l,]

Jonathan Richard Shewchuk
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Conjugate Gradient Descent

* Orsimply as:
'T “Teu Tr f(f] ) TE!H_'H'

* Interpretation:

— Rewrite this as:
VE%ew VEold VEnew

VEold VEold

— If the new direction suggests a radical turn, rely more on
the old direction!

 For more detailed motivation and derivations, see:

Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”, 1994.

107



Steepest and Conjugate Gradient
Descent: Cons and Pros

* Pros: ol | e e
CG minibatch
— Faster to converge than, Al —o SGlagominbetr
—=—S5G0 2

e.g., stochastic gradient
descent (even mini-batch)

e Cons:

— They don’t work well on
saddle points

— Computationally more
expenSive DO 1CIIOCI EOIOD SCIIDO 4CIIOO 5CIIOCI SOICID ?CIICIO BCIIOO QOICIO 1CIEIJOO

time (seconds)
— In 2D: | , Le et al., “On optimization methods
* Steepest descent is 0(n*) for deep learning”, 2011.

* Conjugate descent is
0(n3/%)
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Online Interactive Tutorial

http://www.benfrederickson.com/numerical-
optimization/
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Genetic Algorithms

‘ General strategy:

e Randomly choose weights and encode them on a string of bits
(chromosomes).

® Determine a “fitness” function (e.g. error function).
e Use genetic operators *mutation, crossover) to construct new strings.

® Use “survival of the fittest” to produce better and better strings.

Some observations/comments:
® Selection of fithess and operators is crucial to its effectiveness.
e Search is global, not fooled by local minima.

® Fitness (or error in this case) function need not be differentiable.

® Search is rather blind, since it does not use the V info.

e |t can be a good method for initialization, to be used for a gradient

method.

Slide credit: E. Sahin 110



CHALLENGES OF THE ERROR
SURFACE



Local minima
Saddle points

Cliffs
Valleys

Challenges
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Local minima

e Solutions
— Momentum

* Make weight update depend on the previous one as well:
Aw;;i(n) = ndjx;; + alwj;(n — 1)
e 0 < a < 1: momentum (constant)
— Incremental update
— Large training data
— Adaptive learning rate
— Good initialization

— Different minimization strategies
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* For smaller networks, local minima are more
problematic

e For large-size networks, most local minima are
equivalent and yield similar performance on a test
set.

e The probability of finding a “bad” (high value)
local minimum 1s non-zero for small-size networks
and decreases quickly with network size.

e Struggling to find the global minimum on the
training set (as opposed to one of the many good
local ones) i1s not useful in practice and may lead
to overfitting.

The Loss Surfaces of Multilayer Networks

Anna Choromanska Mikael Henaff Michael Mathien  Gérard Ben Arous YallnlﬂsCun
achoroma@cims.oyu.edu  mbh30Egnyu. edu mathienfics.nyu. edu benarous@cins.nyu.edu  yaondcs.nyu.edn



Google

Do neural nets have saddle points?
Saxe et al. 2013:

neural nets
without non-

linearities have

many saddle
points

all the minima are

global
all the minima

form a connected

manifold 5 ves e

|. Goodfellow 15



Google

Do neural nets have saddle points?

Dauphin et al 2014: Experiments show neural nets do
have as many saddle points as random matrix theory
predicts

Choromanska et al 2015: Theoretical argument for
why this should happen

Major implication: most minima are good, and
this is more true for big models.

Minor implication: the reason that Newton’s method
works poorly for neural nets is its attraction to the

ubiquitous saddle points.

|. Goodfellow 116



Valleys, Cliffs and Exploding Gradients

Figure 8.1: One theory about the neural network optimization is that poorly conditioned
Hessian matrices cause much of the difficulty in training. In this view, some directions

have a high curvature (second derivative), corresponding to the quickly rising sides of the

ralley (going left or right), and other directions have a low curvature, corresponding to

the smooth slope of the valley (going down, dashed arrow). Most second-order methods,

as well as momentum or gradient averaging methods are meant to address that problem,

by increasing the step size in the direction of the valley (where it pays off the most in the

long run to go) and decreasing it in the directions of steep rise, which would otherwise

lead to oscillations (blue full arrows). The objective is to smoothly go down, staying at 117
the bottom of the valley (green dashed arrow).



Valleys, Cliffs and Exploding Gradients

aae RRSaTRETEALRLERLELL e
- --‘-.-E-'--,-!-!-E- ------- -“. -“‘-.‘-‘-‘.-‘-‘..-‘-‘-““'
E-‘-'-'.'i'i===‘=:===‘:.::‘-::‘-==‘-‘.‘.‘.2=‘. AR T

Figure 8.2: Contrary to what is shown in Figure 8.1, the objective function for highly
non-linear deep neural networks or for recurrent neural networks is typically not made of
symmetrical sides. As shown in the figure, there are sharp non-linearities that give rise
to very high derivatives in some places. When the parameters get close to such a cliff
region, a gradient descent update can catapult the parameters very far, possibly ruining
a lot of the optimization work that had been done. Figure graciously provided by Razvan

: 118
Pascanu (Pascanu, 2014).



Valleys, Cliffs and Exploding Gradients

'sing such a

is to clip the magnitude of the gradient, only keeping its direction if its magnitude is above

a threshold (which is a hyperparameter, although not a very critical one).
moves which would happen when approaching the cliff, either from above or from below

Figure 8.3: To address the presence of cliffs such as shown in Figure 8.2, a useful heuristic
gradient clipping heuristic (dotted arrows trajectaries) helps to avoid the destructive big

Figure graciously provided by Razvan Pascanu (Pascanu,

(bold arrows trajectories).

2014).
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USING MOMENTUM TO IMPROVE
STEPS



Momentum

* Maintain a “memory”
Aw(t+1) « ulAw() —nVE
where u is called the momentum term

* Momentum filters oscillations on gradients
(i.e., oscillatory movements on the error

surface)

* 1 istypically initialized to 0.9.

— It is better if it anneals from 0.5 to 0.99 over
multiple epochs
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Momentum

—> (Gradients
- Velocity

Figure 8.5: The effect of momentum on the progress of learning. Momentum acts to
accumulate gradient contributions over training iterations. Directions that consistently
have positive contributions to the gradient will be augmented. 122



Nesterov Momentum

* Use a “lookahead” step to update:
Wahead < W + tt Aw ()
Aw(t+ 1) « pAw(t) —n VEzhead
wew+Aw(t + 1)

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>

gradient
step

http://cs231n.github.io/neural-networks-3/ 2



Momentum vs. Nesterov Momentum

* When the learning rate is very small, they are
equivalent.

* When the learning rate is sufficiently large,
Nesterov Momentum performs better (it is
more responsive).

e See for an in-depth comparison:

On the importance of initialization and momentum in deep learning

Ilya Sutskever! ILYASUQGOOGLE.COM

James Martens JMARTENSQCS.TORONTO.EDU
George Dahl GDAHLQCS. TORONTO.EDU

. 24
Geoffrey Hinton HINTON@CS. TORONTO.EDU



SETTING THE LEARNING RATE



Alternatives

* Single global learning rate
— Adaptive Learning Rate
— Adaptive Learning Rate with Momentum

* Per-parameter learning rate
— AdaGrad
— RMSprop
— Adam
— AdaDelta
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Adaptive Learning Rate (Global)

Choice of  and «a is not always easy. Also different problems require dif-
ferent choices. Alternative: change n and/or o during training.
Typical rule: after each Aw, check the change in error:

AE=E(t)— E(t—1)

e |[f AF decreases consistently, increse 7.
e |f AF increases, rapidly decrease 1.

Similar methods can be used for the adaptation of the momentum param-
eter, o.

127



Annealing the learning rate (Global)

Step decay

—1n' < n X ¢, where ¢ could be
0.5,0.4,0.3,0.2, 0.1 etc.

EXpOnentiaI decay: Graph for 1/(1+x), e"-x
—n = noe_kt, where t is gt &
iteration number 2
— N, k: hyperparameters N~ |
1/t decay: N\ |

—n =1o/(1 + kt)

If you have time, keep decay
small and train longer
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Adagrad (Per
parameter)

Higher the gradient, lower
the learning rate

Accumulate square of
gradients elementwise
(initially 7 = 0):

2
+ z aL(.X'i; W, b)
e
r r AW

i=1:M
Update each
parameter/weight based on
the gradient on that:

dL i;W,b
AW(——l z & )
\/Fi ow

=1:M

Algorithm 8.4 The Adagrad algorithm

Require: Global learning rate 7,
Require: Initial parameter 6
Initialize gradient accumulation variable v = 0,
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {:I:(”: oz
Set g =0
for i =1to mdo
Compute gradient: g « g+ Ve L-{f{;r[f); 0),y {é:'}
end for
Accumulate gradient: r < 7 + g2 (square is applied element-wise)
Compute update: A8 « —Trf: g % (T]T“ applied element-wise)
Apply update: 8 + 8 + Af,
end while

Journal of Machine Learning Research 12 (2011) 2121-2159

Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization™

John Duchi

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720 US4

Elad Hazan

Technion - Israel Institute of Technology
Technion City
Haifa, 32000, Israel

Yoram Singer

Google

1600 Amphitheatre Parloway
Mountain View, C4 94043 US4

Submitted 3/10; Revised 3/11: Published 7/11

.TDU(‘HII@ CS.BERKELEY.EDU

EHAZAN((:f.‘IE .TECHNION.AC.IL

SINGER({@GOOGLE.COM



RMSprop (Per parameter)

e Similar to Adagrad
° CaICU|ateS a mOVing average Of Algorithm 8.5 The RMSprop algorithm

Require: Global learning rate #. decay rate p.

Square Of the gradlents Require: Initial parameter 8
. Initialize accumulation variables 7 =0
¢ ACCU mU|ate Square Of grad Ients while Stopping criterion not met do
(|n |t|a I Iy 1 = O)‘ Sainple a mimbatch of m examples from the training set {;.5“:'. Ceey ;t:':’”]}.
Set g =10
for i=1to mdo
2 Compute gradient: g « g + Ve L(f(z;0),y )
end for
r < pr+ (1 - ,0) ( Z aL(xi; w, b)/6W> Accumulate gradient: r « pr + (1 — p)g*
i=1:M
Compute parameter update: Af = %F =g % (% applied element-wise)

Apply update: 8 « 0 + Af

* pistypically [0.9, 0.99, 0.999] end while

* Update each parameter/weight
based on the gradient on that:

oL(x;; W, b)
AW<———Z ik

llM

Currently, unpublished.
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RMSprop with Nesterov Momentum

Algorithm 8.6 RMSprop algorithm with Nesterov momentum

Require: Global learning rate 7, decay rate p, momentum coefficient «.
Require: Initial parameter 6, initial velocity wv.
Initialize accumulation variable » = 0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {zV), ... 2™},
Compute interim update: 6 < 0 + av
Set g =0
for : =1 to m do
Compute gradient: g + g + Vo L(f(z'); ),y )
end for
Accumulate gradient: » < pr + (1 — p)g
Compute velocity update: v + av — —&

VT

2

©g. % (l—ﬁ applied element-wise)
Apply update: 8 «+— 0 +v
end while
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Adam (per parameter)

*  Similar to RMSprop + momentum
* Incorporates first & second order moments
* Bias correction needed to get rid of bias towards zero at initialization

Algorithm 8.7 The Adam algorithm

Require: Step-size «
Require: Decay rates p1 and po, constant ¢
Require: Initial parameter 6
Initialize 1st and 2nd moment variables s = 0, » = 0,
Initialize timestep t =0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {:1:(]), e ﬂ.':(m)}.
Set g =10
for : =1 to m do
Compute gradient: g « g + Vo L(f(z®;8),y @)
end for
t+—t+1
Get biased first moment: s < p;s+(1—p)g
Get biased second moment: r « pr + (1 — p2)g?
Compute bias-corrected first moment: s+ —2—

1—pt
Compute bias-corrected second moment: 7 < ﬁ;
—F2
Compute update: A0 = —a—=2_—_g % (operations applied element-wise)

e
Apply update: 6 < 0 + A8

end while

133




Adadelta (per parameter)

* |[ncorporates second-order gradient
information

Algorithm 8.8 The Adadelta algorithm

Require: Decay rate p, constant e

Require: Initial parameter 6
Initialize accumulation variables r =0, s = 0,
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {m(”. e m{m)}‘

Set g =0
for : =1 to m do
Compute gradient: g <— g + Vg L(f(m(ﬂ; 0),y (i})
end for
Accumulate gradient: r < pr + (1 — p)g?

v, cbe AQ A 8Fc 0 e . . .
Compute update: A@ = V,T_Hg 7 (operations applied element-wise)

Accumulate update: s < ps + (1 — p) [AB)]°
Apply update: 8 < 6 + A6

end while
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Comparison

\_ — SGD
— Momentum
= NAG
—  Adagrad
Adadelta
Rmsprop

MTTTTT T

- SGD

-  Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

NAG: Nesterov’s Accelerated Gradient

https://twitter.com/atétrad
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219
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1.6z
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1,05
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Comparison

Gugk
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sgd+momentum.

windowgrad
adadalta

134k

16k
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To sum up

* Different problems seem to favor different
per-parameter methods

 Adam seems to perform better among per-
parameter adaptive learning rate algorithms

e SGD+Nesterov momentum seems to be a fair
alternative
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OVERFITTING, CONVERGENCE, AND
WHEN TO STOP



Overfitting

Occurs when training procedure fits not only
regularities in training data but also noise.

— Like memorizing the training examples instead of
learning the statistical regularities

Leads to poor performance on test set

Most of the practical issues with neural nets
involve avoiding overfitting
A =0.001 A=0.01 A

0.1

Adapted from Michael }\3/Igozer



Avoiding Overfitting

Increase training set size

— Make sure effective size is growing;
redundancy doesn’t help

Incorporate domain-appropriate bias into model
— Customize model to your problem

Set hyperparameters of model

— number of layers, number of hidden units per layer,
connectivity, etc.

Regularization techniques
— “smoothing” to reduce model complexity

Slide Credit: Michaelml\(}lozer



Incorporating Domain-Appropriate

Bias Into Model

Input representation
Output representation

— e.g., discrete probability distribution

Architecture
— # layers, connectivity

— e.g., family trees net; convolutional nets

Activation function
Error function

Slide Credit: I\/IichaeIMI\}Iozer



Customizing Networks

e Neural nets can be customized based on
understanding of problem domain

— choice of error function
— choice of activation function

* Domain knowledge can be used to impose
domain-appropriate bias on model

— bias is good if it reflects properties of the data set
— bias is harmful if it conflicts with properties of data

Slide Credit: I\/IichaeIMI\%Iozer



Adding bias into a model

* Adding hidden layers or direct connections
based on the problem

Divect T/ oonnechions o leam ez3y PF‘E: o task

- l\)q;H-olK Perfotms ot slcot 0% withoust Wen nits
(quessd

Rr£ Ko b
el . e

HilBlew wits vsefd foc hand & exquhou

— E.cy) XOR Foe uy %/ :nscm ku!\«“
ordat foatives
ritcced +o

C\'wnt. As 3)

Slide Credit: Michael14l\§lozer



Adding bias into a model

e Modular
architectures
— Specialized hidden

units for special
problems

Rueckls whetAohene netrcork

FYEILXAY =

ol zed I ohaed archithn
p = 1ol e m‘;alu ¥ of hickor
Ry bt fewer
wmaT ¢onnechons
Dionew
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Adding bias into a model

* Local or specialized receptive fields
— E.g., in CNNs

* Constraints on activities
* Constraints on weights
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Adding bias into a
model

e Use different error
functions (e.g.,
cross entropy)

e Use specialized
activation
functions
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Adding bias
into a model

* Introduce other
parameters
— Temperature

— Saliency of
input
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Regularization

e Regularization strength can effect overfitting
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Regularization

1
L2 regularization: E/1W2
— Very common

— Penalizes peaky weight vector, prefers diffuse weight

vectors
L1 regularization: A|w|

— Enforces sparsity (some weights become zero)
— Leads to input selection (makes it noise robust)
— Use it if you require sparsity / feature selection

Can be combined: 4, |w|

2
/12W

Regularization is not performed on the bias; it
seems to make no significant difference
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LO regularization

0\1/0
Lo = (Zixi)
How to compute the zeroth power
and zeroth-root?

Mathematicians approximate this
as:

— The cardinality of non-zero
elements

This is a strong enforcement of
sparsity.

However, this is non-convex

— L1 norm is the closest convex
form

1.51

0.5}

p=2

p=0.5_]

p=0.1
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Regularization

 Enforce an upper bound
on weights:
— Max norm:
. ||W||2 <c

* Helps the gradient explosion
problem

* Improvements reported

* Dropout:

— At each iteration, drop a
number of neurons in the
network

— Use a neuron’s activation
with probability p (a
hyperparameter)

— Adds stochasticity!

Fig: Srivastava et al., 2014
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Regularization: Dropout

Feed-forward only on active units
Can be trained using SGD with mini-batch
— Back propagate only “active” units.

One issue:
— Expected output x with dropout:

— Elx] =px+ (1 —p)O0

To have the same scale at testing time (no dropout),
multiply test-time activations with p.

-
Present M Always
probability p present

(a) At training time (b} At test time

Fig: Srivastava et al222014



Regularization: Dropout

Training-time:

Hl = np.maximum (0, np.dot(Wl, X) + bl)
Ul = np.random.rand (*Hl.shape) < p

H1 *= Ul

HZ = np.maximum (0, np.dot (W2, H1l) + bZ)
UZ = np.random.rand (*H2.shape) < p

HZ2 *= U2

out = np.dot (W3, H2Z) + b3

Test-time:

Hl = np.maximum (0, np.dot(Wl, X) + bl) * p
HZ = np.maximum (0, np.dot (W2, H1l) + b2Z) * p

out = np.dot (W3, HZ) + b3
155

http://cs231n.github.io/neural-networks-2/



Regularization: Inverted Dropout

Perform scaling while dropping at training time!

Training-time:

H]l = np.maximum (0, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p
H1 *= Ul

H2 = np.maximum (0, np.dot (W2, H1l) + bZ2)
U2 = (np.random.rand(*H2.shape) < p) / p
HZ *= U2

out = np.dot (W3, HZ) + b3

Test-time:
def predict(X):

Hl = np.maximum (0, np.dot(Wl, X) + bl)

H2 = np.maximum (0, np.dot (W2, Hl) + bZ2)

out = np.dot (W3, H2Z) + b3
http://cs231n.github.io/neural-networks-2/
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Regularization Summary

* L2 regularization
* Inverted dropout with p = 0.5 (tunable)
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When To Stop Training

e 1. Train n epochs; lower learning rate; train m
epochs

— bad idea: can’t assume one-size-fits-all approach

e 2. Error-change criterion
— stop when error isn’t dropping
— recommendation: criterion based on % drop over a
window of, say, 10 epochs
* 1 epoch is too noisy
* absolute error criterion is too problem dependent

— Another idea: train for a fixed number of epochs after
criterion is reached (possibly with lower learning
rate)

Slide Credit: I\/IichaellSI\E}Iozer



When To Stop Training

* 3. Weight-change criterion
— Compare weights at epochs (t — 10) and t and

test:
e 10‘ <q
— Don’t base on Iength of overall weight change
vector

— Possibly express as a percentage of the weight

— Be cautious: small weight changes at critical
points can result in rapid drop in error

Slide Credit: I\/Iichael15l\3lozer



DATA PREPROCESSING AND
WEIGHT INITIALIZATION



Data Preprocessing

e Mean subtraction
* Normalization

 PCA and whitening

163



Data Preprocessing: Mean subtraction

e Subtract the mean for each dimension:
xX; =X — X
e Effect: Move the data center (mean) to coordinate
center

original data zero-centered data

1g 10 3 0 B 19
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Data Preprocessing:
Normalization (or conditioning)

* Necessary if you believe that your dimensions have different scales
— Might need to reduce this to give equal importance to each dimension

 Normalize each dimension by its std. dev. after mean subtraction:

’—
Xi = Xi — Hi
{I

Xi = xi,/o-i
o Effect: Make the dimensions have the same scale

original data zero-centered data normalized data

10 10

-10 -10
19 -10 -5 0 5 1g -10 =5 0 5 10
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Data Preprocessing:
Principle Component Analysis

First center the data

Find the eigenvectors ey, ..., e,

Project the data onto the eigenvectors:
— x} =x;[eqg, ..., en]

This corresponds to rotating the data to have the eigenvectors as
the axes

If you take the first M eigenvectors, it corresponds to
dimensionality reduction

original data decorrelated data
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Reminder: PCA

* Principle axes are the

eigenvectors of the covariance

matrix:

E[(Xl - Hl)(Xl - ,Hl)] E[(X]_ — ;—H)(XE — 1”*2)] can

E[(XE - HE)(XI - ,Hl)] E[(Xg — ;—LE)(XE — 1”*2)] can

E[(Xn — o) (X1 — p1)] E[( Xy — ) (Xp — p2)] -+

E[(X1 — p1)(Xn — )] |

E[(Xz — pt2) (X — pta)]

E[(Xn — 1) (X0 — 0]
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Data Preprocessing: Whitening

Normalize the scale with the norm of the eigenvalue:
R
xz/v = X /([All ""An] + E)
€: a very small number to avoid division by zero

This stretches each dimension to have the same
scale.

Side effect: this may exaggerate noise.

original data decorrelated data whitened data

168

http://cs231n.github.io/neural-networks-2/



Data Preprocessing: Example

orlglnal |mages top 144 elgenvectors reduced images whitened images
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Data Preprocessing: Summary

 We mostly don’t use PCA or whitening
— They are computationally very expensive
— Whitening has side effects

* |tis quite crucial and common to zero-center
the data

 Most of the time, we see normalization with
the std. deviation
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Weight Initialization

e Zero weights
— Wrong!

— Leads to updating weights by the same amounts for
every input

— Symmetry!
* |nitialize the weights randomly to small values:
— Sample from a small range, e.g., Normal(0,0.01)
— Don’t initialize too small
* The bias may be initialized to zero
— For ReLU units, this may be a small number like 0.01.

Note: None of these provide guarantees. Moreover, there is no guarantee that one of these
will always be better. 171



More on weight initialization

* Integrate the following

* http://www.jefkine.com/deep/2016/08/08/ini
tialization-of-deep-networks-case-of-
rectifiers/
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Initial Weight
Normalization

 Problem:

— Variance of the output

changes with the number
of inputs

—Ifs = ZiWin'Z

Var(s) = Var( waa:)

= Z Var(w;zx;)

100 T T T T
: Layer 1
_ i _ Layer2
] —Layer 3
so- o o e —Layer 4|
[ ' Layer 5
i i s s i i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
1 i T :
,“T"F".l —Layer 1
fﬂ h Lu l"',r Layer 2
|'| bl .T-hl | —Layer 3
A .‘M yer
ﬁ'rl,'ﬂlﬁ Ii h{l\""\
0 e ; b '

| 1
025 02 005 0.1 -005 0 005 01 015 02 02
Backpropagated gradients
Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard

(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

Glorot & Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, 2010.

— Z (w;)]|*Var(z;) + E[(z;)]*Var(w;) + Var(z;)Var(w;)

= Z Var(z;)Var(w;)

= (nVar(w)) Var(zx)
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Initial Weight Normalization

e Solution:
— Getrid of n in

Var(s) = (n Var(w))Var(x)

— How?

e w; =rand(0,1)/Vn

— Why?

— Var(aX) = a*Var(X)
e |f the number of inputs &
outputs are not fixed:

— w; =rand(0,1) X

2

Vin+Nout

100 T T T T ;
Layer 1
_ i Layer 2
] Layer 3
50 - 1 —Layer 4|
: ! ' Layer 5
I L ‘-'IA(—)‘ L I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients

10, T T :
f' f. l —Layer 1
Layer2
fJ| MLU!IH h —Layer 3

J o
5P ] | Layer 4|
L “]‘l Layer 5
! .
it tikie
_ ;»'fr‘,-l' L1 ‘)
0 b 'g“.’»’l”r v Hh’“-

025 02 -0.15 -0.1 005 O OIJS 01 015 02 025
Backpropagated gradients

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak

decreases for higher layers.

Glorot & Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, 2010.
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Alternative: Batch Normalization

e Normalization is
differentiable

— So, make it part
of the model (not
only at the
beginning)

— l.e., perform
normalization
during every step
of processing

e More robust to
initialization

Input: Values of = over a mini-batch: B = {1, }:
Parameters to be learned: ~. /3
Output: {y; = BN, g(z;)}

T
1 B
LB — — E T // mini-batch mean
T
i=1
s
2 1 2 1 i T cragio e
T E (x; — pB) // mini-batch variance
=1
~ i — HB T .
T, & —— // normalize
wcrﬁz + €
yi ¢ yx; + [ = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform. applied to
activation x over a mini-batch.

loffe & Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift”, 2015.
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To sum up

* |nitialization and normalization are crucial

* Different initialization & normalization
strategies may be needed for different deep
learning methods

— E.g., in CNNs, normalization might be performed
only on convolution etc.

e More on this later
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Today

* Finish up the first part of the course

— Loss functions again
— Representational capacity
— Other practical issues
* A crash course on Computer Vision & Human
Vision
— What can we learn from Human Vision?

e Autoencoders
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LOSS FUNCTIONS, AGAIN



Loss functions

* A ssingle correct label case (classification):
— Hinge loss:
* Li = Xjsy, max(O,fj — fy, + 1)
— Squared hinge loss:
L =X |f; —in|2
— Soft-max:

L = —log (<2
(T 0% 5 el
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Loss functions

 Many correct labels case:

— Binary prediction for each label, independently:

* L =2 maX(O,l — yl-jfj)
* ¥;j = +1if example i is labeled with label j; otherwise
yij = —1.

— Alternatively, train logistic regression classifier for
each label (O or 1):

L; = Z yij log(a(f;)) + (1 — yi5) log(1 — o(f;))
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Loss functions

* Regression case (a continuous label):
— L2 Norm squared (L2 Loss):

L =|If — il
J0L;

g afj:fj_(yi)j
— L1 Norm:
* Ly =|If —wil|, = Z|fi — Gj]

Reminder:

. 1
|l = (2" + 2ol + - - -+ gal )7 -



L2 Loss: Caution

e |2 loss asks for a more difficult constraint:

— Learn to output a response that is exactly the
same as the correct label

— This is harder to train

e Compare, e.g., softmax:

— Which asks only one response to be maximum
than others.
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Loss functions

 What if we want to predict a graph, tree etc?
Something that has structure.

— Structured loss: formulate loss such that you
minimize the distance to a correct structure

— Not very common
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REPRESENTATIONAL CAPACITY



Representational capacity

* Boolean functions:

— Every Boolean function can be represented exactly by
a neural network

— The number of hidden layers might need to grow with
the number of inputs

e Continuous functions:

— Every bounded continuous function can be
approximated with small error with two layers

* Arbitrary functions:
— Three layers can approximate any arbitrary function
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Representational Capacity:
Why go deeper if 3 layers is sufficient?

* Going deeper helps convergence in “big”
problems.

* Going deeper in “old-fashion trained” ANNs
does not help much in accuracy

— However, with different training strategies or with
Convolutional Networks, going deeper matters
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Representational Capacity

More hidden neurons =» capacity to represent more complex
functions

3 hidden neurons 6 hidden neurons 20 hidden neurons

Problem: overfitting vs. generalization

— We will discuss the different strategies to help here (L2 regularization,
dropout, input noise, using a validation set etc.)
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What the hidden units represent

Input Hidden Qutput
Values :
10000000 — .89 .04 .08 — 10000000
01000000 — .15 99 199 — 01000000
00100000 — .01 97 .27 — 00100000
00010000 —» 99 97 71 — 00010000
00001000 — .03 05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 94 .01 — 00000001

FIGURE 4.7 _
Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity

function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the result i the standard binary encoding for eight distinct values.
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Number of hidden neurons

* Several rule of thumbs (Jeff Heaton)

— The number of hidden neurons should be
between the size of the input layer and the size of
the output layer.

— The number of hidden neurons should be 2/3 the
size of the input layer, plus the size of the output
layer.

— The number of hidden neurons should be less
than twice the size of the input layer.
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Number of hidden layers

* Depends on the nature of the problem

— Linear classification? =» No hidden layers needed
— Non-linear classification?
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Model Complexity

* Models range in their flexibility to fit arbitrary data

/.:-

5 H oD 5T B O
<€ >
bigiplsiamodel bmmblex model
bmwsiaainnde higlonatraimeed
small capacity may large capacity may
prevent it from allow it to memorize
representing all data and fail to

structure in data  jige credit: Michael Mozer ~ CA@pture regularities



Error

Training Vs. Test Set Error

Oplimum Mode! Complexily

Training Set

i

Model Complexity

Slide Credit: Michaellgl\ilozer



Error on Test Set

Bias-Variance Trade Off

Total Error

Variance

Oplimum Model Complexity

& -

underfit Model Complexity overfit

Slide Credit: Michael Mozer
image credit: scott.fortmann-roe.com



ISSUES & PRACTICAL ADVICES



Issues & tricks

Vanishing gradient
— Saturated units block gradient propagation (why?)

— A problem especially present in recurrent networks or
networks with a lot of layers

Overfitting
— Drop-out, regularization and other tricks.
Tricks:
— Unsupervised pretraining
Batch normalization (each unit’s preactivation is normalized)
— Helps keeping the preactivation non-saturated
— Do this for mini-batches (adds stochasticity)
— Backprop needs to be updated
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Unsupervised pretraining

. “— 1 layer without pretraining
' : ' + 1 layer with pretrainin -
o ~— 4 layets without pretraining
anl H 4 layers with pretrainin, J
B 4
= = T
3 2
o
o Q= g -

Figure 2: Histograms presenting the test errors obtamned on MNIST using models trained with or
without pre-training (400 different initializations each). Left: 1 hidden laver. Right: 4
hidden layers.

Joumal of Machine Learning Research 11 (2010) 623-660 Subnutted 8/09; Published 2/10
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Unsupervised pretrainin

3-layer net, budget of 10000000 iterations

=—8— 0 unsupervised + 10000000 supervised
| i 2500000 unsupervised + 7500000 supervised

Online classification error

0 1 2 3 4 5 6 7 8 9 10
Number of examples seen % 10°

Figure 7: Deep architecture trained online with 10 million examples of digit images. either with pre-training
(triangles) or without (circles). The classification error shown (vertical axis, log-scale) is computed online
on the next 1000 examples, plotted against the number of examples seen from the beginning. The first
2.5 million examples are used for unsupervised pre-training (of a stack of denoising auto-encoders). The
oscillations near the end are because the error rate is too close to zero, making the sampling variations
appear large on the log-scale. Whereas with a very large training set regularization effects should dissipate,
one can see that without pre-training, training converges to a poorer apparent local mmimum: unsupervised
pre-training helps to find a better minimum of the online error. Experiments performed by Dumitru Erhan.

Learning Deep Architectures for Al 198
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What if things are not working?

* Check your gradients by comparing them against
numerical gradients

— More on this at: http://cs231n.github.io/neural-networks-3/

— Check whether you are using an appropriate floating point
representation

* Be aware of floating point precision/loss problems

— Turn off drop-out and other “extra” mechanisms during
gradient check

— This can be performed only on a few dimensions

* Regularization loss may dominate the data loss
— First disable regularization loss & make sure data loss works
— Then add regularization loss with a big factor

— And check the gradient in each case 199



What if things are not working?

* Have a feeling of the initial loss value

— For CIFAR-10 with 10 classes: because each class
has probability of 0.1, initial loss is —In(0.1)=2.302

— For hinge loss: since all margins are violated (since
all scores are approximately zero), loss should be
around 9 (+1 for each margin).

* Try to overfit on a tiny subset of the dataset

— The cost should reach to zero if things are working
properly
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What if things are not working?

25

20

low learning rate

high learning rate

good learning rate

0.0 . :
2 0 20 40 60 80 100

epoch Epoch

Learning rate might be too low;
Batch size might be too small
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What if things are not working?

A -
accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
g

epoch
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What if things are not working?

* Track the gradients and updates

— E.g., the ratio between the norm of the update
and the norm of the gradients for each weight.

— This should be around 1e-3

e If itis lower =» your learning rate might be too low
* If it is higher = your learning rate might be too high

* Plot the histogram of activations per layer

— E.g., for tanh functions, we expect to see a diverse
distribution of values between [-1,1]
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What if things are not working?

 Visualize your layers (the weights)

Examples of visualized weights for the first layer of a neural network. Left: Noisy features indicate could be a symptom:
Unconverged network, improperly set learning rate, very low weight regularization penalty. Right: Nice, smooth, clean and
diverse features are a good indication that the training is proceeding well.
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Andrew Ng’s
suggestions

“In DL, the coupling
between bias & variance is
weaker compared to other
ML methods:

— We can train a network to
have high bias and
variance.”

Dev(validation) and test sets
should come from the same
distribution. Dev&test sets
are like problem
specifications.

— This requires especially
attention if you have a lot
of data from simulated
environments etc. but little

data from the real test
environment.

29:22 /1:19:47

P »l o 4931/1:19:47

https://www.youtube.com/watch?v=F1ka6a13S9I 205



Andrew Ng’s
suggestions

Knowing the human
performance level gives
information about the problem
of your network: If training
error is far from human |
performance, then there is a S —
bias error. If they are close but
validation has more error
(compared to the diff between
human and training error),
then there is variance problem.

After surpassing human level,
performance increases only
very slowly very difficult-ly.
One reason: There is not much
space for improvement (only
tiny little details). Problem gets
much harder. Another reason:
We get labels from humans.

P »l o 5431711947

https://www.youtube.com/watch?v=F1ka6a13S9I 206



What is best then?

* Which algorithm to choose?
— No answer yet
— See Tom Schaul (2014)

— RMSprop and AdaDelta seems to be slightly
favorable; however, no best algorithm

* SGD, SGD+momentum, RMSprop,
RMSprop+momentum, AdaDelta and Adam
are the most widely used ones
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Luckily, deep networks are very powerful

2.5 T T T 4.':' T T T T
r=—a f{rue labels B8 |nception
2.0 =2 random labels |4 331 e=e AlexNet
n === shuffled pixels || &£ 5 || *==+ MLP 1x512
o . Q -
;I 1.5 == random pixels |H >
o 4=—# gaussian o 25¢
R
E 1.0 1 &
> E 20}
R
0.5 - 15l
W T T — 1.0 . ' '
0 5 10 15 20 25 0.0 02 0.4 06 0.8

thousand steps

(a) learning curves

(b) convergence slowdown

label corruption

1.0

1.0 T T T T
0.9

0.8

e =
N N T I

test error

B==E |nception
e—a AlexNet
s MLP 1x512

0.2

0.8

0.4 06
label corruption

=
o

1.0

(c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (¢) shows the test error (also the generalization error since

training error 1s 0) under different label corruptions.

Regularization is turned off in the experiments.
When you turn on regularization, the networks
perform worse.
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Concluding remarks for the first part

Loss functions

Gradients of loss functions for minimizing
them

— All operations in the network should be
differentiable

Gradient descent and its variants

Initialization, normalization, adaptive learning
rate, ...

Overall, you have learned most of the tools
yvou will use in the rest of the course.
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