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Introduction

Former reinforcement learning agents are successful in some domains in which useful
features can be handcrafted, or in fully observed, low dimensional state spaces.

Authors used the recent advances in deep neural network training, and developed
Deep-Q-Network.

Deep-Q-Network:
- Learns successful policies
- End-to-end RL method.

- In Atari 2600 games, receives only the pixels and the game score as inputs just like a
human learns and perform super-human capabilities in half of the games.

Comparison: Human players, linear learners



What is reinforcement learning?

Types of Machine Learning

; : ;

Supervised Unsupervised Reinforcement
Task driven Data driven Learns to react an environment
(Regression/Classification) (Clustering) Sparse and time delayed labels
(Rewards)

RL is the problem of getting an agent to act in the world so as to
maximize its rewards.



What is reinforcement learning?
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What is reinforcement learning?

* No explicit training data set.

« Nature provides reward for each of the learners actions.

e At each time,

— Learner has a state and choses an action.

— Nature responds with new state and a reward.

— Learner learns from reward and makes better decisions.
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What is reinforcement learning?

Main goal is to maximizing the reward R,

Looking at only immediate rewards wouldn’t work well.
We need to take into account “future” rewards.

At time ¢, the total future reward is:

=T F Ty + e T,
We want to take the action that maximizes R,
But we have to consider the fact that:

The environment is stochastic



Discounted future rewards

We can never be sure, if we will get the same rewards the next time we
perform the same actions. The more into the future we go, the more it may
diverge.

Main goal is to maximizing the reward R,
R=nr+yr,,+ 72r.,+ ..+ yvir,
~ is the discount factor between 0 and 1.
The more into the future the reward is, the less we take it into consideration.
Simply:
Ri=r+ 7T+ 7 (rhe+ )
R,=7r.+9R,,



Q-Function

Q(St; at) = mazr R,

The maximum discounted future reward when we perform action a in state
s, and continue optimally from that point on.

The way to think about Q)(s,, a,) is that it is “the best possible score at the end
of the game after performing action a in state s”.

It is called Q-function, because it represents the “quality” of a certain action
in a given state.



Policy & Bellman equation

7(s) = argmax, Q(s, a)
7 represents the policy, the rule how we choose an action in each state.
Q(Sf CL) = r+ 7maxan(s’, CI,/)

This is called the Bellman equation.

Maximum future reward for this state and action is the immediate reward plus
maximum future reward for the next state.

The basic idea behind many reinforcement learning algorithms is to estimate the
action-value function by using the Bellman equation as an iterative update

10



Q-Learning

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Qls,al = Qls,a] + alr + y max,: Qls',a'] - Q[s,al)
s = 5!
until terminated

Qk+1(51 (L) = (1 o Q)Q(Sa (L) + &(C(Sj G) + ’}/Il’lbill Qk(sf: b))

* a in the algorithm is a learning rate that controls how much of the difference
between previous Q-value and newly proposed Q-value is taken into account.

* The maz_.Q(s", a”) that we use to update (s, a) is only an approximation

and in early stages of learning it may be completely wrong. However the
approximation get more and more accurate with every iteration and it has been
shown, that if we perform this update enough times, then the Q-function will
converge and represent the true Q-value.
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Related Work

Neural fitted Q-iteration (2005)

— Riedmiller, M. Neural fitted Q iteration - first experiences with a data efficient neural
reinforcement learning method. Mach. Learn.: ECML

Deep auto-encoder NN in RL (2010)

- Lange, S. & Riedmiller, M. Deep auto-encoder neural networks in reinforcement learning.
Proc. Int. Jt. Conf. Neural. Netw.
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The arcade learning environment: An evaluation platform for general agents (2013)

- Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning environment:
An evaluation platform for general agents. J. Artif. Intell. Res.

Investigating contingency awareness using Atari 2600 games (2012)

- Bellemare, M. G., Veness, J. & Bowling, M. Investigating contingency awareness using
Atari 2600 games. Proc. Conf. AAAI. Artif. Intell.
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Neural Fitted Q-Iteration

This paper introduces NFQ, an algorithm for efficient and effective training of
a Q-value function represented by a multi-layer perceptron.

The main drawback of this type of architecture is that a separate forward
pass is required to compute the Q-value of each action, resulting in a cost
that scales linearly with the number of actions.

This method involve the repeated training of networks de novo on hundreds
of iterations.

NFQ-main() {
input: a set of transition samples D; output: Q-value function Qn
k=0
init_ MLP() — Qo;
Do {
generate_pattern_set P = {(input', target'),l =1,...,#D} where:
inputl = 31, ulg
target' = c(s',u', s") + v minyQr(s", b)
Rprop-_training(P) — Qr11
k:i= k+1
} WHILE (k < N)

Fig. 1. Main loop of NFQ 13
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Deep Auto-Encoder NN in RL

« This paper tries to solve visual reinforcement learning problems e.g. simple
mazes.

* Propose to use deep auto-encoder nn’s to to obtain low dimensional feature
space by extracting representative features from states.

 Then, uses kernel based approximators e.g. FQI (Fitted Q Iterations) to
approximate Q-function over feature vectors outputted by DAE.
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Investigating contingency awareness using
Atari 2600 games

Contingency awareness is the recognition that a future observation is under
an agent’s control and not solely determined by the environment.

The contingent regions of an observation are the components whose value is
dependent on the most recent choice of action.

They tries to learn the contingent regions in game play with a contingency
learning method.

Contingency learning method is a logistic regression classifier that can
predict whether or not a pixel belongs to the contingent regions within an
arbitrary Atari 2600 game

O0D0D0 44
SECTOR O 1
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The arcade learning environment: An
evaluation platform for general agents

This paper introduces ALE — Arcade Learning Environment as a testbed for
RL algorithms.

Paper is basically a benchmark paper of feature generation methods with
linear function approximation method.

Feature generation methods are:

Basic. A binary encoding of the presence of colours within
the Atari 2600 screen.

BASS. The Basic method augmented with pairwise feature
combinations. A restricted colour space (3-bit) is used to min-
imize the size of the resulting feature set.

DISCO. A heuristic object detection pipeline trained on of-
fline data.

LSH. A method encoding the Atari 2600 screen into a small

set of binary features via Locally Sensitive Hashing [Gionis
et al., 1999].

RAM. An encoding of the Atari 2600’s 1024 bits of mem-
ory together with pairwise combinations.



Deep Q-Learning

The basic idea behind many reinforcement learning algorithms is to estimate
the action-value function by using the Bellman equation as an iterative
update.

Qz’+1(87 a) =T+ ’}/mCLLCa/QZ-(S,, a/)
Such value iteration algorithms converge to the optimal action-value
function, Q,,, » Q*as i - oo

In practice, this basic approach is impractical, because the action-value
function is estimated separately for each sequence, without any
generalization.

It is common to use a function approximators to estimate the action-value
function as linear or nonlinear function approximators e.g. neural networks.

17



e The Q-function can be approximated using a neural network model.

Deep Q-Learning

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State
Naive formulation of deep Q-network. More optimized architecture of deep Q-

network, used in DeepMind paper.

18
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Deep Q-Learning

* To efficiently evaluate max, Q(s’, a”), one should use the below

architecture.
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L.oss Function

Q-values can be any real values, which makes it a regression task, that can be
optimized with simple squared error loss.

Li(0:;) =E(sar.s)~u(D) (rﬂnﬂgtx O(s',a’;0;7) — O(s.a; 91-)) ]
=~ =~ =~

Exp. Replay Target Prediction

« Targets depend on the network weights; this is in contrast with the targets
used for supervised learning, which are fixed before learning begins.

« we hold the parameters from the previous iterationl); fixed when optimizing
the ith loss function L;(60;)

20



Gradient Update Rule

Vl‘)gL(Of) :Es,a,r,s" |:(?'—|_'J/' m?x Q(S;aar; 01‘_) o Q(S.,ﬂ; UI)) Vﬂ,- Q(S,t‘l; 01)] .

» Stochastic gradient descent was used to optimize loss function
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Network Model
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Layer Input Filter size | Stride Num filters | Activation | Output
convi 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 4x4 2 64 RelLU Ox9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fcd 7x7x64 512 RelLU 512

fch 512 18 Linear 18

22

Figure from paper



Network Model

Network is a classical convolutional neural network with three convolutional
layers, followed by two fully connected layers.

There are no pooling layers:
- Pooling is for translation invariance.

- For games, the location of the ball i.e states is crucial in determining the potential
reward.

4 last frames, each 84x84:
- To understand the last taken action e.g. ball speed, agent direction etc.

Sequences of actions and observations, are input to the algorithm, which then learns
game strategies depending upon these sequences.

Discount factor » was set to 0.99 throughout

Outputs of the network are Q-values for each possible action (18 in Atari).

23



Training Details

49 Atari 2600 games.
A different network for each game

Reward clipping:

- As the scale of scores varies greatly from game to game, we clipped all positive rewards at
1 and all negative rewards at -1, leaving O rewards unchanged.

- Clipping the rewards in this manner limits the scale of the error derivatives and makes it
easier to use the same learning rate across multiple games.

— It could affect the performance of our agent since it can’t differentiate between rewards
of different magnitude.

Minibatch size 32.
The behaviour policy during training was €-greedy.

€ decreases over time from 1 to 0.1 — in the beginning the system makes completely random
moves to explore the state space maximally, and then it settles down to a fixed exploration rate.

24



Training Details

Frame skipping:

the agent sees and selects actions on every kth frame instead of every frame, and
its last action is repeated on skipped frames.

This technique allows the agent to play roughly k times more games without
significantly increasing the runtime.

1st hidden 2nd hidden 3rd hidden

iNput layer layer layer output
Q(s¢,a’)
_ Q(Sg. (Il_)
fully . fully 9
connected :connected : Q(s¢,a”)

8x8x4 fi |teF"'::.I.:':‘-::"'-..,
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84x84x4 20x20x16 9x9x32 256 4~18
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Unstable Non-linear Q-Learning

Problem: Approximation of Q-values using non-linear functions is not very
stable.

Reason: Correlation present in the sequence of observations.

How: Small updates to Q may significantly change the policy and data
distribution.

Solution: Experience replay to remove correlations in the observation.

Seperate target network to remove correlations with the target.

26



Experience Replay

During gameplay all the experiences <s,a,r,s "> are stored in a replay
memory.

When training the network, random minibatches from the replay memory are
used instead of the most recent transition.

This breaks the similarity of subsequent training samples, which otherwise
might drive the network into a local minimum.

Experience replay makes the training task more similar to usual supervised
learning, which simplifies debugging and testing the algorithm.

One could actually collect all those experiences from human gameplay and
then train network on these.

27



Experience Replay

Each step of experience is potentially used in many weight updates, which
allows for greater data efficiency.

Learning directly from consecutive samples is inefficient, owing to the strong
correlations between the samples.

Randomizing the samples breaks these correlations and therefore reduces the
variance of the updates.

By using experience replay the behaviour distribution is averaged over many
of its previous states, smoothing out learning and avoiding oscillations or
divergence in the parameters.

Algorithm only stores the last N experience tuples in the replay memory, and
samples uniformly at random from D when performing updates.

28



Experience Replay

 To remove correlations, build data-set from agent’s own experience.

« Sample experiences from data-set and apply update.

51,41, 2,52
S, a2, I3, S3 — s,a,r,s
53,43, 14, 54

St, At e 41,S¢+1 — | Sty 3ty e 4+1,St+1

Replay Buffer - fixed size



Experience Replay - Analogy
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Seperate Target Network

To improve the stability of method with neural networks is to use a separate
network for generating the targets in the Q-learning update.

Every C updates, clone the network Q to obtain a target network Q" and use
Q' for generating the Q-learning targets for the following C updates to Q.

This modification makes the algorithm more stable compared to standard
online Q-learning

Reduces oscillations or divergence of the policy.

Generating the targets using an older set of parameters adds a delay between
the time an update to Q is made and the time the update affects the targets,
making divergence or oscillations much more unlikely.

31



Seperate Target Network

L ( 9:) — E(s,a,r,s’) ~U(D)

(rﬂ) max Q(s'.a’; 0; ) — O(s.a; 9")) ]

A

Parameter update at every

C iterations
Q’ | Q
Target Network Prediction Network

Input




Exploration-Exploitation

Firstly observe, that when a Q-table or Q-network is initialized randomly, then its
predictions are initially random as well.

If we pick an action with the highest Q-value, the action will be random and the agent
performs crude “exploration”.

As a Q-function converges, it returns more consistent Q-values and the amount of
exploration decreases.

So one could say, that Q-learning incorporates the exploration as part of the
algorithm.

A simple and effective fix for the above problem is €-greedy exploration — with
probability € choose a random action, otherwise go with the “greedy” action with the
highest Q-value.

In their system DeepMind actually decreases € over time from 1 to 0.1 — in the
beginning the system makes completely random moves to explore the state space
maximally, and then it settles down to a fixed exploration rate.

33



Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢; =¢(s;)
Fort=1,T do
With probability ¢ select a random action a;
otherwise select a; =argmax_ Q(¢(s;),a; 0)
Execute action a, in emulator and observe reward r, and image x;
Set s;41=S$¢,a¢,X; 1 and preprocess ¢, ; =¢(s;11)
Store transition (¢,.a,r.¢,,,) in D
Sample random minibatch of transitions (qb-,aj,rj,qﬁj + 1) from D

Tj if episode terminates at step j+ 1
Set}’j = rj+7 maxy Q (¢j+laa’; 0~ ) otherwise

Perform a gradient descent step on (yj- -0 (Qﬁ-,aj; 0) ) 2 with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For

34



Experiments

Atari 2600 platform, 49 games.

Same network architecture for all tasks.
Input: visual images & number of actions
Results compared with:

— Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning
environment: An evaluation platform for general agents. J. Artif. Intell. Res.

- Bellemare, M. G., Veness, J. & Bowling, M. Investigating contingency awareness
using Atari 2600 games. Proc. Conf. AAAI. Artif. Intell.

— Human players.

35



Results

“Our DQN method outperforms the best existing reinforcement learning
methods on 43 of the games without incorporating any of the additional
prior knowledge about Atari 2600 games used by other approaches.”

“Our DON agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games. (29 games)

36



Video Pinball |
Boxing |
Breakout |
Star Gunner |
Robotank |

Atlantis
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault |
Road Runner |
Kangaroo 3
James Bond |
Tennis |

Pong
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot |
Enduro |
Fishing Derby g
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O.
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien |
Venture |
Seaquest |
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye |
Montezuma's Revenge |
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Results

* In certain games DON is able to discover a relatively long-term strategy.

- Breakout game: first dig a tunnel around the side of the wall, send the ball back.
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Results

* Nevertheless, games demanding more temporally extended planning
strategies still constitute a major challenge for all existing agents including
DON

- Montezuma’s Revenge
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Results
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Results

Extended Data Table 3 | The effects of replay and separating the target Q-network

Game Vk_"ith replay, _With replay, Withoul replay, Vi_filhout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

43
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Random

Best Linear

Conlingency

Extended Data Table 2 | Comparison of games scores obtained by DQN agents with methods from the literature'??® and a professional
human games tester

Normalized DQN

Game Play Learner (SARSA) Human DQN (= std) (% Human)
Alien 227.8 939.2 103.2 6875 3069 (+1093) 42.7%
Amidar 5.8 103.4 183.6 1676 739.5 (£3024) 43.9%
Assault 2224 628 537 1496 3359(x775) 246.2%
Asterix 210 987.3 1332 8503 6012 (£1744) 70.0%
Asteroids 719.1 907.3 89 13157 1629 (£542) 7.3%
Atlantis 12850 62687 852.9 29028 85641(+17600) 449.9%
Bank Heist 14.2 190.8 67.4 734.4 429.7 (+650) 57.7%
Battle Zone 2360 15820 16.2 37800 26300 (£7725) 67.6%
Beam Rider 363.9 929.4 1743 5775 6846 (+1619) 119.8%
Bowling 23.1 43.9 36.4 154.8 42.4 (+88) 14.7%
Boxing 0.1 44 9.8 4.3 71.8 (8.4) 1707.9%
Breakout 1.7 5.2 6.1 31.8 401.2 (£26.9) 1327.2%
Centipede 2091 8803 4647 11963 8309(15237) 63.0%
Chopper Command 811 1582 16.9 9882 6687 (+2916) 64.8%
Crazy Climber 10781 23411 149.8 35411 114103 (x22797) 419.5%
Demon Attack 152.1 520.5 0 3401 9711 (+2406) 294.2%
Double Dunk -18.6 -13.1 -16 -15.5 -18.1 (+2.6) 17.1%
Enduro 0 129.1 159.4 309.6 301.8 (x24.6) 97.5%
Fishing Derby 917 -89.5 -85.1 5.5 -0.8 (£19.0) 93.5%
Freeway 0 19.1 19.7 29.6 30.3 (£0.7) 102.4%
Frostbite 65.2 216.9 180.9 4335 328.3 (x250.5) 6.2%
Gopher 257.6 1288 2368 2321 8520 (+£3279) 400.4%
Gravitar 173 387.7 429 2672 306.7 (x223.9) 5.3%
H.E.R.O. 1027 6459 7295 25763 19950 (+158) 76.5%

Figure from paper
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Conclusion

« Single architecture can successfully learn control policies in a range of
different environments

— Minimal prior knowledge,

— Only pixels and game score as input,
— Same algorithm,

— Same architecture,

— Same hyperparameters,

—  “Just like a human player”



Thank you!

2/ + /-
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