
[*]

1
[*] Reed, Scott, et al. "Generative adversarial text to image synthesis." Proceedings of The 33rd International Conference on Machine Learning. Vol. 3. 2016.

Presented By: Ezgi Ekiz



Outline
• The goal is to synthesize images that are mistakable 

for real from textual description. The method is built 
upon: 

• Text encoding that captures important visual details 

• Generative Adversarial Networks (GAN) and GAN-
CLS 

• Manifold interpolation 

• Style transfer
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Text Feature Representation
• The representation should capture important visual 

details 

• Word/character based convolutional recurrent 
network is used
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Text Feature Representation
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Multimodality
• A mapping between text and pixels should be 

learned: GAN is used 

• In GAN, the generator network tries to fool 
adversarially trained discriminator network 

• both are conditioned on text 

• Discriminator acts as a smart adaptive loss 
function

10



GAN

[**]Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

• Fully connected layer (dim-reduc.) 
• Leaky ReLU 
• Concatenation 
• Deconvolution

• Several layers of stride-2 conv.  
(with spatial batch normalization) 

• Leaky ReLU 
• Fully connected layer (dim-reduc.)  

+ rectification (text) 
• Depth Concatenation 
• conv, rectification, conv.
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GAN - CLS

• Naive GAN : <real img,matching text> : unrealistic 
images contribute learning, <synthetic img, 
arbitrary text>: wrong class contributes learning 

• GAN CLS:  GAN + <real image, mismatched 
text> : should be scored as fake, an additional 
signal provided by discriminator
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GAN - CLS
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• Based on the observation that interpolations 
between embeddings tend to be near the data 
manifold, extra amount of text embeddings can be 
generated (although they don’t have a matching 
text/images, they are useful for D) 

• A term added to generator objective:

GAN - INT

14



Style Transfer
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Experiments
• Datasets: 

• CUB birds (11788 images, 200 classes, 5 captions 
per image) 

• Split to disjoint classes:150 train+val, 50 test 

• Oxford-102 flowers (8189 images, 102 categories, 
5 captions per image) 

• 82 train+val, 20 test
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Experiments

• Text features 

• Pre-training on deep deep convolutional-
recurrent text encoder (char level) with Google 
LeNet  image embeddings
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Qualitative Results
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Qualitative Results
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Disentangling Style and 
Content

• Quantification of success is based on pose 
verification and background verification 

• Similar pairs of images constructed for each 
task via K-means: 

• Avg. RGB for background color 

• Keypoint coordinates for pose
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• Similar and different images are fed into Style 
network, then cosine similarity is calculated based 
on the resulting encodings:

Disentangling Style and 
Content
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Pose and Background Style 
Transfer
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Sentence Interpolation
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GAN CLS on MS COCO
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