Ceng 783 – Deep Learning

Week 5 – Convolutional Neural Networks (continued)

Fall 2017

Emre Akbas
Misc

• Project proposal feedback
• Hw #2 is due on Monday.
So far:

Neural network

Input x

Estimated label \hat{y}

Matrix multiplication (FC), convolution

Linear and non-linear operations are stacked hierarchically. ReLU, sigmoid, pooling, etc.

Different connectivity types (fully, convolutional, local)
So far:

Estimated label \(\hat{y} \)

Input \(x \)

Neural network

Feedforward evaluation during testing/predicting
So far: training

\[
\text{Loss}(\hat{y}, y) \quad \text{Cross-entropy} \quad \text{Hinge loss}
\]

\[
\hat{y} \quad \text{Softmax}
\]

\[
x \quad \text{Input}
\]

\[
y \quad \text{True label}
\]

Gradient of loss w.r.t. parameters are computed using backpropagation.

Then, use a stochastic gradient descent method to minimize loss.
Today

Miscellaneous topics about ConvNets

- Loss/cost functions
 - Multiclass hinge
 - Where does cross-entropy come from?
- Implementing backpropagation
- Stochastic gradient descent variants
- How do I initialize my CNN?
- Batch normalization
Loss/cost functions
Multiclass hinge loss

[Crämer & Singer (2001)]

Training example \((x, y)\); neural network \(f()\)

\[f : x \rightarrow C \text{ dimensional vector} \]

\[\text{Hinge}(f(x), y) = \max \left(0, 1 - f_y(x) + \max_{c \neq y} f_c(x) \right) \]
Cross-entropy

\[L(\theta) = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log q_{ic} \]

\(y_i \) is a C-dimensional one-hot vector
\(q_i \) is the softmax of \(f(x) \)

Q1: What does softmax do?

- Normalize the raw scores output by the neural network
- Highlight the max score

\[q_{ic} = \frac{e^{f_c(x_i)}}{\sum_k e^{f_k(x_i)}} \]
Cross-entropy

\[L(\theta) = - \sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log q_{ic} \]

\(y_i \) is a C-dimensional one-hot vector
\(q_i \) is the softmax of f(x)

Q2: Where does cross-entropy come from?
Cross-entropy

Definition:

\[H(p, q) = - \sum_x p(x) \log q(x) \]

Minimized when \(p = q \)
Cross-entropy

Comes from maximum-likelihood estimation

[Derivation on board]
Cross-entropy loss as maximum likelihood (ML) estimation

Given a dataset $S = \{ \text{example}_i \}_{i=1}^N$ and a model,

$$P(S | \text{model}) = ? \quad \text{or} \quad P(S; \Theta) = ?$$

model's parameters

$$ML: \quad P(S; \Theta) = \frac{N}{\prod_{i=1}^{N} p(\text{example}_i; \Theta)}$$

i.i.d. assumption

Let's derive cross-entropy: We have a supervised dataset:

$S = \{ X, Y \}$ where X matrix contains N examples (x_i's) and Y contains the corresponding labels.

we want $\max_{\Theta} P(Y | X; \Theta)$

Use $ML \Rightarrow P(Y | X; \Theta) = \prod_{i=1}^{N} p(y_i | x_i; \Theta)$

y_i is a one-hot vector and the model output is a C-dimensional C-dim vector containing estimated class probabilities.
\[
p(y_i | x_i) = p(y_{i1} | x_i)^{y_{i1}} p(y_{i2} | x_i)^{y_{i2}} \ldots p(y_{ic} | x_i)^{y_{ic}}
\]
\[
= \prod_{c=1}^{C} p(y_{ic} | x_i)^{y_{ic}}
\]

So ML is
\[
\max_{\Theta} \prod_{i=1}^{N} \prod_{c=1}^{C} p(y_{ic} | x_i)^{y_{ic}}
\]

Take log:
\[
\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log p(y_{ic} | x_i)
\]

& multiply with -1 to make it a minimization problem:
\[
-\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log p(y_{ic} | x_i)
\]

\[\text{can be implemented using softmax normalization}\]

\[
p(y_{ic} | x_i) = \frac{e^{f_c(x_i)}}{\sum_k e^{f_k(x_i)}}
\]

where \(f_c(x)\) is model's score for \(x\) belonging to class \(c\) output.
On the implementation of backpropagation

The “modular” approach
A neural network is nothing but a composition of several linear and non-linear functions:

\[y = f_k (f_{k-1} (\ldots f_1 (x; \theta_1); \theta_{k-1}); \theta_k) \]

Given a specific architecture, i.e. composition, one can easily write the gradient w.r.t. parameters.

But a modular approach is desirable so that we don't have to derive the gradient again and again.

We can “compose” new architectures by simply connecting computing blocks.
A computing block:

Input x → Function $f()$ → Output o

Params w

Forward pass: $o = f(x; w)$

Derivative of output w.r.t. input:

$$\frac{\partial o}{\partial x} = \frac{\partial f(x; w)}{\partial x}$$

Derivative of output w.r.t. parameters:

$$\frac{\partial o}{\partial w} = \frac{\partial f(x; w)}{\partial w}$$
A computing block:

\[
\begin{array}{c}
\text{Input } x \quad \rightarrow \quad \text{Function } f() \\
\quad \rightarrow \quad \text{Params } w \\
\quad \rightarrow \quad \text{Output } o
\end{array}
\]

Forward pass: \(o = f(x; w) \)

Derivative of output w.r.t. input:
\[
\frac{\partial o}{\partial x} = \frac{\partial f(x; w)}{\partial x}
\]

Derivative of output w.r.t. parameters:
\[
\frac{\partial o}{\partial w} = \frac{\partial f(x; w)}{\partial w}
\]

Typically, \(X, o \) and \(w \) are vectors or matrices. Care has to be taken in computing the derivatives.
Exercise: try to work out all the details for a fully connected layer with D input nodes and K output nodes, receiving N examples.

Forward pass: $o = f(x; w)$

Derivative of output w.r.t. input:
$$\frac{\partial o}{\partial x} = \frac{\partial f(x; w)}{\partial x}$$

Derivative of output w.r.t. parameters:
$$\frac{\partial o}{\partial w} = \frac{\partial f(x; w)}{\partial w}$$
X^*W where W is D-by-K

N-by-D \rightarrow X^*W$ where W is D-by-K \rightarrow N-by-K

Derivative of output w.r.t. input: $\frac{\partial o}{\partial X} = W$

Derivative of output w.r.t. parameters: $\frac{\partial o}{\partial W} = X$
Exercise: do the same for a ReLU layer receiving N-by-K input

\[\text{Max}(0, x) \]

X: N-by-K → Max(0, x) → o: N-by-K

Derivative of output w.r.t. input: ?

Derivative of output w.r.t. parameters: ?
Exercise: do the same for a ReLU layer receiving N-by-K input

\[\text{Max}(0, x) \]

Derivative of output w.r.t. input:

\[\frac{\partial o}{\partial x_{ij}} = \begin{cases} 1 & \text{if } x_{ij} > 0 \\ 0 & \text{otherwise} \end{cases} \]

Derivative of output w.r.t. parameters: No parameters, nothing to learn
Multiple blocks

\[f_1(x; w_1) \rightarrow o_1 \rightarrow f_2(o_1; w_2) \rightarrow o_2 \]

To update \(w_2 \)
\[\frac{\partial o_2}{\partial w_2} \]

To update \(w_1 \)
\[\frac{\partial o_2}{\partial w_1} = \frac{\partial o_2}{\partial o_1} \frac{\partial o_1}{\partial w_1} \]

Each block has its own:
- Derivative w.r.t. input
- Derivative w.r.t. parameters.

When you are back-propagating, be careful which one to use.
Multiple blocks

\[
\frac{\partial o_3}{\partial w_1} = \frac{\partial o_3}{\partial o_2} \frac{\partial o_2}{\partial o_1} \frac{\partial o_1}{\partial w_1}
\]
Multiple blocks

\[f_1(x; w_1) \rightarrow o_1 \rightarrow f_2(o_1; w_2) \rightarrow o_2 \rightarrow f_3(o_2; w_3) \rightarrow o_3 \]

\[\frac{\partial o_3}{\partial w_1} = \frac{\partial o_3}{\partial o_2} \frac{\partial o_2}{\partial o_1} \frac{\partial o_1}{\partial w_1} \]

Last step: multiply with derivative w.r.t. parameters

Chain the "derivatives w.r.t. to input"
Exercise: work out all the details in a network where

- The input X is N-by-D (N examples)
- The label vector is N-by-K (in one-hot representation)
- There is a fully-connected layer and a softmax layer.
- Use cross-entropy as the loss.
Convolutional layer

- Can be implemented using matrix multiplication (instead of convolution)
 - Pros: we can make use of highly efficient linear algebra packages (e.g. BLAS, OpenBLAS)
 - Cons: same filter is repeated many times in the matrix → a lot of memory required

[example on board]
Convolutional layer as matrix multiplication

Example: suppose the input is 200x200 color images, hence 200x200x3

Conv layer: 75 filters of size 10x10x3. Stride 2

Take every block of 10x10x3 on the input image and turn it into a 300x1 vector.

Collect all such blocks and stack them in a matrix.
Convolutional layer as matrix multiplication

\[(200-10)/2 = 80\] locations in total.
So, 80x80 300-dim vectors. → \(X = 300 \times 6400\)

Conv filters: 75 filters of size 10x10x3: vectorize each filter and stack them row-by-row → \(W = 75 \times 300\)

\(W \times X \rightarrow 75 \times 6400\). Reshape this back to size (?)
Convolutional layer as matrix multiplication

\[(200-10)/2 = 80\] locations in total.
So, 80x80 300-dim vectors. → \(X = 300 \times 6400\)

Conv filters: 75 filters of size 10x10x3: vectorize each filter and stack them row-by-row → \(W = 75 \times 300\)

\(W \times X \rightarrow 75 \times 6400\). Reshape this back to size 80x80x75
Stochastic gradient descent variants
Stochastic Gradient Descent (SGD)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k.

Require: Initial parameter θ

```
while stopping criterion not met do
    Sample a minibatch of $m$ examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.
    Compute gradient estimate: $\hat{g} \leftarrow +\frac{1}{m} \nabla_{\theta} \sum_i L(f(x^{(i)}; \theta), y^{(i)})$
    Apply update: $\theta \leftarrow \theta - \epsilon \hat{g}$
end while
```

[From Goodfellow et al. (2016)]
Setting the learning rate \((\alpha)\)

- **Constant learning rate:**
 - When it is low enough, guaranteed to make zero or positive progress.

- **Decaying learning rate:**
 - The rate is decreased as a function of the iteration number.
 - *Decaying is desired* because the gradient estimate is noisy due to the random sampling of \(m\) training examples. This noise does not vanish even when we arrive at a minimum.
 - By decreasing the rate, this source of noise is progressively eliminated.
Setting the learning rate (α)

- Decaying learning rate:
 - Step decay
 - Reduce the rate by some factor every few epochs.
 - E.g. Halve the rate every 5 epochs → Numbers depend on the problem and dataset.
 - Exponential decay
 $$\alpha = \alpha_0 e^{-kt}$$
 - $1/t$ decay
 $$\alpha = \frac{\alpha_0}{1 + kt}$$

A complete pass through the dataset

[From http://cs231n.github.io/neural-networks-3/]

α_0, k: hyperparameters

α: iteration number
Setting the learning rate \((\alpha)\)

- Practical tips:
 - Step decay is slightly more preferable b/c its decrease schedule is more interpretable.
 - If you can afford, do slower decay and train for a longer time.

[From http://cs231n.github.io/neural-networks-3/]
Setting the learning rate \((\alpha)\)

- There are also second order methods:

\[
w^{t+1} \leftarrow w^t - \alpha \nabla_w f(x; w)
\]

where alpha is a function of the Hessian of \(f()\).

Newton method, BFGS, L-BFGS, Conjugate gradient

Not commonly used in deep learning.
Setting the learning rate (α)

Practical tips

Adjust the hyper-parameters of your decaying schedule to get a “good” curve

[From http://cs231n.github.io/neural-networks-3/]
Setting the learning rate (α)

Practical tips

Adjust the hyper-parameters of your decaying schedule to get a “good” curve.

[From http://cs231n.github.io/neural-networks-3/]
Setting the learning rate \((\alpha)\)

- A real example: training on CIFAR-10 dataset.
- Looks reasonable (maybe a little bit low alpha)
- Batch size might be a little too small (cost is very noisy).

[From http://cs231n.github.io/neural-networks-3/]

![Graph showing loss over epochs for the CIFAR-10 dataset training](attachment:loss_chart.png)
Setting the learning rate turned out to be really difficult.

So, researcher have develop **adaptive learning rate** methods
Adaptive learning rate methods

Momentum:

\[v = mv - \alpha \nabla_w f(w) \]

Update: \[w = w + v \]

Typical value for momentum is \(m=0.9 \)
Nesterov momentum

$$w^{\text{ahead}} = w + mv$$

$$v = mv - \alpha \nabla_{w^{\text{ahead}}} f(w^{\text{ahead}})$$

Update: $$w = w + v$$

Works slightly better than plain momentum. Getting more popular.

[From http://cs231n.github.io/neural-networks-3/]
Per parameter adaptive learning rate methods

• So far, learning rate was global (equally applied to all parameters in the model)

• Methods have been proposed to adapt learning rates per parameter.

 – Motivation: the cost function is highly sensitive in some directions and insensitive in others, in the parameter space

 – So, it might make sense to use different learning rates per parameter.
Per parameter adaptive learning rate methods

- E.g. “delta-bar-delta” algorithm [Jacobs (1988)]:

 “A heuristic method.

 If the partial w.r.t. to a given model parameter, remains the same sign, then the learning rate should increase.

 If it changes sign, then the learning rate should decrease. “

 [Goodfellow et al. (2016)]
Per parameter adaptive learning rate methods

- AdaGrad
- RMSprop
- Adam
Adagrad [Duchi et al. (2011)]

```python
# Assume the gradient dx and parameter vector x
cache += dx**2
x += -learning_rate * dx / (np.sqrt(cache) + eps)
```

[From http://cs231n.github.io/neural-networks-3/]

Cache keeps track of per parameter sum of squared gradients.

Weights with high gradients \rightarrow decrease learning rate
weights that receive small or infrequent updates \rightarrow increase
learning rates.

AdaGrad performs well for some but not all deep learning models.
RMSprop
[Slide 29, Lecture 6, Hinton's Coursera class]

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += -learning_rate * dx / (np.sqrt(cache) + eps)
```

[From http://cs231n.github.io/neural-networks-3/]

Modifies Adagrad to use a moving average of squared gradients (instead of the complete sum over history).

Typically, \(\text{decay_rate} = 0.9 \)

Performs very well. Definitely worth trying.
Adam

[Kingma and Ba (2014)]

\[
\begin{align*}
m &= \text{beta1} \cdot m + (1 - \text{beta1}) \cdot dx \\
v &= \text{beta2} \cdot v + (1 - \text{beta2}) \cdot (dx \cdot dx) \\
x &= x - \text{learning_rate} \cdot \frac{m}{\text{np.sqrt(v) + eps}}
\end{align*}
\]

[From http://cs231n.github.io/neural-networks-3/]

Uses a “smoothed” gradient \(m\).

Recommended values for hyper-parameters: \(\text{eps}=1e^{-8}\), \(\text{beta1}=0.9\), \(\text{beta2}=0.999\)

In practice, Adam is currently recommended as the default method to use.

[From http://cs231n.github.io/neural-networks-3/]
Finally, when training, keep in mind the following:

Regularize more:

- Increase regularization's contribution to the cost function,
- Do more data augmentation.

[From http://cs231n.github.io/neural-networks-3/]
Very small gap between these two curves might also mean that you are underfitting, i.e. model capacity is too low → increase model capacity.

[From http://cs231n.github.io/neural-networks-3/]
References