A brief intro to
Deep Reinforcement Learning

CEng 783 – Deep Learning
Fall 2019

Emre Akbaş
Today

• Brief introduction to Reinforcement Learning
 - Concepts
 - Markov Decision Processes
 - Bellman Equation
 - Q-learning

• Deep Q-learning

• Deep policy gradients
Reinforcement learning

The agent is situated & operating in an environment
Reinforcement learning

The agent is situated & operating in an environment

Typically stochastic

Environment

State

Reward

Action

Agent
Reinforcement learning

Policy: The rule(s) that specify how to choose an action

Environment: Typically stochastic

State: Partial or full description of the environment at a certain time.

Reward: Some actions may result in positive/negative rewards.

Action:

Agent: The agent is situated & operating in an environment
Reinforcement learning

Example: the backgammon game

- State
- Agent
- Action
- Reward
- Policy
- Environment (is stochastic in general)
How could we train an agent that would perform well in such a setting?

Well = maximize reward

Looking at only immediate rewards would not work well.

We need to take into account “future” rewards.
At time t, the total future reward is

$$R_t = r_t + r_{t+1} + \cdots + r_n$$

We want to take the action that maximizes R_t.

BUT we have to consider the fact that ...
At time t, the total future reward is

$$R_t = r_t + r_{t+1} + \cdots + r_n$$

We want to take the action that maximizes R_t. BUT we have to consider the fact that the environment is stochastic.

So, discounting the future rewards is a good idea.
Discounted future rewards:

\[R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{n-t} r_n \]

where gamma is the discount factor between 0 and 1.

The more a reward is into the future, the less we care about it.
Discounted future rewards:

\[R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{n-t} r_n \]

\[= r_t + \gamma R_{t+1} \]

Consider the cases

\[\gamma = 0 \ \text{and} \ \gamma = 1 \]
Discounted future rewards:

\[R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{n-t} r_n \]

\[= r_t + \gamma R_{t+1} \]

- \(\gamma = 0 \)
 - Considers the immediate rewards only.
 - Short-sighted. Won't work well
- \(\gamma = 1 \)
 - Future rewards are not discounted
 - Should work in deterministic environments
Discounted future rewards:

\[R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{n-t} r_n \]

\[= r_t + \gamma R_{t+1} \]

- \(\gamma = 0 \)
 - Considers the immediate rewards only.
 - Short-sighted. Won't work well

- \(\gamma = 1 \)
 - Future rewards are not discounted
 - Should work in deterministic environments

We’ll come back to this with value-based methods.
The goal of reinforcement learning

\[\pi_\theta(a|s) \]

\[p(s'|s, a) \]

\[\theta^* = \arg \max_\theta E_{\tau \sim p_\theta(\tau)} \left[\sum_t r(s_t, a_t) \right] \]

\[p_\theta(s_1, a_1, \ldots, s_T, a_T) \]

[Figure from Sergey Levine's slides.]
http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_3_rl_intro.pdf
RL Agent Taxonomy

[Slide by David Silver]
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
A policy-gradient method

- Based on direct differentiation of the cost function.
The goal of RL is to find model parameters θ to maximize the expected reward:

$$J(\theta) = \mathbb{E}_{\pi_\theta(e)} \left[\frac{\sum r(s_t, a_t)}{t} \right]$$

$P_\pi(\cdot)$ is the joint distribution of all states and actions in an episode:

$$P_\pi(s_1, a_1, s_2, a_2, \ldots, s_T, a_T)$$
Maximize $J(\theta) \Rightarrow$ use gradient ascent

What is $\nabla_{\theta} J(\theta)$?

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

let's call this R, cumulative reward
\[J(\theta) = \sum_c P_c(z) R(z) \]

\[\nabla_\theta J(\theta) = \sum_c R(z) \left(\nabla_\theta P_c(z) \right) \]

\[P_c(z) \nabla_\theta \log P_c(z) \]

\[= \sum_c P_c(z) R(z) \nabla_\theta \log P_c(z) \]

\[= E_{z \sim P_c(z)} \left[R(z) \nabla_\theta \log P_c(z) \right] \]

This is a problem. Why?
We simplify \(p_0(t) \) by assuming it has the Markov property:

\[
p_0(s_0, a_1, s_1, a_2, ..., s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)
\]

Then, \(\log p_0(t) = \log p(s_1) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t | s_t) + \log p(s_{t+1} | s_t, a_t) \)

\[\Rightarrow \nabla_{\theta} \log p_0(t) = \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)\]
Markov Decision Process

- Relies on the Markov assumption
- The probability of the next state depends only on the current state and the action but not on preceding states or actions.

[Image from nervanasys.com]
Markov Decision Process

- Relies on the Markov assumption
- The probability of the next state depends only on the current state and the action but not on preceding states or actions.

One episode (e.g. a game from start to finish) of this process forms a sequence:

\[
\langle s_0, a_0, r_1, s_1 \rangle, \langle s_1, a_1, r_2, s_2 \rangle, \ldots, \langle s_{n-1}, a_{n-1}, r_n, s_n \rangle
\]
The REINFORCE algorithm

The previous derivations result in the following algorithm.

REINFORCE algorithm:

1. sample \(\{ \tau^i \} \) from \(\pi_\theta(a_t|s_t) \) (run the policy)
2. \(\nabla_\theta J(\theta) \approx \sum_i (\sum_t \nabla_\theta \log \pi_\theta(a^i_t|s^i_t)) (\sum_t r(s^i_t, a^i_t)) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta) \)

[From Sergey Levine’s slides.]

An example application is in the next slides.
Example: The “Pong” game

Image from http://karpathy.github.io/2016/05/31/rl/

State: current frame minus the last frame (to capture the motion)

Action: UP or DOWN

Reward: +1 if you win the game, otherwise -1
Example: “Pong”

Image from http://karpathy.github.io/2016/05/31/rl/
Learning the optimal policy

1) Initialize the policy network randomly
2) Play a batch of episodes
3) Label all the actions in a WIN game as CORRECT
4) Label all the actions in a LOST game as INCORRECT
5) Apply supervised learning, i.e. maximize
 \[\sum_i r_i \log p(a_i | s_i) \]
 where \(r_i = 1 \) for any action in a WON game, otherwise -1
6) Go to step 2, repeat until convergence.
Q-learning: a value-based method

• The Q-function:

 - Expected total reward from taking action a_t in s_t

\[
Q(s_t, a_t) = r_{t+1} + \gamma \max_x Q(s_{t+1}, x)
\]

This is called the **Bellman equation**.
Q-learning: a value-based method

• The Q-function:
 – Expected total reward from taking action a_t in s_t

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_x Q(s_{t+1}, x)$$

This is called the Bellman equation.

Remember the discounted future rewards:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{n-t} r_n$$

$$= r_t + \gamma R_{t+1}$$
The policy π

The rule that specifies which action to choose given the current state.

A typical and sensible policy is

$$\pi(s) = \arg \max_a Q(s, a)$$
Q-learning

Suppose the current state is “s” and we take action “a”

Then, we observe the next state “s’” and obtain reward “r”.

It has been shown1 that the following iterative update rule will converge to an optimal Q function:

\[Q(s, a) = (1 - \alpha) Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a')) \]

1http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
Q-learning pseudo-code

1) Create a table (num_states x num_actions) for Q
2) Initialize the table randomly
3) Observe the initial state s
4) Repeat until the game is over (i.e. next state is terminal state)
 1) Choose an action, i.e. \(a = \pi(s) \) /* s is the current state */
 2) Receive next state \(s' \) and reward \(r \)
 3) \(Q(s, a) = (1 - \alpha) \ Q(s, a) + \alpha (r + \gamma \ \max_{a'} Q(s', a')) \)
 4) \(s = s' \) /* next state becomes the current state */
How can we use deep-learning here?

The Q-function can be approximated using a neural network model.

Q(s,a) is implemented on the right.

[Image from nervanasys.com]
How can we use deep-learning here?

The Q-function can be approximated using a neural network model.

Q(s,a) is implemented on the right.

What about \(\max_{a'} Q(s', a') \)?

[Image from nervanasys.com]
How can we use deep-learning here?

Alternative model for implementing $Q(s,a)$

Now, it's efficient to evaluate:

$$\max_{a'} Q(s', a')$$

[Image from nervanasys.com]
Example

In DeepMind's 2013 paper [Mnih et al. (2013)] state is encoded by the images of last four frames of the game.

After pre-processing, a state is a 84x84x4 matrix.
Example

The network used in DeepMind's 2013 paper [Mnih et al. (2013)]

<table>
<thead>
<tr>
<th>Layer</th>
<th>Input</th>
<th>Filter size</th>
<th>Stride</th>
<th>Num filters</th>
<th>Activation</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>84x84x4</td>
<td>8x8</td>
<td>4</td>
<td>32</td>
<td>ReLU</td>
<td>20x20x32</td>
</tr>
<tr>
<td>conv2</td>
<td>20x20x32</td>
<td>4x4</td>
<td>2</td>
<td>64</td>
<td>ReLU</td>
<td>9x9x64</td>
</tr>
<tr>
<td>conv3</td>
<td>9x9x64</td>
<td>3x3</td>
<td>1</td>
<td>64</td>
<td>ReLU</td>
<td>7x7x64</td>
</tr>
<tr>
<td>fc4</td>
<td>7x7x64</td>
<td></td>
<td></td>
<td>512</td>
<td>ReLU</td>
<td>512</td>
</tr>
<tr>
<td>fc5</td>
<td>512</td>
<td></td>
<td></td>
<td>18</td>
<td>Linear</td>
<td>18</td>
</tr>
</tbody>
</table>

Qs: What type of a network is this? Why 18? Why no pooling layers?
Deep Q-learning

Remember the Bellman equation?

\[Q(s, a) = r + \gamma \max_{a'} Q(s', a') \]

For a transition \(<s, a, r, s'>\),

The update rule in ordinary Q-learning:

\[Q(s, a) = (1 - \alpha) Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a')) \]

In deep Q-learning:

\[\text{minimize } (r + \gamma \max_{a'} Q(s', a') - Q(s, a))^2 \]
Deep Q-learning

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s

repeat

select an action a
 with probability ϵ select a random action
 otherwise select $a = \text{argmax}_{a'} Q(s, a')$

carry out action a

observe reward r and new state s'

store experience $\langle s, a, r, s' \rangle$ in replay memory D

sample random transitions $\langle ss, aa, rr, ss' \rangle$ from replay memory D

calculate target for each minibatch transition
 if ss' is terminal state then $tt = rr$
 otherwise $tt = rr + \gamma \text{max}_{a'} Q(ss', aa')$

train the Q network using $\left(tt - Q(ss, aa)\right)^2$ as loss

$s = s'$

until terminated

[Pseudocode from nervanasys.com]
Deep Q-learning

• “It turns out that approximation of Q-values using non-linear functions is not very stable.
• There is a whole bag of tricks (reward clipping, gradient clipping, batch normalization) that you have to use to actually make it converge.
• The most important trick is experience replay.”

[Quote from nervanasys.com]

Experience relay is nothing but minibatch training. i.e. collect <s,a,r,s'> transitions and use them in minibatches (instead of one by one) while training.
Figure from Deepmind’s post.
https://deepmind.com/blog/article/deep-reinforcement-learning
References