Lecture: Visual Bag of Words
What we will learn today

• Visual bag of words (BoW)
• Spatial Pyramid Matching
• Naive Bayes
What we will learn today

• Visual bag of words (BoW)
• Spatial Pyramid Matching
• Naïve Bayes
Bag of Words Models

Adapted from slides by Rob Fergus and Svetlana Lazebnik
Object \rightarrow \text{Bag of ‘words’}
Origin 1: Texture Recognition

Example textures (from Wikipedia)
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or textons

Origin 1: Texture recognition
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary

 Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary

 Salton & McGill (1983)

US Presidential Speeches Tag Cloud

http://chir.ag/phernalia/preztags/
Bags of features for object recognition

- Works pretty well for image-level classification and for recognizing object *instances*

Slide partially based on Stanford U. CS131

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)
Bags of features for object recognition

<table>
<thead>
<tr>
<th>class</th>
<th>bag of features</th>
<th>bag of features</th>
<th>Parts-and-shape model</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplanes</td>
<td>98.8</td>
<td>97.1</td>
<td>90.2</td>
</tr>
<tr>
<td>cars (rear)</td>
<td>98.3</td>
<td>98.6</td>
<td>90.3</td>
</tr>
<tr>
<td>cars (side)</td>
<td>95.0</td>
<td>87.3</td>
<td>88.5</td>
</tr>
<tr>
<td>faces</td>
<td>100</td>
<td>99.3</td>
<td>96.4</td>
</tr>
<tr>
<td>motorbikes</td>
<td>98.5</td>
<td>98.0</td>
<td>92.5</td>
</tr>
<tr>
<td>spotted cats</td>
<td>97.0</td>
<td>—</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Slide partially based on Stanford U. CS131.
Bag of features

• First, take a bunch of images, extract features, and build up a “dictionary” or “visual vocabulary” – a list of common features

• Given a new image, extract features and build a histogram – for each feature, find the closest visual word in the dictionary
Bag of features: outline

1. Extract features
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
1. Feature extraction

• Regular grid
 – Vogel & Schiele, 2003
 – Fei-Fei & Perona, 2005

• Interest point detector
 – Csurka et al. 2004
 – Fei-Fei & Perona, 2005
 – Sivic et al. 2005

• Other methods
 – Random sampling (Vidal-Naquet & Ullman, 2002)
 – Segmentation-based patches (Barnard et al. 2003)
2. Learning the visual vocabulary
2. Learning the visual vocabulary

Slide credit: Josef Sivic
2. Learning the visual vocabulary

Visual vocabulary

Clustering

Slide credit: Josef Sivic
K-means clustering recap

• Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X, M) = \sum_{\text{cluster } k} \sum_{\text{point } i \text{ in cluster } k} (x_i - m_k)^2$$

• Algorithm:
 • Randomly initialize K cluster centers
 • Iterate until convergence:
 – Assign each data point to the nearest center
 – Recompute each cluster center as the mean of all points assigned to it

Slide partially based on Stanford U. CS131
From clustering to vector quantization

• Clustering is a common method for learning a visual vocabulary or codebook
 – Unsupervised learning process
 – Each cluster center produced by k-means becomes a codevector
 – Codebook can be learned on separate training set
 – Provided the training set is sufficiently representative, the codebook will be “universal”

• The codebook is used for quantizing features
 – A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 – Codebook = visual vocabulary
 – Codevector = visual word
Example visual vocabulary
Image patch examples of visual words
Visual vocabularies: Issues

• How to choose vocabulary size?
 – Too small: visual words not representative of all patches
 – Too large: quantization artifacts, overfitting

• Computational efficiency
 – Vocabulary trees
 (Nister & Stewenius, 2006)
3. Image representation
Image classification

• Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Uses of BoW representation

• Treat as feature vector for standard classifier
 – e.g k-nearest neighbors, support vector machine

• Cluster BoW vectors over image collection
 – Discover visual themes
Large-scale image matching

- Bag-of-words models have been useful in matching an image to a large database of object *instances*

11,400 images of game covers (Caltech games dataset)

How do I find this image in the database?
Large-scale image search

Build the database:

– Extract features from the database images
– Learn a vocabulary using k-means (typical k: 100,000)
– Compute *weights* for each word
– Create an inverted file mapping words → images
Weighting the words

• Just as with text, some visual words are more discriminative than others

 \textit{the, and, or} \quad \textit{vs.} \quad \textit{cow, AT&T, Cher}

• the bigger fraction of the documents a word appears in, the less useful it is for matching
 – e.g., a word that appears in \textit{all} documents is not helping us
TF-IDF weighting

• Instead of computing a regular histogram distance, we’ll weight each word by its inverse document frequency

inverse document frequency (IDF) of word $j = \log \frac{\text{number of documents}}{\text{number of documents in which } j \text{ appears}}$
To compute the value of bin j in image I:

\[
\text{term frequency of } j \text{ in } I \times \text{inverse document frequency of } j
\]
Inverted file

• Each image has ~1,000 features
• We have ~100,000 visual words
 → each histogram is extremely sparse (mostly zeros)

• Inverted file
 – mapping from words to documents

```
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
```
Inverted file

- Can quickly use the inverted file to compute similarity between a new image and all the images in the database
 - Only consider database images whose bins overlap the query image
Large-scale image search

• Cons:
 – performance degrades as the database grows
Large-scale image search

• Pros:
 – Works well for CD covers, movie posters
 – Real-time performance possible

real-time retrieval from a database of 40,000 CD covers

Nister & Stewenius, *Scalable Recognition with a Vocabulary Tree*
Example bag-of-words matches
Example bag-of-words matches
Matching Statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Matches possible</th>
<th>Matches Tried</th>
<th>Matches Found</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik</td>
<td>58K</td>
<td>1.6 Billion</td>
<td>2.6M</td>
<td>0.5M</td>
<td>5 hrs</td>
</tr>
<tr>
<td>Rome</td>
<td>150K</td>
<td>11.2 Billion</td>
<td>8.8M</td>
<td>2.7M</td>
<td>13 hrs</td>
</tr>
<tr>
<td>Venice</td>
<td>250K</td>
<td>31.2 Billion</td>
<td>35.5M</td>
<td>6.2M</td>
<td>27 hrs</td>
</tr>
</tbody>
</table>
What about spatial info?