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ABSTRACT

A METHOD FOR ISOLATED SIGN RECOGNITION WITH KINECT

IŞIKLIGİL, EMRE

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

September 2014, 70 pages

Although there are various studies on sign language recognition (SLR), most of them
use accessories like coloured gloves and accelerometers for data acquisition or require
complex environmental setup to operate. In my thesis, I will use only MicrosoftTM

Kinect® sensor for acquiring data for SLR. Kinect lets us obtain 3D positions of the
body joints in real time without the help of any other device. After an isolated sign is
captured, paths of the discriminative body joints are extracted. Then, a vector consist-
ing of the extracted paths, called Sign Graph, is created to describe the isolated sign.
To be able to compare two sign graphs, as the distance metric, I propose using the av-
erage warping distance of the joint paths that the sign graphs include. Dynamic Time
Warping is used for effective calculation of the warping distance. Once a distance
measure is defined between Sign Graphs, they are classified using k Nearest Neigh-
bours algorithm. The proposed method performed better than the state of the art and
achieved recognition rate of 59.3% in signer-independent experiments and 91.0% in
signer-dependent experiments with a dataset consisting of 40 signs obtained from 13
different signers.

Keywords: Sign Language Recognition, Kinect, Pattern Recognition, Sign Graph
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ÖZ

KINECT İLE YALITILMIŞ İŞARET ALGILAMA İÇİN BİR YÖNTEM

IŞIKLIGİL, EMRE

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Eylül 2014 , 70 sayfa

İşaret dili algılama (İDA) üstüne çeşitli araştırma çalışmaları olmasına rağmen, bun-
ların birçoğu renkli eldiven ve ivme ölçer gibi aksesuarlar kullanmakta veya çalış-
mak için karmaşık ortam kurulumları gerektirmektedir. Benim tezimde, İDA için veri
edinmek için sadece MicrosoftTM Kinect® duyargasını kullanacağım. Kinect, vücut
eklemlerinin 3 boyutlu konumlarını, başka bir cihaza gerek duymadan gerçek zamanlı
olarak elde edebilmemizi sağlamaktadır. Bir yalıtılmış işaret yakalandıktan sonra,
ayırd edici vücut eklemlerinin izlediği yollar çıkarılmaktadır. Sonra, bir yalıtılmış
işareti betimlemek için, çıkarılan yollardan oluşan bir vektör, işaret çizgesi, oluştu-
rulmaktadır. İki işaret çizgesini karşılaştırmak için, bir uzaklık ölçütü olarak, işaret
çizgelerinin içerdiği eklem yollarının ortalama eğrilme uzaklığını kullanmayı öner-
mekteyim. Devingen Zaman Eğrilmesi, eğrilme mesafelerinin verimli olarak hesap-
lanması için kullanılmaktadır. İki işaret çizgesi arasında bir mesafe ölçüsü tanımlan-
dıktan sonra, k En Yakın Komşu yöntemi kullanılarak sınıflandırılmaktadırlar. Öneri-
len yöntem mevcut yöntemlerden daha iyi sonuçlar vermiştir ve 13 farklı işaretçiden
elde edilen 40 farklı işaret içeren bir veri kümesi ile yapılan işaretçi-bağımsız deney-
lerde 59.3%, işaretçi-bağımlı deneylerde 91.0% algılama oranlarına ulaşmıştır.

Anahtar Kelimeler: İşaret Dili Algılama, Kinect, Örüntü Tanıma, İşaret Çizgesi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computational power of personal computers has been increasing gradually since the

production of the first personal computers. Availability has also increased as a result

of the decrease in personal computer prices. As more people have started using com-

puters, interaction between users and computers has become more important which

has caused scientists and technology companies to be much more involved in re-

searches about human-machine interaction (HMI). Understanding human beings by

using machines became one of the most actively researched areas. Various projects

which intend to improve communication between human beings and machines were

carried out by companies dominating the market and research labs of the best univer-

sities all over the world.

As computers became a necessity in our daily life in the last decade, technology

companies focused on mobility rather than computational power. When AppleTM’s

first generation iPhone® was released on June 29, 2007, the reason why it attracted

customers was not only its technical properties but also its way of interaction with

the users. According to Gartner [4], 968 million units of smartphones have been sold

to the end users, with an increase of 42.3% from 2012. This number is 53.6% of the

number of mobile phones sold in 2013 which means more smart phones are sold than

feature phones in 2013. There are lots of things affecting the number of sales, but

simplicity and easy use of smart phones play the most important role in making them

this much successful. Although smart phones and tablet PCs have smaller screen

1



size, less hardware and less computational power compared to desktop and laptop

PCs, they provide much more practical and effective usage with touch screens and

touch gestures. What brought this success to smart phones and tablet PCs was the

evolution of HMI.

HMI is a very broad field including lots of different subjects. Speech recognition and

sign language recognition (SLR) are two related subjects of HMI. Speech recognition

has made so progress in the last decade that it is used in many commercial products.

There are exhaustive projects hold by large companies which will take this subject

further, even to the level of controlling computers by speech and tool-less interaction.

Gesture recognition, basis for SLR, has also attracted many researchers and devel-

opers since the launch of Kinect® sensors by MicrosoftTM. However, SLR is not far

away from where it started despite the developments in gesture recognition. In fact, as

Cooper et al. [11] indicated, automatic sign language recognition is still in its infancy.

According to World Federation of the Deaf (WFD) [1], there are approximately

70 million deaf people around the world. Even though hearing impairment is a

widespread problem all over the world, very few people understand sign language,

the primary communication method for deaf people. Therefore, they have difficulties

in communicating with hearing people without help of a sing language interpreter

and this prevents them from managing their daily jobs by themselves. Hiring sign

language interpreters or making employees learn sign language where needed may be

a solution to this problem. However, they are expensive and non-practical solutions

compared to a technology-based solution which recognise sign language automati-

cally. Although such a technology is far from being commercially available for the

time being, each study on this subject helps us to get closer to that point.

1.2 Scope

The present study proposes a generic method to recognise isolated gestures of sign

language. It is designed to recognise not only signs of a specific language but signs

of all 138 sign languages listed by Lewis et al. [38] as long as the format of the

input is appropriate. The system consists of a computer for necessary computations
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and a Kinect® sensor for data collection. Input data are collected as isolated signs

using skeleton tracking feature of Kinect®. An isolated sign is represented as a vector

of joint trajectories. Then, each unknown sign is classified based on the label of

the closest signs in the training set. Since instance-based learning is used for the

classification, no explicit training step is required. However, training data should be

present in the system.

Although the proposed method does not constitute a complete system which can sub-

stitute a sign language interpreter, it can be used as the base of such a system. It

proposes a method to recognise signs using only location and movement of the hands

which may be improved further by adding various data collection methods. In addi-

tion, it may be used as a part of a more comprehensive system.

1.3 Outline

This chapter explains the reason why this subject is chosen and why it is important,

and scope of the study. In Chapter 2, specifications and usage of Kinect® sensor, a

summary of sign language linguistics and background for some methods used in the

scope of the proposed method is reviewed. Chapter 3 gives brief information about

the previous studies on SLR. Details of the proposed method is described in Chapter

4. In Chapter 5, results of the experiments are given and they are compared to the

results of some previous works. In the last chapter, an overview of the proposed

method and the possible improvements which could be done in the future are given

and the performance of the study is commented.

3



4



CHAPTER 2

BACKGROUND

In this chapter, specifications and usage of the Kinect® sensor which is the input

device of the system, an overview of sign language linguistics and background for

DTW and k-NN which are used in the scope of this study are presented.

2.1 Skeleton Capturing Device: MicrosoftTM Kinect®

Kinect® is an input device developed by MicrosoftTM which aims to sense motion

and voice. It is used as the input device of the proposed system. In this section,

development history besides technical specifications and usage of it are given.

2.1.1 History

The first version of Kinect® device was released on 4th of November, 2010 [2]

and it was compatible with only Xbox 360, a video game console developed by

MicrosoftTM. Beta (non-commercial) version of Kinect for Windows software de-

velopment kit was released on June 16, 2011. It allowed Kinect® device for Xbox

360 to be used on Windows 7 to develop desktop applications using C++, C# and

Visual Basic .NET. After this release, Kinect® has started to be used by more people

day by day. Kinect® device received a Guinness Word Record for the fastest selling

consumer electronics device ever with a number of 18 million units sold in 2011 [14].

Upon increasing interest on Kinecting applications for desktop, MicrosoftTM released

both the first commercial version of Kinect for Windows SDK and Kinect for Win-
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dows hardware, a Kinect® sensor optimised to be used on computers, on February 1,

2012 [14].

The next version of Kinect for Windows hardware, v2, has been launched in the

summer of 2014 with new and improved features, including increased depth-sensing

capabilities, 1080p video, improved skeletal tracking and enhanced infrared technol-

ogy. Because Kinect for Windows v2 was not available during preparation of this

thesis, all of the experiments in the scope of it have been performed using the data

gathered using Kinect for Windows.

(a) Kinect for Windows

(b) Kinect for Windows v2

Figure 2.1: Kinect for Windows hardwares

2.1.2 Technologic Overview

Kinect® device has a color camera, an infrared emitter, and a microphone array con-

sisting of four microphones [45]. Colour camera can save 30 RGB image frames

with 640 x 480 resolution or 12 image frames with 1280 x 960 resolution per second

[44]. Colour camera can also save images in Raw Bayer, YUV and 16-bit grayscale
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channel.

The depth camera can save 30 image frames with 640 x 480, 320 x 240 and 80 x 60

resolutions per second. Because data gathered by this sensor is used for depth-sensing

it is also called as depth sensor. Angle of the view of the depth sensor is limited to

57.5 degrees horizontally and 43.5 degrees vertically. The range of the depth the

sensor can measure is from 0.8 to 4 meters in the default mode and 0.4 to 3 meters in

the near mode. Sweet spot, optimal interaction distance range with the depth sensor,

is from 1.2 to 3.5 meters (see Figure 2.2 for visualisations).

(a) Angle of vision

(b) Depth range

Figure 2.2: Depth sensor physical limits (taken from MicrosoftTM Corporation [45])

Microphone array is used for directed voice inputs. Voice recognition API is also

included in Kinect for Windows SDK to detect specific words as command inputs.

The voice sensor can detect inputs from - 50 to + 50 degrees in front of the sensor

and can be pointed to points with 10-degree increment within this input range (see

7



Figure 2.3).

Figure 2.3: Input range of microphone array (taken from MicrosoftTM Corporation

[45])

Kinect® device is used for research purposes as well as game development to take

advantage of features which its SDK provides such as depth-sensing, skeletal tracking

and voice recognition. One can obtain raw data from sensors as well as the data

processed by SDK. Therefore, it is possible to develop new methods to process sensor

data instead of using Kinect for Windows SDK. There are also some other open source

drivers and libraries to be used with Kinect® device (e.g. OpenNI®).

In the scope of this thesis, skeleton tracking features of Kinect for Windows SDK is

used. The SDK can process the raw data coming from the depth sensor in real time

and track skeleton of human beings. It can track whole skeleton of two people at

most within its view while position of six people can be tracked at the same time (see

figure 2.4).

Figure 2.4: Kinect for Windows skeleton tracking limits (taken from MicrosoftTM

Corporation [45])
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Human skeleton can be divided into two parts as upper body and lower body. Kinect

for Windows can track twenty joints of human body, half of them belonging to the

upper body while the other half belonging to the lower body. Upper body joints

consist of right hand, right wrist, right elbow, right shoulder, head, centre of shoulders,

left shoulder, left elbow, left wrist and left hand. Lower body joints consist of right

foot, right ankle, right knee, right hip, spine, centre of hips, left hip, left knee, left

ankle and left foot (see Figure 2.5 for the position of the joints).

Figure 2.5: Skeleton joints tracked by Kinect for Windows SDK (taken from

MicrosoftTM Corporation [44])

Kinect for Windows has two modes for skeleton tracking, default and seated mode.

In default mode, both upper and lower body joints are tracked while only upper body

joints are tracked in seated mode (see Figure 2.6). The SDK outputs 3D position of

each joint in real time in skeleton tracking mode. This makes Kinect for Windows an

efficient device for gesture recognition and motion capturing purposes.

2.2 Linguistics of Sign Languages

There are various number of rule-based systems, which can be used by following a

set of rules, used by people to communicate with each other. Language is one of them

as well as Morse code, traffic signs, semaphore, etc. Both spoken language and sign

9



(a) Default mode (b) Seated mode

Figure 2.6: Kinect for Windows skeleton tracking modes (taken from MicrosoftTM

Corporation [45])

language have some common features with other rule-based communication systems.

According to Clayton [57], some of these features are being composed of symbols,

having a systematic structure and having both arbitrary and iconic symbol forms.

Languages and other communication systems are used by combining symbols to pro-

duce meaning. Each communication system has different kinds of symbols and ways

of composing those symbols. English, for example, has an alphabet consisting of 26

letters each of which is a symbol for a single sound in English words. While Morse

code system has codes corresponding to English letters and numerals, American Sign

Language has a single sign for an English word.

Sign languages have some sign formation conditions coming from their rule-governed

nature. Battison [6] investigated these conditions by observing the structures of

American Sign Language (ASL). Based on his results on ASL, Battison proposed

that there are two conditions, called the Symmetry Condition and the Dominance

Condition which ASL sign formations are based on. According to the Symmetry

Condition, if both hands move during a two-handed sign then they are symmetric. In

other words, they have the same hand shape and move symmetrically. According to

the Dominance Condition, if hands have different hand shapes during a two-handed

sign one of them is active and one of them is passive. The active hand is the right

10



Figure 2.7: Composition of English word ’cat’ by different communication systems

(taken from Valli [57])

hand if the signer is right-handed and it is the left hand otherwise. The Dominance

Condition states that while the active hand moves, the passive hand acts as base in

one of seven basic hand shapes (see Figure 2.8). The Symmetry Condition and the

Dominance Condition assure that sign languages do not consist of random combina-

tion of symbols but have a systematic organisation in the composition and use of the

symbols.

In communication systems, a symbol form which does not carry the characteristics of

the thing or the activity it defines is called arbitrary. Forms showing some character-

istics like voice, shape or visual representation of the thing or the activity they define

are called iconic. Having iconic form of symbols, sign languages were claimed not to

be “real” languages like ones who have arbitrary forms only. Liddell [39] indicated

that having arbitrary and iconic form symbols is not an either-or situation and all lan-

guages have both iconic and arbitrary forms. This determination helped to change

opinions of linguists who thought sign languages are only drawings in the air.

Liddell [40] indicated some misunderstandings about sign languages. One of them

is the thought that communication through sign languages is grammar-less although

they have well-defined grammar rules. Another misunderstanding is that people think

11



Figure 2.8: Seven basic handshapes of the passive hand (taken from Valli [57])

if they learn a sign language they can communicate to deaf people all over the world.

Yet, sign languages have developed independently from each other in deaf commu-

nities in different regions of the world. Therefore, both their grammatical structures

and meaning of the symbols differ from each other. People also think that sign lan-

guages have been adapted from spoken languages. However, sequences of signs in

sign language sentences do not mirror sequences of words in spoken languages. These

misunderstandings are results of the opinion of people claiming that sign languages

are not distinct languages but are symbolisation of spoken languages.

Phonology is a division of linguistics which study organisation of sounds in spoken

languages. It is also used by sign language linguists for the branch which study organ-

isation and structure of signs. Phonological studies state that signs can be analysed

using five main parts or parameters; hand shape, movement, location, orientation and

non-manual signals. Signs may have the same value in some parameters. Each sign
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language has hundreds of signs, some of which differ from each other in only one

of these parameters. For example, two different signs may differ in only location of

the hand or orientation of the palm while other parts are the same. This makes it

difficult to distinguish some signs even manually. Thus, it is likely to classify these

signs wrong using automatic recognition. Figure 2.9 shows some signs in ASL which

differ from each other in only one parameter.

Non-manual signals consist of facial expressions and body posture which either sup-

port manual parameters (hand shape, location, orientation, movement) or are required

to produce some signs correctly. For some signs, it is not possible to explain the mean-

ing exactly without using non-manual parameters. Clayton [57] gives some examples

of signs which require non-manual features to be produced correctly. These examples

are NOT_YET which is produced with the mouth open and the tongue is slightly out

and FINISH which is produced with the lips protruded.

The first phonological study about sign language structure was carried out by Stokoe

[55], before that time signs were thought to have no internal structure, grammar rules

and to be not analysable. Stokoe developed a system, called Stokoe System, which

divides signs into three parts, contrary to modern phonological systems which divide

signs into five parts. In the Stokoe System, parameters of a sign are hand shape,

location and movement, which are combined simultaneously to produce a sign. His

system deals with palm orientation and non-manual features indirectly. The Stokoe

System treats these parts, referred as chremes by Stokoe, as meaningless elements

which form meaningful signs when combined. Each part may have a set of values

called primes. For example, a set of primes for location parameter includes trunk,

face, nose; that for hand shape parameter includes A, B, 5 and movement primes

include upward, downward, away from signer.

Although the Stokoe System is the first system describing the internal structures of

sign language, it has some issues. The first issue is that it does not convey enough

detail to describe some signs correctly. Clayton [57] gives some examples of signs

which are not described well by Stokoe System because of not having primes specific

enough. For example, when describing signs HEAVEN, SIGN and CHILDREN, the

Stokoe System use “neutral place where hands move” prime to describe location pa-
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(a) Signs differ only in location

(b) Signs differ only in handshape

(c) Signs differ only in palm orientation

(d) Signs differ only in movement

Figure 2.9: Signs differ from each other in only one part (taken from Valli [57])
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rameter. However, producing these three signs in the same level is unacceptable (see

Figure 2.10). Therefore, location for these signs should be described more specificly.

As another example, in the Stokoe System, signs GIVE, NUMBER and NOTHING

are described as they have the same hand shape, although NOTHING has totally dis-

tinct hand shape compared to GIVE and NUMBER (see Figure 2.11).

Figure 2.10: Signs that have same location in Stokoe System(taken from Valli [57])

Another issue of the Stokoe System is the representation of sequences in signs. While

some signs are formed with only one hand shape, location, movement, palm orien-

tation and non-manual signal, some signs are produced with more than one primes

for some parameters. That is, some signs are formed with a sequence of hand shape,

location, movement, palm orientation or non-manual signals. The Stokoe System

uses movement part to show changes in other parts. In other words, if a sign con-

sists of a sequence of hand shape, location, palm orientation or non-manual signals,

these sequences are shown using the movement parameter. It does not totally ignore
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Figure 2.11: Signs that have same handshape in Stokoe System(taken from Valli [57])

sequences of parameters other than movement, it nevertheless sees these sequences

unimportant in describing signs. Accordingly, only simultaneous contrast is defined

in the Stokoe System. Although there are examples of sequential contrast in sign

languages, the Stokoe System does not deal with it.

Liddell and Johnson [41] developed a phonological system, called Movement-Hold

System, which overcome the issues which Stokoe’s simultaneous system has, espe-

cially the sequential contrast issue. Their system introduced the concept of segments

as the central element in the structure of signs. The system represents the segments

individually and signs as strings of segments. Segments are composed of two feature

bundles, named articulatory bundle and segmental feature bundle, describing posture

of the hand and activity, respectively. Articulatory features represent the location

and the orientation of the hand, hand shape and non-manual signals while segmental

features account whether the hand is moving or not and the description of the move-

ment if so. The Movement-Hold System takes its name from the type of segments.

Time periods during which articulatory features of segments do not change are called

holds. Movements are defined as the time periods during which articulatory features

change. Both holds and movements contain one bundle of segmental features while

it is not the case for articulatory bundles. Holds have only one bundle to represent ar-

ticulatory features while movements have two, one specifying the hand posture at the

inception of the movement and one specifying it at the conclusion of the movement.
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Hence, sequences of articulatory features are involved in the description of signs in

the Movement-Hold System.

The system developed by Liddell and Johnson solves descriptive problems of Stokoe’s

system by giving adequate details on description of signs and accounting sequential

contrast between signs by handling sequences in articulatory features. Even though

the Stokoe System and the Movement-Hold System have significant differences on

description of signs, both systems show that sign languages are not random symbols

drawn in the air or visualisation of spoken languages, but have systematic internal

structures and systems which describe those structures.

2.3 Overview of Dynamic Time Warping

DTW is a well-known technique used to optimally align two time series data which

may vary in time or speed. It is generally used in speech recognition applications

to cope with inter-speaker differences in speaking speed. Think about two samples

of time-dependent sequences which have local changes independent from each other

in time and speed (see Figure 2.12). DTW finds an optimal path which align these

sequences without requirement that they have the same length. Whether or not two

sequences differ non-linearly in time, DTW measures similarity or distance between

them independent of these variations by warping them non-linearly in time. However,

the distance metric of DTW does not necessarily hold triangle equality.

Figure 2.12: Alignment of two time-dependent sequences
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DTW compares a sequence X = (x1, x2, ..., xN) of length N with another sequence

Y = (y1, y2, ..., yM) of length M , aligns their members and returns an alignment

path in addition to a similarity/distance measure. Members of these sequences are, in

general, sets of features. Muller [46] names these sets as feature space and denotes it

by F . Then, local cost measure, c, is the function designed for comparing two feature

spaces x, y ∈ F .

c : F × F → R≥0. (2.1)

Measuring local cost of each pair of sequences X and Y , Local cost matrix is ob-

tained. It is defined byC ∈ RN×M andC(n,m) = c(xn, ym). An optimum alignment

path of sequences X and Y goes along the way where the values of local cost are low

on the local cost matrix (see Figure 2.13 for illustration).

Figure 2.13: Illustration of optimum alignment path on the local cost matrix (taken

from Müller [46])

Muller [46] gives the definition of the warping path obtained as a result of DTW

technique as

Definition 2.1. Warping path of two sequences of length N and M is a sequence

p = (p1, p2, ..., pL) where pl = (nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L]. The

warping path satisfies the following conditions:

1. p1 = (1, 1) and pL = (N,M).
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2. n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤ mL.

3. pl+1 − pl ∈ (0, 1), (1, 0), (1, 1) for l ∈ [1 : L− 1].

An alignment of two sequences X = (x1, ..., xN) and Y = (y1, ..., yM) is defined

by a warping path by matching the element xnl
of X with the element yml

of Y .

A warping path which accomplishes the optimal matching should satisfy the three

conditions defined above. Figure 2.14 shows some examples of warping paths. The

cost of a warping path p of two sequences X and Y can be calculated as:

cp(X, Y ) =
L∑
l=1

c(xnl
, yml

). (2.2)

(a) (b) (c) (d)

Figure 2.14: Illustration of warping path indices of two sequences of length 8 and 7.

(a) Warping path satisfying all three conditions. (b) Warping path violating the first

condition (c) Warping path violating the second condition. (d) Warping path violating

the third condition.

DTW guarantees to find an optimal warping path which has the lowest total cost

compared to all possible warping paths even if there exists more than one optimal

path. The optimal path is denoted by p∗. Then, the DTW distance of two sequences

X and Y can be defined as:

DTW (X, Y ) = cp∗(X, Y )

= min {cp(X, Y ) | p is a warping path of X and Y }. (2.3)

In order to get rid of computational complexity of calculating all possible warping

paths to find the optimal one, an algorithm based on dynamic programming having

O(NM) computational complexity, where length of sequences are N and M , can be

used.
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Definition 2.2. Let X and Y be two sequences of length N and M, respectively, and

X(1 : n) = (x1, ..., xn) for n ∈ [1 : N ] and Y (1 : m) = (y1, ..., ym) for m ∈ [1 : M ]

be sequence prefixes. Then,

D(n,m) = DTW (X(1 : n), Y (1 : m)), (2.4)

where D is a N ×M matrix and referred to as accumulated cost matrix. It can be

easily obtained from Equation 2.4 that D(N,M) = DTW (X, Y ).

Definition 2.3. Accumulated cost matrix can be calculated using the following recur-

sive rule:

D(n,m) =



c(x1, y1) if n = 1,m = 1∑n
k=1 c(xk, y1) if 1 < n ≤ N, y = 1∑m
k=1 c(x1, yk) if x = 1, 1 < m ≤M

min{D(n− 1,m− 1), D(n− 1,m),

D(n,m− 1)}+ c(xn, ym) if 1 < n ≤ N, 1 < m ≤M.

(2.5)

Computation ofDTW (X, Y ) = D(N,M) using the Equation 2.5 has computational

complexity of O(NM).

The cost of warping two sequences in time, i.e. their DTW distance, is given by accu-

mulated cost matrix which is also used to obtain optimal warping path p∗. Algorithm

2.1 extracts optimal warping path. Note that the algorithm uses only accumulated cost

matrix as input. The optimum alignment path goes along the way on the accumulated

cost matrix where values of the elements are low, as expected. Figure 2.15 repre-

sents the visualization of the accumulated cost matrix obtained from the sequences in

Figure 2.13 and shows the optimum alignment path on the matrix.

2.4 Overview of k-Nearest Neighbour

The k-NN is a simple non-parametric classification method used in pattern recogni-

tion and machine learning. It classifies examples based on the class memberships

of the k closest training examples. It is a type of instance-based classifier since the
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Figure 2.15: Illustration of optimum alignment path on the accumulated cost matrix

obtained from sequences in Figure 2.13 (taken from Müller [46])

classification is directly based on training examples and lazy learner since all compu-

tation is delayed to the runtime, i.e. no explicit training phase is required. Although

it is one of the simplest machine learning algorithms, it does quite well in practice.

Moreover, it is easy to implement, thus commonly used in classification problems.

All types of data consisting of examples between which a measure of dissimilarity

can be determined can be classified using k-NN.

k-NN has two stages; in the first stage, k nearest neighbours are found from the

training set based on a distance metric. In the successive stage, the class of the test

sample is determined using the class labels of the selected neighbours in the first

stage. Let q be the query sample, t1, ..., tk be k closest training samples, bi be the

class label of ti where i ∈ [1 : k] and H = (h1, ..., h|H|) be set of labels. Then, vote

of a class label is calculated as

V ote(hj) =
k∑

i=1

(
1

dist(q, ti)

)s

e(hj, bi), (2.6)

where dist returns the distance between two samples and e returns 1 if the parameters

are equal, 0 otherwise. One can choose a distance function which always returns 1
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to ignore distance between the test sample and the closest neighbours while counting

the vote of a class label. It is also possible to increase or decrease the influence of

the distance by decreasing and increasing s, respectively. The distance between two

samples can be computed by

dist(t1, t2) =
∑
f∈F

wfδ(xf , yf ), (2.7)

where F is the set of features, wf is the weight of the feature f and δ returns the

distance between two features. It is possible to assign the same weight or different

Algorithm 2.1: Optimal Warping Path

Input: Accumulated cost matrix, D, of size N ×M
Output: Optimal warping path, p∗

n← N,m←M // Opt. path computed in reverse order

i← 1 // Array index assumed to be starting at 1

while n > 1 or m > 1 do

p[i]← (n,m)

if n = 1 then

m← m− 1

else if m = 1 then

n← n− 1

else

// Row and column number of the entry with the

minimum value

(n,m)← IndicesOfArgMin(D[n− 1][m− 1],

D[n][m− 1], D[n− 1][m])

i← i+ 1

end

p[i]← (n,m) // where n and m equals to 1

ReverseOrder(p) // Reverse the order of elements

// p∗ is the optimal warping path of length l = i
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weights to the features. In pattern recognition, extracted features, generally, have

different importance in classification. Therefore, assigning different weights to the

features affects the performance of the classification.

The value of k is an important factor in determining the class label of the test sample.

For example, the class label of the test sample in Figure 2.16 is determined as blue

when k = 4 while it is determined as red when k = 9. The choice of k depends on the

size and the structure of the data. Outliers in the data may cause misclassification in

small values of k. For this reason, choosing larger values for k may be preferred when

the data contain outliers. Nevertheless large values of k cause distinction between

classes disappear. Therefore, the optimal value of k should be found to get better

results in classification. There are various methods proposed to find the optimal value

of k. In the scope of this thesis, the optimal value is decided based on the experiments.

Figure 2.16: Nearest neighbours with different values of k

Being a lazy learner, the algorithm makes use of all training examples during the run-

time which may cause excessive memory usage for large training sets. Moreover, as

training set gets larger computational cost increases due to the fact that all computa-

tions are deferred to the run-time. Therefore, k-NN may not be tractable for very large

training sets. On the other hand, it does not require explicit training and removes the

need of repeating training step after each time a new training sample is added to the

database. In other words, training set can be extended easily if k-NN is employed as
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the classification method.
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CHAPTER 3

OVERVIEW OF AUTOMATIC SLR

Automatic SLR studies have started in the middle of 90s, remarkably long time after

the development of systems describing the systematic structure of signs. It has not

attracted too much attention since then. Though, there are some exhaustive studies

on it. In this chapter, literature on SLR is presented using a similar categorisation to

the one introduced in the study of Cooper et al. [11]. The literature on SLR has been

examined according to the methods used in data acquisition and feature extraction

and the methods used in classification. A summary of complete SLR systems is given

in Table 3.1.

3.1 Data Acquisition and Feature Extraction

Data acquisition is the first and a crucial step in automatic SLR. Because the meanings

of the signs are derived mostly from the manual features, i.e. location and movements

of the hands, hand shape and palm orientation, most of the SLR systems have focused

on these features. The non-manual features such as facial expressions and the shape of

the mouth are not in the scope of this study. Data acquisition methods are investigated

in 3 categories, tracking methods, non-tracking methods and hand shape recognition.

3.1.1 Tracking Methods

Development and use of hand tracking methods are common in automatic SLR. Hand

tracking for SLR is a difficult task since the sign gestures are not designed for au-
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tomatic recognition purposes and they, generally, consist of quick movements of the

hands and occluded body parts. Therefore, various methods are proposed for this

non-trivial task in the scope of SLR.

Using wearable sensors and accessories is one of the most preferred methods for data

acquisition. Some of the earlier systems made use of data gloves and accelerometers.

For example, Waldron and Kim [61] developed a system which obtained input from

a DataGlove mounted with a Polhemus sensor for a two-stage neural network. Pow-

erGlove was used by Kadous [32] in SLR. Vogler and Metaxas [58] used magnetic

sensors interchangeably with computer vision techniques to track movement of the

wrists accurately. Hernandez-Rebollar et al. [23] presented a complex system com-

posed of a DataGlove and accelerometers, called Accele Glove, for gathering position

and shape of the fingers and the hands. Brashear et al. [7] combined the input obtained

from the view of a hat mounted camera pointing downward and accelerometers on the

wrists and the body to develop a totally wearable system.

Using coloured gloves to aid computer vision techniques is also popular in SLR.

Holden et al. [26] used a colour-coded glove to extract 3D configuration of the hands

from 2D images. Zhang et al. [67] made use of a multi-coloured glove for the dom-

inant hand and a single coloured glove for the non-dominant hand since the most

discriminative features of a sign are performed by the dominant hand. Fingers, palm

and the back of the dominant hand are indicated by 7 different colours to enable de-

tailed feature extraction.

In the earlier studies, skin colour segmentation was also widely used in addition to

wearable accessories and sensors for tracking position and movement of the hands in

the space. One of the earliest systems designed by Huang and Huang [28] tracked 2D

hand motion using consecutive image frames. Their system requires that the speaker

should wear dark clothes with long sleeves, the background should be uncluttered

and change in the shape of the moving object should stay in the predefined limits.

Some systems made use of depth cameras to get rid of restrictions on the background

and the clothes of the signers [17, 20]. Han et al. [22] applied skin segmentation and

tracking (SST) with improved colour model by integrating SVM active learner and

region segmentation for hand and face tracking. Akyol and Alvarado [3] presented a
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system for fast detection of the hands which modifies skin colour model with motion

information obtained from motion history images (MHI). While most systems require

only one subject in an isolated environment Hong, Setiawan and Lee [27] overcame

this issue by combining skin-based segmentation with contour-based segmentation to

subtract the background and detect the main subject among multiple subjects. Never-

theless, their system works only for some predefined gestures.

One issue with skin segmentation is occlusion between the head and the hands. Holden

et al. [25] dealed with this issue by making use of the snake algorithm [24] in com-

bination with motion information to detect the contour of the moving foreground

objects. Zieren and Kraiss [68] followed multiple hypothesis in parallel in tracking

state and then, chose the best one for retrospective handling of the ambiguities at the

sign level.

Skin segmentation is considered to be a more natural way of tracking hands since

the systems requiring the users to wear accessories and sensors are not convenient

in real life situations. Moreover, requiring complex environmental setup, systems

using sensors are not portable. Thus, some systems are extended to make use of

skin segmentation instead of wearable sensors. Imagawa et al. [29] improved their

SLR system [43], which requires the users to wear coloured gloves in order to track

hands, to track hands using skin colour segmentation and get rid of occlusion between

the head and the hands by making use of motion difference blobs. Awad et al. [5]

also extended their previous work [53] by using a combination of colour, motion and

position information for segmentation of the body parts.

Placing the camera on a different position than the position of an observer, i.e. oppo-

site of the signer, or using combination of cameras positioned in different places are

some of the other preferred methods for hand tracking in SLR. Starner and Pentland

[54] developed two systems each of which places the camera on different positions.

In the first system, the camera is mounted in the opposite of the signer as it has

second-person view whereas the other system tracks the hands using a hat-mounted

camera pointing downward to see the hands. Vogler and Metaxas [59] employed a

combination of three orthogonally placed cameras to estimate 3D shape and motion

of the arms using multiple images collected from them. Although the orthogonally
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placed cameras provide more detail for accurate detection of the depth and the hand

shape compared to a single camera, the system is not portable and it requires complex

calibration.

Another approach is to use stereo input in order to get benefit of the depth data as well

as RGB images. A system adopting this approach is developed by Muñoz-Salinas et

al. [47] by extending binary silhouettes with the depth data (creating depth silhou-

ettes) for gesture recognition. Their system assumes that the position of the signer is

known. Grzeszcuk et al. [19] also employed a stereo camera system for their system.

They, firstly, subtract the background and detect the orientation of the arm and 3D

pose of the hand. Then, a planar homographic transformation is applied to gather the

frontal view of the hand. After necessary normalisation on the frontal view is done,

the hands are segmented based on a probability density estimate. One drawback of

the system is the restriction that the stereo camera should view only the arms of the

signer, which is difficult to arrange in real world situations.

With the release of the Kinect® sensor, many SLR systems have started using it.

Having integrated colour camera, infrared emitter, and open source framework for

automatic skeleton tracking, it is a good choice for data acquisition in SLR. For ex-

ample, Lang, Block and Rojas [36] created a system that uses automatic skeleton

tracking features of Kinect® to train an HMM and recognise sign gestures. Ong et al.

[50] used an isolated Greek Sign Language (GSL) dataset consisting of the frames of

the upper body skeleton captured by Kinect® to test their novel classification method.

Doliotis et al. [13] utilised Kinect® device as a depth camera to compare gesture

recognition performance using colour and depth information by applying tests on a

limited gesture dataset defined by them.

Some systems made use of methods other than commonly used ones to track head

and hands. Kadir et al. [31] employed two weak classifiers trained using boosting

techniques to detect position of head and hands. Buehler et al. [8] proposed a method

that uses inference methods to reduce the cost in generative models of the images.

Images were the frames of continuous videos taken from TV broadcasts.
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3.1.2 Non-tracking Methods

Because tracking head and hands is a non-trivial task, some studies proposed non-

tracking methods to recognise signs globally in order to avoid the tracking cost. Wong

and Cipolla [62] derived a motion feature vector from motion gradient orientation

images obtained from raw video. Then, the feature vector is classified using sparse

Bayesian classifier trained to estimate 10 elementary gestures. Zahedi et al. [65] also

extracted a feature set from raw video to classify 50 ASL words using HMM. The fea-

ture set composed of the images obtained by multiplying down-scaled version of the

original images by binary skin-intensity images, and horizontal and vertical deriva-

tives of these images. A similar method is used in [66] to recognise 10 ASL words.

In another study by Zahedi et al. [64], besides appearance-based features, geometric

features consisting of 34 features of the dominant hand are also extracted. These ge-

ometric features are divided into 4 feature groups which are basic geometric features,

moments, Hu moments and combined geometric features. Cooper and Bowden [10]

broke signs down into 5 main visemes (like phonemes in speech) and made use of

3 of them which are placement, movement and arrangement. These visemes were

extracted from video using 3 different viseme level classifiers which do not require

tracking of hands. Non-tracking classifying methods get rid of complexity and com-

putational cost of tracking process. However, they also lose the discriminative nature

of hand tracking. Consequently, despite the fact that run-time complexity of non-

tracking methods are better than tracking ones, their recognition performance is not

as good as that of tracking methods.

3.1.3 Hand Shape Recognition

Most of the SLR systems have focused on location and movement of the hands

whereas shape and orientation of the hands are also effective in conveying mean-

ing of the signs. Therefore, some studies have investigated hands in more detail for

SLR. Kelly et al. [33] presented a system which estimates hand posture from the con-

tour of the hand which is extracted by segmenting the hand on binary images. They

defined a size function to detect similar and distinguish different hand shapes. Ong

and Bowden [49] developed a boosted classifier tree consisting of cascade of classifier
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layers for hand shape detection. Going deeper in branches of the tree detector clas-

sifiers trained using smaller and more specific set of images are employed to classify

the input image into more specific hand shape group. Hand shapes are grouped us-

ing a shape context which is created by constructing compact shape descriptors from

samples extracted from the contour of a hand shape. Hamada et al. [21] also used

hand contour for matching hand shapes. Their model includes position and velocity

of the hand in case of not being able to detect contour due to fast movement of the

hand. Fillbrandt, Akyol and Kraiss [16] proposed a method to infer 3D posture of the

hand and finger constellation by modelling them by a set of 2D appearance models.

Liu and Fujimura [42] deployed a depth camera as input device and detected hand

shapes by matching unlabelled input data to a hand shape in the training set using

Chamfer Distance. They also extracted motion and orientation of the hands for better

recognition of hand gestures. It is expected that adding hand shape information into

recognition process result in better recognition performance. Yet, it may not be the

case always due to the fact that performance of sign recognition is highly related to

performance of hand shape recognition. A hand shape classifier having inadequate

recognition rate will possibly cause inadequate sign recognition rates.

3.2 Classification Methods

In section 3.1 an overview of SLR system was given based on employed data ac-

quisition and feature extraction methods. It is obvious that extracting necessary data

is a crucial part in SLR. However, the success of recognition process depends on not

only the performance of the feature extraction method but also the performance of the

classification method. In this section, how SLR systems classify signs after features

are extracted is reviewed. In other words, an overview of SLR systems is given based

on the classification methods used.

Earlier systems employed variations of neural networks (NN) for classification of the

extracted features. Kim, Jang and Bien [35] used fuzzy min max neural network

(FMMNN) to classify the features extracted from a data glove which is improved

with a Polhemus sensor to capture constellation of fingers as well as 3D position of

the hands. FMMNN yielded a success rate of 85% for 25 selected words of Korean
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Sign Language (KSL) in person-dependent experiments. Lee et al. [37] presented a

real-time recognition system consisting of four stages. In the first stage, constella-

tion of the fingers with the positions and the orientations of the hands are obtained

using CyberGlove and Polhemus sensors. The system segments continuous motion

to extract isolated signs by removing meaningless motion occurring when the hands

move from the end of the current gesture to the beginning of the next gesture. Then,

directions of the hands are classified to one of the predefined direction classes using

feature extraction and fuzzy inference rules. In the last stage, the FMMNN classifier

is deployed to classify 131 words and 31 manual alphabet of KSL. Experiments con-

ducted with single signers achieved an average recognition rate of 80.1%. Waldron

and Kim [61] developed a two-stage artificial neural network (ANN) system making

use of a data glove mounted with a Polhemus sensor for data collection. In the first

stage, phonemes are recognised using back propagation (BP) network consisting of

four modules, one for each phonemes (hand shape, location, orientation and move-

ment). Concatenated phonemic vectors are passed to the next stage in which signs are

recognised using two different techniques, BP network and self-organising network

(SON). Experiments are conducted in a multiple-signer environment, not necessarily

signer-independent, and BP network achieved a recognition rate of 86.2% whereas

that of SON was 78%. Huang and Huang [28] developed a system which applies

3D Hopfield neural network (HNN) to classify features collected by 2D model-based

tracking. Their system recognise 15 sign gestures with a rate of 91%. Yang et al.

[63] employed time delay neural networks (TDNN) to classify 2D motion trajecto-

ries of hands extracted from video using motion segmentation, skin segmentation and

geometric analysis.

Due to its success in speech recognition, and similarities with the problem of speech

recognition and SLR, HMM has been being used widely in SLR since mid 90’s.

HMM was used by systems having different data collection methods since it is appli-

cable to a large variety of temporal data due to its ability of automatic segmentation

of data during training and recognition. In some systems, HMM was employed to

classify features extracted directly from video [18, 54] while some systems made use

of it to classify data collected from a data glove [58]. Ouhyoung and Liang [51] de-

veloped a system consisting of 3 functional stages, posture analysis, gesture matching
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and sentence matching. They employed HMM in posture analysis state to select pos-

sible postures corresponding to the input gathered from a data glove. After candidate

postures are found HMM is applied to match this postures to the predefined gestures.

Then, forward-backward procedure is applied by adding probabilities of gesture se-

quences into the process to estimate predefined sentences. Kim et al. [34] proposed a

method for continuous KSL recognition using a colour camera. Their method creates

a fuzzy partitioning using speed and change of speed of the hands during utterances

of signs and implements a state automata using the created partitioning to segment

isolated words from continuous sentences. Then, they employed HMM to classify

isolated words. Average recognition rate of their method was 94.0% in the experi-

ments done with 15 predefined sentences.

Although HMM is a good choice for SLR, it imposes some limitations. Require-

ment of a large training set and the inability of weighting features according to their

importance are some of these limitations. It is possible to overcome these disadvan-

tages of HMM by combining it with other methods. Vogler and Metaxas [59] coupled

HMM with computer vision techniques in order to improve its performance by ex-

tracting geometric primitives of signs and taking advantage of assigning weight to

the features relative to their importance. In another work of Vogler and Metaxas [60],

Parallel HMM (PaHMM) was presented as an SLR method to surmount scalability is-

sues of HMM in large lexicon databases. The idea behind it is that processes evolving

in time independently from each other create independent output. PaHMMs employ

one HMM for each independent process where state probabilities and outputs of these

HMMs are not influenced from each other. In the experiments conducted with 99 sen-

tences over a vocabulary of 22 signs, PaHMM performed 84.85% and 94.23% in sen-

tence and word recognition, respectively, while regular HMM performed 80.81% and

93.27%. These results show that PaHMMs outperform regular HMMs in recognition

accuracy besides scalability.

During the evolution of SLR, methods other than NNs and HMMs were also pro-

posed. Ong et al. [50] presented a multi-class classifier based on sequential pattern

trees for SLR. Their classifier performed 55.4% in signer-independent experiments

conducted with a dataset consisting of 40 German signs captured by Kinect® sen-

sor and 74.1% in signer-dependent experiments conducted using a video dataset of
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982 Greek signs. Kadous [32] compared instance-based learning (IBL) and decision

trees with different set of features extracted using a data glove. He, then, synthesised

the best-performing features and obtained an accuracy of 80% for IBL and 55% for

decision trees.

In most of the studies, classification methods which require external training were

preferred. Although these methods are useful because of the small computational cost

during the run-time, adding new samples to the lexicon requires complicated training

phases to be repeated and the models to be created again. Using instance-based learn-

ing methods dispels the costly training phase; however, recognition on large databases

is likely to result in high computational cost during classification which may prevent

real-time recognition of signs on large databases.

3.3 Finger Spelling

All studies which have been reviewed so far proposed methods for SLR using word

level classification. It is also possible to communicate letter by letter instead of word

by word because each letter has an equivalent sign. Consequently, some SLR systems

have focused on recognising finger spelled letters to generate words. Sign language

letters are different from sign language words in terms of the features conveying the

meaning. While words are described using 4 manual and 1 non-manual feature (see

Section 2.2) letters are described using only 2 manual features, hand shape and orien-

tation. Discrimination between letters are provided especially by finger constellation.

To this end, SLR systems recognising sign language letters examined the hands to

obtain hand shape, hand orientation and finger constellation.

Uebersax et al. [56] recognised letters by classifying the input data acquired from a

depth camera using a classifier based on average neighbourhood margin maximisation

(ANMM), depth difference and hand rotation. Words were assigned a score which is

the sum of the confidences of the estimated letters. Word estimation occurs when the

difference between the scores of the first most likely word and the second most likely

word exceeds a predefined threshold. A word lexicon database is also employed to

correct possible errors in the letter recognition step. Feris et al. [15] modified a colour
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camera by placing four flashes on the left, right, up and down side of it. Their purpose

was to use hand images illuminated by different light sources to detect depth edges

which is discriminative in recognising letters. The problem with their design is that 5

photos, one for ambient illumination and one for each of 4 flashes, are taken for each

frame which is impossible when the hand moves fast, which is common in utterances

of signs. Another gesture recognition method using shadow was developed by Segen

and Kumar [52]. Differently, their method made use of only one light source to

estimate predefined 4 hand gestures which are very simple compared to sign language

letters. Jerde, Soechting and Flanders [30] employed a glove with embedded sensors

to detect degrees of 17 joints in the hand. Then, they proposed a method based on

bio-mechanical and neuromuscular constraints for reduction in number of joints and

compared their method to PCA. Their method did much better than PCA resulting

in very small impairment in classification besides performance improvement due to

reduced dimensionality in data.

Because the set of gestures in sign language alphabet is much smaller than the sign

language lexicon, focusing on recognition of signs letter by letter seems a logical

thing to do. However, it is a non-trivial task since recognition of letters requires more

detailed investigation of hands compared to the recognition of words. Moreover,

constraints imposed by some proposed methods are not applicable in real world sit-

uations. Above all, although communicating letter by letter is preferred in situations

that the sign corresponding to an intended word is unknown, it is not convenient and

preferred for whole communication. Thus, SLR systems intended to use only manual

sign alphabet are not well-suited way of building a communication channel for deaf

people.
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Table 3.1: A list of SLR systems. (ABBRV: CR: Continuous sign recognition, SL:

Sentence level recognition, WL: Word level recognition, SD: Signer-dependent ex-

periments, SI: Signer-independent experiments, FS: Finger spelling recognition)

Author
Data

Acquisition
Classification Dataset Results

Waldron

and Kim

[61]

Data glove

and Polhemus

sensor

BP Network1,

SON2

14 ASL words
86%1,

84%2

Kadous

[32]
PowerGlove IBL

95 Auslan

words
80%

Vogler and

Metaxas

[58]

Magnetic

sensors and

computer

vision

HMM 53 ASL words
87.71%

(CR)

Hernandez-

Rebollar et

al. [23]

DataGlove

and ac-

celerometers

A 3-level

hierarchical

classifier

26 ASL

alphabet

gestures

96.3%

Brashear et

al. [7]

Accelerome-

ters and

hat-mounted

camera

HMM 5 ASL gestures 90.48%

Holden et

al. [26]

Colour-coded

gloves
HMU

22 Auslan

words
95%

Zhang et al.

[67]

Multi-

coloured

gloves

TMDHMM
439 Chinese SL

words
92.5%

Huang and

Huang [28]

Skin

segmentation
HNN

15 Taiwanness

SL words
91%

Holden et

al. [25]

Skin

segmentation

with the snake

algorithm

HMM
163 Auslan

words
97% (SL)
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Zieren and

Kraiss [68]

Multiple

hypothesis
HMM

232 BSL

words3,

221 BSL

words4,

18 BSL words

from 6 signers5

99.3%3

(SD),

44.1%4

(SI),

87.8%5

Starner and

Pentland

[54]

Hat-mounted

camera
HMM 40 ASL words 97% (CR)

Vogler and

Metaxas

[59]

3

orthogonally-

placed

cameras

HMM 53 ASL words
87.71%

(CR)

Muñoz-

Salinas et

al. [47]

MLSHI SVM
10 defined

gestures
86.83%

Grzeszcuk

et al. [19]

Stereo camera

system

Statistical

moments

6 defined

gestures
96%

Lang,

Block and

Rojas [36]

Kinect®

skeleton

tracking

HMM
25 German SL

words
97%

Ong et al.

[50]

Kinect®

skeleton

tracking

SP Trees
40 German SL

words

55.4%

(SI)

Kadir et al.

[31]

Boosting 2

weak

classifiers

A two-stage

classifier
164 BSL words 92%

Wong and

Cipolla

[62]

Motion

gradient

orientation

images

Bayesian

classifier

10 defined

gestures
90%
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Zahedi et

al. [65]
Raw video HMM 50 ASL words 82.8%

Cooper and

Bowden

[10]

3 different

classifiers

A 2-level

classifier
164 BSL words 74.3%

Kelly et al.

[33]

Hand postures

from video
SVM

10 static

gestures6,

23 ISL letters7

91.8%6,

97.3%7

Kim et al.

[35]
Data glove FMMNN 25 KSL words 25%

Lee et al.

[37]

CyberGlove

and Polhemus

sensor

FMMNN 131 KSL words 80.1%

Yang et al.

[63]

Motion and

skin

segmentation

TDNN 40 ASL words 93.42%

Kim et al.

[34]

Fuzzy

partitioning

using speed

HMM
15 KSL

sentences
94% (SL)

Vogler and

Metaxas

[60]

MotionStar

3D tracking
PaHMM

99 sentences

over 22 signs

84.9%

(SL),

94.2%

(WL)
Uebersax et

al. [56]
Depth camera ANMM 56 ASL words

87.8%

(FS)

Feris et al.

[15]

Colour camera

with four

flashes

Nearest-

neighbour

ASL alphabet

except ’J’ and

’Z’

96% (FS)

Jerde et al.

[30]

CyberGlove

with sensors

Discriminant

analysis
26 ASL letters 95% (FS)
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CHAPTER 4

SLR USING REDUCED RESOLUTION TRAJECTORIES OF

JOINTS

In this chapter, the proposed method is described in detail. In Section 4.2, the overview

of the system is given. Then, details of the collection and the normalisation of the sign

data are described in Section 4.3. In Section 4.4, how the distance between two sign

graphs is measured is explained. Then, details of the classification of the sign graphs

based on measured distances are described in Section 4.5.

4.1 System Overview

The proposed system consists of a Kinect® sensor as input device and a computer to

perform necessary computations. Figure 4.1 shows the overview of the recognition

process. Firstly, sequences of skeletons for an isolated test sign are obtained from

the Kinect® sensor. Then, the positions of the joints are normalised into joint paths

using grid structure and they constitute a sign graph. After normalisation is done,

the distance of the test sign to all of the signs in the training set are calculated using

DTW distance of their sign graphs. Note that, the training set is stored as the set

of sign graphs to get rid of unnecessary computations in the run time. Lastly, k-NN

classification is applied to choose the k closest neighbours of the test sign and assign

its label based on the label of the most voted one. Next sections describe each of these

steps in detail.
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Figure 4.1: Overview of the recognition process

4.2 Gathering Sign Data

In the scope of this thesis, automatic SLR has been studied using human skeleton

data tracked using MicrosoftTM Kinect® device. Although there are different drivers

processing raw data gathered from Kinect® and tracking different joints of human

body, all of them tracks necessary joints (right and left hands and elbows) used for this

study. Drivers return sequences of frames each of which contains a human skeleton

data consisting of an array of joints which describes the position of human body joints

in the 3D space (see Section 2.1 for frame rates and the list of the joints). That is,

movement of human body joints in 3D space gathered frame by frame using MS

Kinect® is used as the sign data in this thesis.

4.3 Normalising Sign Data with Enumerated Grid Structure

Because recognition process is done using the location and the movement of the

joints, inter-signer differences are crucial for recognition of signs. Physical prop-

erties of signers like height, length of arms, length of neck, length between shoulders,

etc. cause data gathered from different signers show non-standard characteristics. To

get rid of this normalisation can be used which standardise data by placing samples

in a predefined range. In our case, normalisation helps decreasing the influence of

inter-signer differences on the recognition process.

Normalisation method applied in the scope of this study differs from what Lei Chen

et al. [9] applied to make data invariant to both shifting and scaling. Making sign

40



data invariant to shifting may cause that recognition process cannot get benefit of

one of the most discriminative features i.e., location. Therefore, using a normalisa-

tion method which does not make sign data invariant to shifting while normalising

location is preferred. Another problem with the normalisation is making sign data

totally invariant to scaling. Besides handling inter-signer differences in the size of

movements, it may cause sign data lose sequences of locations, another discrimina-

tive feature of signs. As an example, think about two signs which have the same type

of movement but different inception and conclusion positions for the active hand.

Making data of these signs invariant to scaling induces locations of the active hands

to have the same value during the production of the signs and causes these two signs

no longer have a discriminative feature.

A novel normalisation method is proposed in this thesis to get rid of those problems

arising from standard normalisation methods. It divides signing space of signers into

grids and describes the trajectory of a joint as a sequence of grids (see Figure 4.2).

(a) Grid structure in x, y directions (b) Grid structure in z, y directions

Figure 4.2: Grid structure of the signing space

Definition 4.1. A joint path is a sequence J = (j1, ..., j|J |), denoted by P , where

41



ji = (jxi
, jyi , jzi) for i ∈ [1 : |J |] and jxi

, jyi , jzi ∈ N represents a grid with its

x, y and z positions and |J | is the number of frames. Joint path for a joint contains

grids through which that joint passes during the production of a sign.

The following properties of the grid structure make it an appropriate normalisation

method for automatic SLR:

1. The signer space is divided into grids based on the position of the signer so that

differences in signer position according to Kinect® device have no influence on

the recognition process.

2. The enumeration of grid cells is done based on a point on the body of the signer

which ensures that location parameter of signs is invariant to inter-signer dif-

ferences while variations of different signs in location parameter are preserved.

3. The size of the grid cells are adjusted according to length of arms of the signer

which reduces influence of physical properties of signers on the movement pa-

rameter of signs.

4. Using grid structure to describe path of the joints reduces resolution of the

movements. Reducing resolution helps recognition system define an acceptable

error rate on the location and the movement of signs. Changing the size of the

grids, it is possible to increase or decrease the defined acceptable error rate.

After normalisation, a sign is represented as a set of joint paths each of which keeps

track of trajectory of a joint during the production of that sign. Because joint paths for

a sign are obtained from the frames of a single skeleton, the number of frames (num-

ber of elements in a joint path sequence) is the same for all joint paths belonging to a

single production of a sign. Though, it might have different values for distinct produc-

tion of the same signs by the same signer. As a result, training and test data extracted

from skeletons will possibly have some non-linear variations in time. Therefore, this

thesis uses DTW which is an adequate technique for classifying trajectories of joints

in the manner that it can evaluate joint paths independent of non-linear variations in

the characteristics of the data.
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4.4 A DTW Based Distance Determination

Various methods are available for aligning two time-dependent sequences which dif-

fers by an unknown shift in time. Cross-correlations and DTW are some examples of

these methods. Cross-correlations is effectively used in signal processing for search-

ing a small sequence in a larger one or finding the best alignment between two se-

quences in x-axis. Although it is well-suited to align two time-dependent sequences

one of which is shifted linearly in time, it may align sequences having non-linear vari-

ations incorrectly. On the other hand, DTW is designed to align two time-dependent

sequences having non-linear variations in time. Because, in SLR, samples from dif-

ferent subjects differ from each other non-linearly in time, DTW is the most conve-

nient method to align these samples in time. Therefore, DTW is used to determine a

measure of distance between two joint paths in order to get rid of non-linear variations

in time.

The measure of distance between two joint paths is the cost of aligning them optimally

using DTW. Let U = (u1, ..., uN) and Z = (z1, ..., zM) be two joint paths of length

N and M, respectively. Then a distance function, d : P × P → N≥0, can be defined.

Computation of d is the same as DTW. LetD be the accumulated cost matrix obtained

from local cost matrix C of size N ×M where C(n,m) = c(un, zm) is the distance

between two elements (grid cells) of sequences U and Z. Then,

d(U,Z) = D(N,M). (4.1)

Distance between grid cells can be calculated using L1 distance, i.e. Manhattan dis-

tance, L2 distance, i.e. Euclidean distance or sum of squared differences (SSD).

Equation 4.2, Equation 4.3 and Equation 4.4 show the calculation of L1 distance,

L2 distance and SSD, respectively.

c(a, b) = ||a, b||L1 = (ax − bx) + (ay − by) + (az − bz), (4.2)

c(a, b) = ||a, b||L2 =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2, (4.3)

c(a, b) = ||a, b||SSD = (ax − bx)2 + (ay − by)2 + (az − bz)2, (4.4)
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where a and b are two grid cells. The best distance measure will be chosen based on

the experiments.

Because DTW is symmetric, the distance function d is also symmetric, i.e. the value

returned does not change when the order of the parameters changes. Since the mea-

sure returned by d is the distance between the joint paths, it is called the dissimilarity

function. It means that the lower the value it returns is, the more similar the joint

paths are. The distance between the joint paths is used in determining the similarity

between the signs which consist of a set of the joint paths. Normally, a single sign

produced by a signer can be represented by the path of the joints that are listed in Sec-

tion 2.1. However, only a small subset of them is used for recognition in the scope

of this thesis, because some of the joints are non-discriminative for SLR and bring

nothing more than computational cost.

Although all discriminative features of sign language structure are related to hands

and face of the signers, elbows are also included in the set of joints which are used for

determining similarity of signs. The reason why elbows show discriminative charac-

teristics in distinct signs is that elbows are passively involved in some signs by being

referenced by the active hand and that their position and movement have a connection

with the palm orientation feature, that is signs differing in palm orientation probably

differs also in location and movement of elbows. Therefore, not only trajectories of

the hands but also that of elbows are included in the recognition process. Then, a sign

data, is represented as set of joint paths.

Definition 4.2. A sign graph, denoted by S , is defined to be the set of joint paths

extracted from skeleton data obtained during the production of a sign by a signer. It

is a set of joint paths of hands and elbows.

S = {Srh,S lh,Sre,S le}, (4.5)

where Srh,S lh,Sre,S le ∈ P represent joint paths of right hand, left hand, right elbow

and left elbow, respectively.

Although sign graphs are not related to graph theory, it is named as a graph since it

is a set of joint paths and these paths form a graph-like structure when connected to

each other. Without a loss of generality, the set of joint paths representing a sign is
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referred as sign graph in the rest of this thesis.

In order to classify sign graphs using k-NN, we need to define a dissimilarity measure

between them. Let V = {V rh, V lh, V re, V le} and G = {Grh, Glh, Gre, Gle} be two

sign graphs where V rh, V lh, V re, V le, Grh, Glh, Gre, Gle ∈ P; then, a dissimilarity

function, ∆ : S × S → N≥0 can be defined. To compute dissimilarity between two

sign graphs, the joint path dissimilarity function, d, is used as follows:

∆(V,G) =



∞ if V, G different-handed.

d(V rh, Grh) + d(V re, Gre) if V, G are right-handed.

d(V lh, Glh) + d(V le, Gle) if V, G are left-handed.

(d(V lh, Glh) + d(V le, Gle)+

d(V rh, Grh) + d(V re, Gre))/2 if V, G are both-handed.

(4.6)

Because the dissimilarity function for joint paths is symmetric, the dissimilarity func-

tion for sign graphs is also symmetric. Being a symmetric function should not be

confused with being able to recognise a sign independent of that the signer is left-

handed or right-handed. It only guarantees that the function returns the same value

independent of the order of parameters, sign graphs in this case. Note that the dissim-

ilarity function ∆ is infinite when both signs are one-handed but different hands are

used or one of the signs is one-handed and the other one is two-handed. Thus, when

it is given two sign graphs of the same sign produced by left-handed and right-handed

signers, the distance between them is returned as infinity.

4.5 KNN Based Classification

Having a dissimilarity measure for sign graphs, we can classify them using k-NN.

In our case, aim is to determine label of a sign graph. Classification is performed

in two stages. In the first stage, k closest examples are chosen from the training

set based on their distances to test example, measured using sign graph dissimilarity

function, ∆. In the second stage, two different approaches are applied. The first

approach returns the r most voted labels among the k chosen training examples while

in the second approach, the r most weighted labels are returned such that the closer a

training example is the more weight its label has.
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Let T = t1, ..., tk be the set of k closest training samples to the test sample q where

ti, q ∈ S for i : [1 : k], bi ∈ be the label of ti and H = (h1, ..., h|H|) be the set of

labels. Then, the vote or the weight of each label hj ∈ H is calculated as:

vote(hj) =
k∑

i=1

e(hj, bi), (4.7)

weight(hj) =
k∑

i=1

1

∆(q, ti)
e(hj, bi), (4.8)

where j ∈ |H|, ∆ is sign graph dissimilarity function and e is a function which return

1 if its parameters match, 0 otherwise. After the vote or the weight of each label is

determined, labels are sorted based on these values and topmost r labels are returned.

For r = 1, it is classical k-NN which returns only one result. For r > 1, more than

one result is returned to improve recognition rate.

Since k-NN is a lazy learner, all computation is deferred until run-time, which means

that there is no learning phase before run-time. Although the lazy learner charac-

teristic of k-NN would cause excessive memory usage and high computational cost

for large training sets, it does not yield such problems in our case due to the con-

densed structure of sign graphs. As sign graphs are obtained by extracting necessary

information from raw sign data, they occupy less memory compared to raw sign data.

Moreover, training set of sign graphs can be saved into and loaded from disc. Hence,

processed training data can be loaded into memory before classification takes place

and this reduces the computation cost of the classification process. In addition, the

condensed structure of sign graphs also helps in reducing computational cost by im-

proving performance of distance function, d.

The choice of k is determined according to the results of the experiments. Exper-

iments are performed with different k values and the one giving the best results is

chosen.

Algorithm 4.1 shows the whole process to determine the label of a test example using

the training set consisting of sign graphs.
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Algorithm 4.1: SLR Recognition

Input: Test sample q, Training set T of length |T | where T [i] ∈ S
Output: Label of q

// Variables

S : Array[q.numberOfFrames] // Sign graph of q

K : Array[k] // Stores k closest sample

// Normalization of q

for i← 1 to q.numberOfFrames do

foreach joint j in (rh, re, lh, le) do

S[i]jx ← (int)(q[i]jx − basepointx)/gridSize

S[i]jy ← (int)(q[i]jy − basepointy)/gridSize
S[i]jz ← (int)(q[i]jz − basepointz)/gridSize

end

end

// Choose the k closest example

for i← 1 to T do

if ∆(S, T [i]) < any of elements in K then

K.insert(T [i]) // replaces an element

end

end

// Compute the votes and the weights of the labels

for i← 1 to k do

// Increase votes or add weight

vote [Label(T [i])]← vote [Label(T [i])] + 1

weight [Label(T [i])]← weight [Label(T [i])] + (1/∆(S, T [i]))

end

// Sort in descending order

SortDesc (vote)

SortDesc (weight)

// Return the label having the most vote or weight

labels← vote (1 : r) // or

labels← weight (1 : r)
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, details of the experiments are given. In Section 5.1, the dataset used

in the experiments is introduced. In Section 5.2, optional parameters of the methods

used in this thesis are analysed to find the optimal values. Then, results of the exper-

iments performed with the chosen parameters are given in Section 5.3. Note that, all

results are given as the percentage of the recognition rate. Recognition rate gives the

ratio of the number of classifications in which the correct result is between returned r

results to the number of total classifications performed.

5.1 Dataset: DGS Kinect® 40

The dataset (also used by Ong et al. [50]) consists of German Sign Language signs

captured using Kinect® sensor. Sign data are stored as frame-by-frame skeletons of a

signer. OpenNI® framework is used for skeleton tracking. Therefore, movements of

the joints described in Section 2.1 in 3D space can be extracted easily from the set.

In the scope of this study, joint paths of the hands and the elbows are extracted from

skeleton data to generate sign graphs.

The dataset contains 40 signs, a mixture of similar and dissimilar signs, each of which

is produced 5.6 times on average by 13 different signers.1 Since signers of different

age and physical properties generated the data set, it includes examples with inter-

signer differences. Moreover, all the signers in this set are non-native signers which

1 The dataset contains signs from 15 different signers, actually. Because data of 2 signers have inconsistencies
in arm length during the utterances of some signs, they are excluded from the dataset.
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causes the set to have intra-signer differences. In other words, distinct production

of the same sign by the same signer may also have some differences. Containing

complex data in terms of number of signs and properties of signers, this data set is

considered as an appropriate one to test the proposed method.

5.2 Analysing the Parameters of The Proposed Method

Some choices should be made for the values of variable parameters through the way

of sign recognition using the proposed method. The parameters having the most

noticeable influence on recognition process are the value of k in k-NN and the size

of the grid cells which is used in the normalisation of the raw skeleton data into the

joint paths. Another parameter is the way of computing votes in k-NN. Available

choices for this parameter are voting by counting and voting by using weight of the

neighbours. All of these parameters are decided based on the experimental results.

Figure 5.1: Visualisation of the signer-dependent results with different k and grid size

values
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Table 5.1: Average results of the signer-dependent experiments and standard devia-
tions for different values of k and grid size

Grid size k Result (%) Std. deviation (%)
0.08 1 90.9 4.4
0.08 2 90.7 4.4
0.08 3 89.7 4.5
0.08 4 89.4 4.6
0.11 1 91.0 3.8
0.11 2 91.0 3.8
0.11 3 89.6 4.2
0.11 4 89.2 4.6
0.15 1 90.0 3.6
0.15 2 90.0 3.6
0.15 3 88.9 4.1
0.15 4 88.2 4.0

Because the influence of the value of k and the grid size on the recognition process is

not mutually exclusive, experiments are performed by changing the value of the both

to find the most appropriate combination of them. Values of k and grid size are de-

cided separately for signer-dependent and signer-independent experiments. Table 5.1

shows the average results of signer-dependent experiments conducted with different

k and grid size values. It also gives the standard deviation of the signer-based results

which shows how much results differ from each other as different signers become the

test object. Table 5.2 shows the same thing for the signer-independent experiments.

Figure 5.1 and Figure 5.2 visualise Table 5.1 and Table 5.2, respectively. The lower

the standard deviation is the higher consistency the recognition process has. Measure

of grid size is given as the ratio of its side length to the arm length of the signer.

Therefore, it is not constant, but changes proportionally to the length of the signer.

According to the results, there exists a gap close to 3 percent between the best and the

worst combinations of the value of k and the grid size for both the signer-dependent

and the signer-independent experiments. This shows how important choosing the

right values for these parameters is. In the signer-dependent experiments, the best

results are obtained when grid size = 0.11 and k = 1. In the signer-independent

experiments, the best results are obtained when grid size = 0.11 and k = 10.
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Figure 5.2: Visualisation of the signer-independent results with different k and grid

size values

The other parameter to be decided is the method to be used (Equation 4.7 or 4.8) for

deciding label of a sign after nearest neighbours are determined. In Equation 4.7, all k

examples have the same effect on determining the label independent of distance. On

the other hand, in Equation 4.8, the weight of each sample decreases as the distance

between it and the test sample increases. Results in the Table 5.2 are obtained using

Equation 4.8. To decide which of them yields better results, top 5 combinations in

Table 5.2 are chosen and experiments are repeated with the first equation (see Figure

5.3).

Table 5.3 compares the results and the standard deviations obtained by using func-

tions in Equation 4.7 and 4.8 in the second phase of k-NN. The weighted results are

obtained with the latter equation. It is clearly seen that the performance decreases

when count function is applied. On the other hand, standard deviations do not show

any stable tendency for increasing or decreasing; that is, equations used in the second

phase of k-NN have no specific effect on standard deviation of signer-based results.

Taking these experiments into consideration, it can be concluded that using weight
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Table 5.2: Average results of the signer-independent experiments and standard devi-
ations for different values of k and grid size

Grid size k Result (%) Std. deviation (%)
0.08 7 58.8 6.5
0.08 10 58.6 6.8
0.08 15 59.0 7.0
0.08 20 58.7 6.8
0.08 25 58.9 7.4
0.11 7 59.2 7.0
0.11 10 59.3 6.6
0.11 15 59.1 6.9
0.11 20 59.2 6.7
0.11 25 58.7 7.4
0.15 7 56.6 7.1
0.15 10 57.4 7.6
0.15 15 57.5 7.2
0.15 20 57.7 7.2
0.15 20 57.4 6.5

function instead of count function is much more desirable.

Table 5.3: Results and std. deviations of the experiments performed with weight and
count functions. Top 5 grid size-k combinations in the Table 5.2 are used.

Result (%) Std. deviation (%)
Grid size k Weight Count Weight Count

0.11 10 59.3 58.1 6.6 6.6
0.11 20 59.2 58.1 6.7 7.1
0.11 7 59.2 58.1 7.0 6.5
0.11 15 59.1 58.4 6.9 6.7
0.08 15 59.0 57.9 7.0 7.0

Besides the grid size, the value of k and the voting function, the distance measure

between grid cells should also be decided based on the experiments. Three different

distance measures are used in the experiments, Manhattan distance (L1 distance),

Euclidean distance (L2 distance) and sum of squared differences (SSD). Equation

4.2, Equation 4.3 and Equation 4.4 show the calculation of these distance measures,

respectively. Figure 5.4 compares the distance measures for the best 5 combinations

53



Figure 5.3: Visualisation of Table 5.3

Figure 5.4: Comparison of two distance measures for the best 5 combinations of grid

size and value of k

of grid size and value of k. According to the experiments, SSD performed better than

Manhattan distance and Euclidean distance. Therefore, SSD is used as the distance

measure between grid cells in the scope of this thesis.

5.3 Results

Because the data set consists of signs captured from different signers, it is possi-

ble to perform both signer-dependent and signer-independent experiments. Signer-

dependent experiments evaluate the recognition performance of the system in situ-
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ation where intra-signer differences are available while signer-independent experi-

ments test the system for the situations where both intra-signer and inter-signer dif-

ferences are available. The details of the experiments are given in the following sub-

sections.

5.3.1 Signer-Dependent Experiments

In signer-dependent experiments, a test sample obtained from a signer is classified

using the training set consisting of samples from that signer. It measures performance

of the proposed method for the systems which is trained and used by only one signer

(see Table 5.4). Experiments are conducted separately for each signer.

Table 5.4: Results (recognition rates) of the signer-dependent experiments for each
signer (%)

P1 P2 P3 P4 P5 P6 P7
90.4 94.7 91.5 91.8 87.5 94.2 87.7

P8 P9 P10 P11 P12 P13 Avg.
90.5 96.6 81.8 91.8 94.4 90.8 91.0

It can be seen that the recognition rate for signer 10 is 10% below average. Because

the dataset contains signs performed by non-native signers, it has high intra-signer

differences. As a result, recognition performance of some signers may stay under the

average. If the system were trained with native signers, recognition rates would be

higher. Still, having average recognition rate of 91% for 40 signs, it can be concluded

that the proposed method is convenient to be used with signer-dependent systems.

5.3.2 Signer-Independent Experiments

Signer-independent experiments are more suitable to the real world situations since

the aim of an SLR system is to establish communication with different signers. In the

signer-independent experiments, samples obtained from a single signer are reserved

as test set and excluded from the remaining data set, known as the training set. This

type of experiments are referred to as signer-based experiments in this study. Signer-

55



Table 5.5: Comparison of the recognition rates (%) of the signer-independent experi-
ments for r = 1

Markov Chain [12] SP-Boosting [48] SP Tree [50] Sign Graph
P1 60.4 65.1 64.2 46.3
P2 50.2 49.6 50.0 64.1
P3 55.9 57.9 52.9 53.5
P4 54.1 56.6 57.1 60.7
P5 38.9 41.8 48.2 59.1
P6 62.3 64.2 65.2 61.1
P7 46.0 53.6 54.7 57.6
P8 53.1 53.5 54.6 66.7
P9 53.8 70.4 75.2 -

P10 50.0 52.2 50.2 64.7
P11 42.8 44.5 44.2 53.0
P12 52.7 56.5 57.9 65.2
P13 50.3 53.7 55.2 67.4
P14 38.5 44.2 45.7 51.5

Avg. 50.6 54.6 55.4 59.3
Std. dev. 7.13 8.2 8.4 6.6

based experiments are repeated for each signer to compute the average recognition

rate. Performing signer-based experiments for each signer is a good example of cross-

validation technique. Results in Table 5.2 and Table 5.3 are obtained by averaging

results of the signer-based experiments for all signers. Standard deviations are also

computed according to these experiments.

The dataset was also used by Eng-Jon Ong et. al. [50] to test their Sequential Pattern

Tree classifier. They also conducted experiments by processing the data using SP-

Boosting proposed by Ong and Bowden [48] and Markov Chain proposed by Cooper

et al. [12] to compare their results. Thus, results of the proposed method in this study

are compared to the results of their experiments. The experiments are performed in

the same way, i.e. signer independent and with different values of r, using the same

data set. Remember that r is the number of results the classifier returns.

Table 5.5 and Table 5.6 show average recognition rates and recognition rates of each

signer-based experiment for Sign Graph, SP Tree [50], SP-Boosting [48] and Markov

Chain [12] for different values of r. Beside recognition rates, standard deviations of
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Table 5.6: Comparison of the recognition rates (%) of the signer-independent experi-
ments for r = 4

Markov Chain [12] SP-Boosting [48] SP Tree [50] Sign Graph
P1 88.2 91.0 88.2 73.7
P2 80.6 85.4 85.4 92.2
P3 92.6 95.0 88.2 78.5
P4 79.5 85.4 85.8 77.1
P5 68.5 80.8 78.9 82.7
P6 89.7 92.6 91.6 85.6
P7 75.7 84.6 85.9 84.4
P8 84.0 91.0 93.3 90.1
P9 83.3 95.2 96.2 -

P10 84.9 88.3 84.9 86.8
P11 73.7 84.1 79.9 77.5
P12 78.7 90.3 94.7 87.5
P13 81.4 86.9 89.5 86.7
P14 72.1 84.1 82.3 80.0

Avg. 80.9 88.2 87.5 83.4
Std. dev. 6.9 4.4 5.3 5.7

the results of the signer-based experiment are also given.

Compared to other methods, Sign Graph, the proposed method, does better in r = 1

case. It outperforms SP Tree by %4, SP-Boosting by %5 and Markov Chain by %9.

Furthermore, standard deviation values show that the Sign Graph method has more

tolerance to inter-signer differences. One possible reason why Sign Graph performs

better is its approach for handling movement of hands in detail. Another reason is

the effect of DTW on decreasing inter-signer differences in time dimension. Despite

better results of Sign Graph method in r = 1 case, recognition performances of SP-

Boosting and SP Tree methods pass that of Sign Graph by %5 and %4, respectively,

in r = 4 case. But, returning more than one result is inconsistent with the nature of

Automatic Sign Language Recognition. In addition, it may not be feasible for the real

world situations. Therefore, Table 5.5 is more meaningful to compare performance

of the given classification methods.

Signer-independent experiments are also performed with smaller training sets to as-

sess recognition performance as the number of training samples decreases. To this
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Figure 5.5: Avg. results of the signer-independent experiments with different r values

end, number of utterances of each sign by each signer is decreased gradually and the

experiments are executed 7 times in each step. Random samples are extracted from

signer’s data in each execution for better generalisation of the results. This type of ex-

periments are also called 7-fold cross validation. The value of k is equal to 10 and the

grid size is equal to 0.11 for all of the experiments. Table 5.7 shows the recognition

rates with different number of samples per sign for each user and Figure 5.6 visualise

Figure 5.6: Recognition rates (%) with different number of samples per sign for each

user
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the change in recognition rates. Results show that the recognition performance of the

system is affected slightly from the decrease in the number of training samples. The

greatest gap between recognition rates occurs when the number of samples decrease

to 1 from 2. The recognition rate is still acceptable when the number of samples per

sign for each user is equal to 1. Therefore, it can be concluded that the system does

not require large training sets to operate. It can perform well even when the sufficient

number of the training samples are not available.

Table 5.7: Recognition rates (%) with different number of samples per sign for each

user
Number of samples per

sign for each signer
Recognition rate (%)

1 54.12

2 58.24

3 58.18

4 58.88

5 59.69
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, a summary of the proposed method is given and it is assessed by

considering its strengths and weaknesses. In Section 6.1, the proposed method is

summarised and advantages of it are described. In Section 6.2, weaknesses of the

proposed method are described and what can be done in the future to get rid of these

weaknesses are described.

6.1 Summary and Advantages

This thesis presented a novel approach for SLR which makes use of Kinect®. Using

Kinect® sensor to capture sign gestures yields a system which requires more use-

ful and simpler environmental setup compared to the systems using data gloves or

combination of cameras. Kinect® is a ready-to-use sensor which can detect users

without need of explicit calibration and start tracking immediately whereas other sen-

sors, generally, require complex environmental setup and calibration. Some systems

even require recalibration for separate users. In this manner, use of Kinect® sensor

makes the proposed method advantageous in terms of system setup and mobility. The

proposed system also gets benefit of Kinect® in terms of accuracy. Through its em-

bedded depth camera, colour camera and infrared sensor, Kinect® provides locations

of skeleton joints accurately. While mobility and ease of use are preferred properties,

they do not have direct influence on recognition process. On the other hand, accu-

racy of the input device is crucial for the success of the recognition process. Another

benefit of using Kinect® is real-time tracking of body joints. It would not be possible
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to recognise signs in real-time unless the input device was not able to track skeletons

in real-time. Employing Kinect® sensor as input device leads to easy environmental

setup and accurate and real-time tracking. At the same time, it provides less detail

compared to data gloves used by some SLR systems. Lack of information about posi-

tion and constellation of the fingers affects recognition process negatively since hand

shape is one of the most discriminative parameters of signs. As a future work, it is

possible to improve the present system to estimate hand shape using the integrated

depth and video camera of Kinect® without losing advantages of it.

In the scope of this thesis, normalisation of signs are done by dividing the signing

space into grids. Then, a sign is described as a vector of sequences where each se-

quence contains the grid cells which a joint passes through during the utterance of a

sign. Since the proposed normalisation method is robust to the changes in the arm

length of the signers, the system is not affected by physical differences of the users.

Moreover, using it the system gains the ability to compensate differences in the ut-

terances of a sign due to different signing styles of the users. Besides, normalisation

makes the system invariant to the shifting, that is the position of the signer according

to the sensor. In real world situations, it is important for an SLR system to perform

well independent of the signer. The proposed system achieves that by being invariant

to the changes that arise when different signers use the system.

The proposed method employs k-NN, an instance-base learning (IBL) method, for

the classification process. IBL methods have some advantages and disadvantages

compared to other classification methods. One advantage of them is the absence of the

explicit training step. The system gets rid of complex implementation of the training

phase by using an IBL method. Moreover, enhancing the training set is much more

easy than the classification methods which require explicit training since the models

and the structures do not need to be recreated. Another advantage of k-NN over other

classification methods is the size of the required training set. While methods like

HMM and ANN need large training sets to create effective models and structures, k-

NN can operate well on relatively small training sets by assigning optimal value to k.

On the other side, deferring all computation until run time, use of IBL methods with

very large training sets may cause excessive memory usage and high computational

cost. As a result, recognising signs in real time may not be possible. However,
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experiments show that the recognition performance of our method is effected slightly

from the decrease in the number of training samples. Consequently, memory usage

and computational cost will not be a problem since there is no need for large databases

to obtain adequate recognition performance.

6.2 Limitations and Future Work

The system is not intended to replace a sign language interpreter due to some draw-

backs. The first of them is the fact that the system expects isolated signs as input.

Signers require to take their hands down between consecutive signs. It is not some-

thing that an interpreter can expect from the signers. This issue can be prevailed by

improving the system to detect end and start points of the signs and recognise con-

tinuous signs. The other drawback is the fact that inter-signer differences cause the

recognition performance of the system reduce dramatically. In other words, when a

signer who is not participated in training becomes the test object the recognition rate

decreases. The system does well in a signer-dependent environment with recognition

rate of 91.0% while this number reduces to 59.3% in a signer-independent environ-

ment. It is possible to overcome this issue by adding a hand shape recogniser to the

system. Moreover, tracking wrists and hands separately may also increase the recog-

nition performance (Because the dataset contains only positions of the hands it was

not possible to do that in the scope of this thesis.). Although the aim of the study was

not to develop a commercial sign language recogniser, the proposed system can be

used as a basis for a commercial SLR system.
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