
B+ Tree and Hashing

• B+ Tree Properties
• B+ Tree Searching
• B+ Tree Insertion
• B+ Tree Deletion
• Static Hashing
• Extendable Hashing
• Questions in pass papers

– Balanced Tree
• Same height for paths from root to leaf
• Given a search-key K, nearly same access time

for different K values

– B+ Tree is constructed by parameter n
• Each Node (except root) has n/2 to n pointers
• Each Node (except root) has n/2-1 to n-1

search-key values

B+ Tree Properties

P1 P2 P3

K1 K2

Case for n=3

P1

K1 K2 Kn-1

P2 Pn-1 Pn

General case for n

B+ Tree Properties

Tutorial 8.1
• Search keys are sorted in order

– K1 < K2 < … <Kn-1

B+ Tree Properties

P1 P2 P3

K1 K2

S1 S2 S3
Key values in S1 < K1

K1 <= Key values in S2 < K2

K1 K2

Record of K1 Record of K2

Record of K2

…

P1 P2

P3 …
•Leaf Node

–Pi points record or bucket with
search key value Ki
–Pn points to the neighbor leaf
node

•Non-leaf Node
–Each key-search values in subtree Si

pointed by Pi < Ki, >=Ki-1

Tutorial 8.2
• Given a search-value k

– Start from the root, look for the largest search-
key value (Kl) in the node <= k

– Follow pointer Pl+1 to next level, until reach a
leaf node

– If k is found to be equal to Kl in the leaf, follow
Pl to search the record or bucket

B+ Tree Searching

Pl+1

K1 K2 Kn-1

P2 Pn-1 PnP1 P3

… Kl Kl+1

Kl<=k<Kl+1

Record of Kl

Record of Kl

…

Kl Kl+1

Pl k = Kl

Tutorial 8.3
• Overflow

– When number of search-key values exceed n-1
7 9 13 15 Insert 8

–Leaf Node
•Split into two nodes:

–1st node contains (n-1)/2 values
–2nd node contains remaining values
–Copy the smallest search-key value of the 2nd node
to parent node

7 8

9

B+ Tree Insertion

9 13 15

Tutorial 8.3
• Overflow

– When number of search-key values exceed n-1

B+ Tree Insertion

7 9 13 15 Insert 8

–Non-Leaf Node
•Split into two nodes:

–1st node contains n/2 -1 values
–Move the smallest of the remaining values, together
with pointer, to the parent
–2nd node contains the remaining values

7 8 13 15

9

Tutorial 8.3
• Example 1: Construct a B+ tree for (1,

4, 7, 10, 17, 21, 31, 25, 19, 20, 28, 42)
with n=4.

B+ Tree Insertion

1 4 7
1 4

7

7 10

7 17

1 4 7 10 17 21

• 1, 4, 7, 10, 17, 21, 31, 25, 19, 20, 28, 42

B+ Tree Insertion

1 4 7 10

7

17 21

17

25 31

25

1 4 7 10

7

17 19 20 25 3121

20 25

17

Tutorial 8.3
• 1, 4, 7, 10, 17, 21, 31, 25, 19, 20, 28, 42

B+ Tree Insertion

1 4

7 10

7

17 19

20 21

20 25

17

25 28

31 42

31

Tutorial 8.3
• Example 2: n=3, insert 4 into the

following B+Tree

B+ Tree Insertion

9 10

7 8

2 5 Leaf
A

Leaf
B

Subtree
C

Subtree
D

7

4 8

42

10

9

C D

A B5

Tutorial 8.4B+ Tree Deletion
• Underflow

– When number of search-key values < n/2-1
–Leaf Node

•Redistribute to sibling
•Right node not less than left node
•Replace the between-value in parent
by their smallest value of the right
node

•Merge (contain too few entries)
•Move all values, pointers to left node
•Remove the between-value in parent

9 10 Delete 10

9 10 13 14

13

16

18

9 13 14 16

14 18

9 10 13 14

13 18 22

9 13

18

14

22

Tutorial 8.4B+ Tree Deletion

–Non-Leaf Node
•Redistribute to sibling

•Through parent
•Right node not less than left node

•Merge (contain too few entries)
•Bring down parent
•Move all values, pointers to left
node
•Delete the right node, and pointers
in parent

9 10 Delete 10

9 10 14 15

13

16

18

9 13 15 16

14 18

9 10 14 16

13 18 22

9 13

18

14

22

16

Tutorial 8.4
• Example 3: n=3, delete 3

B+ Tree Deletion

5 20

3

1 3

8 Subtree
A

5 8

1

20

Subtree
A

Tutorial 8.4
• Example 4: Delete 28, 31, 21, 25, 19

B+ Tree Deletion

1 4 7 10 17 19

7 17 25 31 50

20

20 21 25 28 31 42

7 17 25 50

20

1 4 7 10 17 19 20 21 25 31 42

Tutorial 8.4
• Example 4: Delete 28, 31, 21, 25, 19

B+ Tree Deletion

177 20

17 19 20 25 42

50

1 4 7 10

7 17 50

1 4 17 20 427 10

Tutorial 8.5
• A hash function h maps a search-key value K to an

address of a bucket
• Commonly used hash function hash value mod nB

where nB is the no. of buckets
• E.g. h(Brighton) = (2+18+9+7+8+20+15+14) mod

10 = 93 mod 10 = 3

Static Hashing

350A-305Round Hill

750A-217Brighton

Hash function h
.
.

.

.

No. of buckets = 10

Tutorial 8.6

• Hash function returns b bits
• Only the prefix i bits are used to hash the item
• There are 2i entries in the bucket address table
• Let ij be the length of the common hash prefix for data bucket

j, there is 2(i-ij) entries in bucket address table points to j

Extendable Hashing
i

i2
bucket2

i3

bucket3

i1

bucket1

Data bucket

Bucket address table

Length of common hash prefixHash prefix

Tutorial 8.6
• Splitting (Case 1 ij=i)

– Only one entry in bucket address table points to data
bucket j

– i++; split data bucket j to j, z; ij=iz=i; rehash all items
previously in j;

Extendable Hashing

2

00
01
10
11

2

2

1

3

3

2

1

3

000
001
010
011
100
101
110
111

Tutorial 8.6
• Splitting (Case 2 ij< i)

– More than one entry in bucket address table point to data
bucket j

– split data bucket j to j, z; ij = iz = ij +1; Adjust the pointers
previously point to j to j and z; rehash all items previously
in j;

Extendable Hashing

2

2

1

3

000
001
010
011
100
101
110
111

2

2

2

3

000
001
010
011
100
101
110
111 2

Tutorial 8.6
• Example 5: Suppose the hash function is h(x) = x

mod 8 and each bucket can hold at most two
records. Show the extendable hash structure after
inserting 1, 4, 5, 7, 8, 2, 20.

Extendable Hashing

1 4 5 7 8 2 20
001 100 101 111 000 010 100

1
4

00

1

11

4
5

1

0

1

00

01

10

11

1
8

1

2

4
5

2

7

2

Tutorial 8.6

3

000

001

010

011

100

101

110

111

1
8

2

4
20

2

7

2

2

3

5

3

1
8

2

2

2

2

4
5

2

7

2

00

01

10

11

inserting 1, 4, 5, 7, 8, 2, 20
1 4 5 7 8 2 20
001 100 101 111 000 010 100

Extendable Hashing

Tutorial 8.796-97 Final Q9.

1
8

1

4
5

2

7

2

2

00

01

10

11

Suppose the hash function h(x) =x mod 8,
each bucket can hold at most 2 records.

Show the structure after inserting “20”

Tutorial 8.796-97 Final Q9.

3

000

001

010

011

100

101

110

111

1
8

4
20

2

7

2

3

5

3

	Slide 1
	Slide 2
	B+ Tree Properties
	B+ Tree Searching
	B+ Tree Insertion
	B+ Tree Deletion
	Static Hashing
	Extendable Hashing
	Questions in pass papers

	Slide 3
	Balanced Tree
	Same height for paths from root ...
	Given a search-key K, nearly sam...
	B+ Tree is constructed by parame...
	Each Node (except root) has n/2...
	Each Node (except root) has n/2...

	Tutorial 8.1
	Search keys are sorted in order
	K1 < K2 < … <Kn-1

	Tutorial 8.2
	Given a search-value k
	Start from the root, look for th...
	Follow pointer Pl+1 to next leve...
	If k is found to be equal to Kl ...

	Tutorial 8.3
	Overflow
	When number of search-key values...

	Tutorial 8.3
	Overflow
	When number of search-key values...

	Tutorial 8.3
	Example 1: Construct a B+ tree f...

	Slide 9
	1, 4, 7, 10, 17, 21, 31, 25, 19,...

	Tutorial 8.3
	1, 4, 7, 10, 17, 21, 31, 25, 19,...

	Tutorial 8.3
	Example 2: n=3, insert 4 into th...

	Tutorial 8.4
	Underflow
	When number of search-key values...
	Leaf Node
	Redistribute to sibling
	Right node not less than left no...
	Replace the between-value in par...
	Merge (contain too few entries)
	Move all values, pointers to lef...
	Remove the between-value in pare...
	Tutorial 8.4
	Non-Leaf Node
	Redistribute to sibling
	Through parent
	Right node not less than left no...
	Merge (contain too few entries)
	Bring down parent
	Move all values, pointers to lef...
	Delete the right node, and point...
	Tutorial 8.4
	Example 3: n=3, delete 3

	Tutorial 8.4
	Example 4: Delete 28, 31, 21, 25...

	Tutorial 8.4
	Example 4: Delete 28, 31, 21, 25...

	Tutorial 8.5
	A hash function h maps a search-...
	Commonly used hash function hash...
	E.g. h(Brighton) = (2+18+9+7+8+...

	Tutorial 8.6
	Hash function returns b bits
	Only the prefix i bits are used ...
	There are 2i entries in the buck...
	Let ij be the length of the comm...

	Tutorial 8.6
	Splitting (Case 1 ij=i)
	Only one entry in bucket address...
	i++; split data bucket j to j, z...

	Tutorial 8.6
	Splitting (Case 2 ij< i)
	More than one entry in bucket ad...
	split data bucket j to j, z; ij ...

	Tutorial 8.6
	Tutorial 8.6
	Tutorial 8.7
	Tutorial 8.7

