Bits, Bytes, and Integers

CENG331 - Computer Organization

Instructor:
Murat Manguoglu (Sections 1-2)

Unless otherwise noted adapted from slides of the textbook: http://csapp.cs.cmu.edu/
Assigment + Midterm Dates

- Bomb Lab: 24 October – 2 November (in Lab)
- Midterm I: week of November 4th (TBD)
- Attack Lab: 11-23 November (in Lab)
- Arch. Lab (take-home): 25 November – 8 December
- Midterm II: week of December 9th (TBD)
- Perf. Lab (take-home): 16-29 December
- Final: To be announced by the university
Hello World!

- What happens under the hood?
#include <stdio.h>

int main() {
 printf("Hello World");
}

Compilation of hello.c

Source program (text) → Pre-processor (cpp) → Modified source program (text) → Compiler (cc1) → Assembly program (text) → Assembler (as) → Relocatable object programs (binary) → Linker (ld) → Executable object program (binary)
Preprocessing

Source program (text)

#include <stdio.h>

int main() {
 printf("Hello World");
}

Modified source program (text)

1 "hello.c"
1 "<built-in>"
1 "<command line>"
1 "hello.c"
1 "/usr/include/stdio.h" 1 3 4
..................................
typedef unsigned char __u_char;
typedef unsigned short int __u_short;
typedef unsigned int __u_int;
typedef unsigned long int __u_long;
..................................
int main() {
 printf("Hello World");
}
```c
int main() {
    printf("Hello World");
}
```
Assembler

```
.file  "hello.c"
 .section
 .rodata
 .LC0:
     .string "Hello World"
 .text
 .globl main
 .type  main, @function
 main:
     pushl %ebp
     movl %esp, %ebp
     subl $8, %esp
     andl $-16, %esp
     movl $0, %eax
     addl $15, %eax
     addl $15, %eax
     shrl $4, %eax
     sal  $4, %eax
     subl $eax, %esp
     subl $12, %esp
     pushl $.LC0
     call  printf
     addl $16, %esp
     leave
     ret
 .size  main, .-
main
 .section
 .note.GNU-stack,"", @progbits
 .ident  "GCC: (GNU) 3.4.1"
```

```
00000500 nul nul nul nul esc nul nul nul nul nul nul nul nul nul nul
00000520 nul nul nul nul d etx nul nul nul nul nul nul nul nul nul
00000540 soh nul nul
00000560 soh nul nul nul etx nul nul nul nul nul nul nul nul nul nul
00000600 nul nul
00000620 nul nul nul nul + nul nul nul nul nul nul nul nul nul nul
00000640 nul nul nul nul d nul nul nul nul nul nul nul nul nul nul
00000660 nul nul nul nul etx nul nul nul nul nul nul nul nul nul nul
00000700 soh nul nul nul etx nul nul nul nul nul nul nul nul nul nul
00000720 ff nul nul
00000740 soh nul nul nul 8 nul nul
00000760 nul nul nul nul p nul nul
00000780 nul nul nul nul soh nul nul nul nul nul nul nul nul nul nul
00001000 nul nul
00001020 soh nul nul
00001040 2 nul nul
00001060 nul nul nul dcl nul nul etx nul nul nul nul nul nul nul nul nul
00001100 nul nul nul " nul nul nul Q nul nul nul nul nul nul nul nul
00001120 nul nul nul nul soh nul nul
00001140 stx nul nul
00001160 sp nul nul
00001200 die nul nul
00001220 nul nul nul nul L etx nul nul
00001240 nul soh nul nul nul nul
00001260 nul nul
00001300 nul nul
00001320 nul nul
00001340 nul nul
00001360 nul nul
00001400 nul nul
00001420 nul nul
00001440 nul nul
00001460 nul nul
00001500 nul nul
00001520 l o . c nul m a i n nul p r i n t f
00001540 nul nul nul nul sp nul nul nul nul soh nul nul nul nul nul nul nul nul nul
00001560 stx nul nul nul
0001564
```

```
as hello.s -o hello.o
```

```
od -a hello.o
```
Linker

Hello.o

printf.o

GCC hello.o -o hello

od -a hello

printf.o

hello.o

Linker (ld)

Executable object program (binary)

Relocatable object programs (binary)
Finally...

```
$ gcc hello.o -o hello
$ ./hello
Hello World$
```
How do you say “Hello World”?
Typical Organization of System

- CPU
 - Register file
 - ALU
 - Bus interface

- System bus
- Memory bus

- Main memory

- I/O bridge

- I/O bus

- USB controller
- Graphics adapter
- Disk controller
- Disk

- Mouse
- Keyboard
- Display

- Expansion slots for other devices such as network adapters

- "hello executable stored on disk"
User types "hello"

Reading hello command from keyboard

Expansion slots for other devices such as network adapters
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Logical Systems in Computers

- **Binary (0 and 1)**
 - Example: computers we are using today

- **Ternary (-1, 0, +1)**
 - Example: Setun ternary computer designed by Nikolay Brusentsov in the Soviet Union (1958 Moscow State University)

- **Decimal arithmetic**
Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
For example, can count in binary

- **Base 2 Number Representation**
 - Represent 15213_{10} as 11101101101101_2
 - Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
 - Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B$_{16}$ in C as
 - `0xFA1D37B`
 - `0xfa1d37b`

Q: Why a byte is 8-bits ?

A: Due to IBM 360 (~1964)

John von Neumann: “Young man, in mathematics you don't understand things. You just get used to them.”

Reply, according to Dr. Felix T. Smith of Stanford Research Institute, to a physicist friend who had said "I'm afraid I don't understand the method of characteristics," as quoted in The Dancing Wu Li Masters: An Overview of the New Physics (1979) by Gary Zukav, Bantam Books, p. 208, footnote.
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>–</td>
<td>–</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- **Bit-level manipulations**
- **Integers**
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- **Representations in memory, pointers, strings**
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not
- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>(\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A \oplus B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- **Operate on Bit Vectors**
 - Operations applied bitwise

 \[
 \begin{array}{c}
 01101001 & 01101001 & 01101001 \\
 \& 01010101 & | 01010101 & ^ 01010101 & ~ 01010101 \\
 \hline
 01000001 & 01111101 & 00111100 & 10101010
 \end{array}
 \]

- **All of the Properties of Boolean Algebra Apply**
Example: Representing & Manipulating Sets

- **Representation**
 - Width w bit vector represents subsets of \{0, ..., w–1\}
 - \(a_j = 1 \) if \(j \in A \)

 - 01101001 \{ 0, 3, 5, 6 \}
 - \textbf{76543210}

 - 01010101 \{ 0, 2, 4, 6 \}
 - \textbf{76543210}

- **Operations**
 - \& Intersection \quad 01000001 \quad \{ 0, 6 \}
 - \mid Union \quad 01111101 \quad \{ 0, 2, 3, 4, 5, 6 \}
 - \wedge Symmetric difference \quad 00111100 \quad \{ 2, 3, 4, 5 \}
 - \sim Complement \quad 10101010 \quad \{ 1, 3, 5, 7 \}
Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - ~0x41 → 0xBE
 - ~01000010 → 10111110
 - ~0x00 → 0xFF
 - ~00000000 → 11111111
 - 0x69 & 0x55 → 0x41
 - 01101001 & 01010101 → 01000001
 - 0x69 | 0x55 → 0x7D
 - 01101001 | 01010101 → 01111101
Contrast: Logic Operations in C

Contrast to Logical Operators
- &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)
- !0x41 → 0x00
- !0x00 → 0x01
- !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)
Contrast: Logic Operations in C

- **Contrast to Logical Operators**
 - `&&`, `||`, `!`
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- **Examples (char data type)**
 - `!0x41` → `0x00`
 - `!0x00` → `0x01`
 - `!!0x41` → `0x01`
 - `0x69 && 0x55` → `0x01`
 - `0x69 || 0x55` → `0x01`
 - `p && *p` (avoids null pointer access)

Watch out for `&&` vs. `&` (and `||` vs. `|`)… one of the more common oopsies in C programming
Shift Operations

- **Left Shift:** \(x \ll y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

- **Undefined Behavior**
 - Shift amount < 0 or \(\geq \) word size
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

short int x = 15213;
short int y = -15213;
Two-complement Encoding Example (Cont.)

\[x = 15213: \ 00111011 \ 01101101 \]
\[y = -15213: \ 11000100 \ 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum: 15213 - 15213
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - $000...0$
 - $U_{\text{Max}} = 2^w - 1$
 - $111...1$

- **Two’s Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - $100...0$
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - $011...1$

- **Other Values**
 - Minus 1
 - $111...1$

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 * Tmax + 1$

C Programming
- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

- Representations in memory, pointers, strings
Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
Mapping Signed \leftrightarrow Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

T2U U2T
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement \[x \] \[\rightarrow \] \[T2B \] \[\rightarrow \] \[T2U \] \[\rightarrow \] \[B2U \] \[\rightarrow \] \[ux \]

Maintain Same Bit Pattern

Relation between Signed & Unsigned

Large negative weight \[\textit{becomes} \]
Large positive weight

| \(ux \) | \(\underline{+} + + + \ldots \underline{+} + + + \) |
| \(x \) | \(- + + + \ldots + + + \) |
Conversion Visualized

- 2’s Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

Unsigned Range

- T_{Max}
- $T_{Max} - 1$
- $T_{Max} + 1$
- T_{Max}
- 0
- -1
- -2
- 0
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```
    tx = ux;
    uy = ty;
    ```
Casting Surprises

■ Expression Evaluation
 ▪ If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
 ▪ Including comparison operations <, >, ==, <=, >=
 ▪ Examples for \(W = 32 \):
 \[
 \text{TMIN} = -2,147,483,648, \quad \text{TMAX} = 2,147,483,647
 \]

■ Constant\(_1\)	Constant\(_2\)	Relation	Evaluation
0 | 0U | == | unsigned
-1 | 0 | < | signed
-1 | 0U | > | unsigned
2147483647 | -2147483647-1 | > | signed
2147483647U | -2147483647-1 | < | unsigned
-1 | -2 | > | signed
(\(\text{unsigned}\))-1 | -2 | > | unsigned
2147483647 | 2147483648U | < | unsigned
2147483647 | (\(\text{int}\)) 2147483648U | > | signed
Summary
Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Representations in memory, pointers, strings
Sign Extension

- **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)
Sign Extension Example

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, Truncating: Basic Rules

- **Expanding (e.g., short int to int)**
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- **Truncating (e.g., unsigned to unsigned short)**
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
 - For others?
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Representations in memory, pointers, strings

- Summary
Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

$$s = \text{UAdd}_w(u, v) = u + v \mod 2^w$$
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum
2^{w+1}

2^w

0

Modular Sum

Overflow

Overflow

$UAdd_4(u, v)$
Two’s Complement Addition

Operands: w bits

$$u \quad \ldots \quad \ldots \quad \ldots$$

True Sum: $w+1$ bits

$$u + v \quad \ldots \quad \ldots \quad \ldots$$

Discard Carry: w bits

$$TAdd_w(u, v) \quad \ldots \quad \ldots \quad \ldots$$

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give $s == t$
TAdd Overflow

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

```
0 111...1 2^{w-1}
0 100...0 2^{w-1}-1
0 000...0 0
1 011...1 -2^{w-1}
1 000...0 -2^w
```

TAdd Result

```

PosOver 011...1
NegOver 000...0
```
Visualizing 2's Complement Addition

- **Values**
 - 4-bit two's comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Goal: Computing Product of \(w \)-bit numbers \(x, y \)
- Either signed or unsigned

But, exact results can be bigger than \(w \) bits
- Unsigned: up to \(2w \) bits
 - Result range: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
- Two’s complement min (negative): Up to \(2w-1 \) bits
 - Result range: \(x \times y \geq (-2^{w-1})(2^{w-1}-1) = -2^{2w-2} + 2^{w-1} \)
- Two’s complement max (positive): Up to \(2w \) bits, but only for \((TMin_w)^2\)
 - Result range: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)

So, maintaining exact results...
- would need to keep expanding word size with each product computed
- is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]
Signed Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- **u << k** gives **u * 2^k**
- Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>True Product: w+k bits</th>
<th>Discard k bits: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u · 2^k</td>
<td>UMult_w(u, 2^k)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift

Operands:

<table>
<thead>
<tr>
<th>u</th>
<th>2^k</th>
<th>$\lfloor u / 2^k \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15213</td>
<td>01000000</td>
<td>7606</td>
</tr>
<tr>
<td>15213</td>
<td>01000000</td>
<td>7606</td>
</tr>
</tbody>
</table>

Division:

<table>
<thead>
<tr>
<th>$u / 2^k$</th>
<th>$\lfloor u / 2^k \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>950.8125</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>59.4257813</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x \gg 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x \gg 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x \gg 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- **Summary**

- Representations in memory, pointers, strings
Arithmetic: Basic Rules

■ Addition:
 ▪ Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 ▪ Unsigned: addition mod 2^w
 ▪ Mathematical addition + possible subtraction of 2^w
 ▪ Signed: modified addition mod 2^w (result in proper range)
 ▪ Mathematical addition + possible addition or subtraction of 2^w

■ Multiplication:
 ▪ Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 ▪ Unsigned: multiplication mod 2^w
 ▪ Signed: modified multiplication mod 2^w (result in proper range)
Why Should I Use Unsigned? (cont.)

- *Do Use When Performing Modular Arithmetic*
 - Multiprecision arithmetic

- *Do Use When Using Bits to Represent Sets*
 - Logical right shift, no sign extension
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Any given computer has a “Word Size”

- Nominal size of integer-valued data
 - and of addresses (i.e. pointers)

- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)

- Increasingly, machines have 64-bit word size
 - Potentially, could have 18 PB (petabytes) of addressable memory
 - That’s 18.4×10^{15}

- Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
</tr>
<tr>
<td>Addr = 0008</td>
<td>Addr = 0008</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td></td>
</tr>
<tr>
<td>0013</td>
<td></td>
</tr>
<tr>
<td>0014</td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>–</td>
<td>–</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Little/Big Endian: Jonathan Swift’s book “Gulliver’s Travels” two kinds of religious groups (one prefer to eat their egg starting from the little end, others from the big end)
Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian

```
<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>
```

Little Endian

```
<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Representing Integers

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation
Examining Data Representations

- Code to Print Byte Representation of Data
  - Casting pointer to unsigned char * allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf("%p\t0x%.2x\n", start+i, start[i]);
 printf("\n");
}
```

**Printf directives:**
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```c
int a = 15213;
0x7ffffff7f71dbc 6d
0x7ffffff7f71dbd 3b
0x7ffffff7f71dbe 00
0x7ffffff7f71dbf 00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td></td>
<td>AC</td>
<td>3C</td>
</tr>
<tr>
<td>FF</td>
<td></td>
<td>28</td>
<td>1B</td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td>F5</td>
<td>FE</td>
</tr>
<tr>
<td>2C</td>
<td></td>
<td>FF</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects

Even get different results each time run program
Representing Strings

- **Strings in C**
  - Represented by array of characters
  - Each character encoded in ASCII format
    - Standard 7-bit encoding of character set
    - Character “0” has code 0x30
      - Digit $i$ has code 0x30+$i$
  - String should be null-terminated
    - Final character = 0

- **Compatibility**
  - Byte ordering not an issue

```c
char S[6] = "18213";
```
Bonus extras
Integer C Puzzles

• $x < 0$
• $u_x \geq 0$
• $x \& 7 == 7$
• $u_x > -1$
• $x > y$
• $x \times x \geq 0$
• $x > 0 \&\& y > 0$
• $x \geq 0$
• $x <= 0$
• $(x|-(x)) >> 31 == -1$
• $u_x >> 3 == u_x/8$
• $x >> 3 == x/8$
• $x \& (x-1) != 0$

Initialization

```c
int x = foo();
int y = bar();
unsigned u_x = x;
unsigned u_y = y;
```
Why Should I Use Unsigned?

- *Don’t* use without understanding implications
  - Easy to make mistakes
    ```c
 unsigned i;
 for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];
    ```
  - Can be very subtle
    ```c
 #define DELTA sizeof(int)
 int i;
 for (i = CNT; i-DELTA >= 0; i-= DELTA)
 ...

 (unsigned → always >= 0)
 (i could be something we did not intent, for example cnt=1 → i=1-2 = (unsigned)(-1))
    ```
Counting Down with Unsigned

- **Proper way to use unsigned as loop index**
  
  ```c
 unsigned i;
 for (i = cnt-2; i < cnt; i--)
 a[i] += a[i+1];
  ```

- **See Robert Seacord, *Secure Coding in C and C++***
  
  - C Standard guarantees that unsigned addition will behave like modular arithmetic
    - \(0 - 1 \rightarrow \text{UMax}\)

- **Even better**
  
  ```c
 size_t i;
 for (i = cnt-2; i < cnt; i--)
 a[i] += a[i+1];
  ```
  
  - Data type `size_t` defined as unsigned value with length = word size
  - Code will work even if `cnt = UMax`
  - What if `cnt` is signed and < 0?
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
  - 1937 MIT Master’s Thesis
  - Reason about networks of relay switches
    - Encode closed switch as 1, open switch as 0

Connection when

\[ A \& \sim B \lor \sim A \& B = A \wedge B \]
Binary Number Property

Claim

\[ 1 + 1 + 2 + 4 + 8 + \ldots + 2^{w-1} = 2^w \]

\[ \sum_{i=0}^{w-1} 2^i = 2^w \]

- **w = 0:**
  - \( 1 = 2^0 \)

- **Assume true for w-1:**
  - \( 1 + 1 + 2 + 4 + 8 + \ldots + 2^{w-1} + 2^w = 2^w + 2^w = 2^{w+1} \)

\[ = 2^w \]
Code Security Example

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}
```

- Similar to code found in FreeBSD’s implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs
Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    ...
}
Mathematical Properties

Modular Addition Forms an *Abelian Group*

- **Closed** under addition
  \[ 0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
- **Commutative**
  \[ \text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
- **Associative**
  \[ \text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
- **0** is additive identity
  \[ \text{UAdd}_w(u, 0) = u \]
- Every element has additive **inverse**
  - Let \[ \text{UComp}_w(u) = 2^w - u \]
    \[ \text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Mathematical Properties of TAdd

■ Isomorphically Group to unsigneds with UAdd
  ▪ $T\text{Add}_w(u, v) = U2T(U\text{Add}_w(T2U(u), T2U(v)))$
    ▪ Since both have identical bit patterns

■ Two’s Complement Under TAdd Forms a Group
  ▪ Closed, Commutative, Associative, 0 is additive identity
  ▪ Every element has additive inverse

\[ T\text{Comp}_w(u) = \begin{cases} 
  -u & u \neq T\text{Min}_w \\
  T\text{Min}_w & u = T\text{Min}_w 
\end{cases} \]
Characterizing TAdd

- **Functionality**
  - True sum requires $w+1$ bits
  - Drop off MSB
  - Treat remaining bits as 2’s comp. integer

$$TAdd_w(u, v) = \begin{cases} 
  u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
  u + v & TMin_w \leq u + v \leq TMax_w \\
  u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}$$
Negation: Complement & Increment

Claim: Following Holds for 2’s Complement

\[ \sim x + 1 \equiv -x \]

Complement

Observation: \( \sim x + x \equiv 111\ldots111 \equiv -1 \)

Complete Proof?
# Complement & Increment Examples

\**x = 15213**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>x</strong></td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(<del>x</del>)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(<del>x+1</del>)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td><strong>y</strong></td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\**x = 0**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(<del>0</del>)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(<del>0+1</del>)</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Code Security Example #2

- SUN XDR library
  - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```c
malloc(ele_cnt * ele_size)
```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
     * Allocate buffer for ele_cnt objects, each of ele_size bytes
     * and copy from locations designated by ele_src
     */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)
        /* malloc failed */
        return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
        /* Move pointer to next memory region */
        next += ele_size;
    }
    return result;
}
XDR Vulnerability

```c
malloc(ele_cnt * ele_size)
```

- **What if:**
  - `ele_cnt` = \(2^{20} + 1\)
  - `ele_size` = 4096 = \(2^{12}\)
  - Allocation = ??

- **How can I make this function secure?**
Compiled Multiplication Code

C Function

```c
long mul12(long x)
{
 return x*12;
}
```

Compiled Arithmetic Operations

```assembly
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

- `t <- x+x*2`
- `return t << 2;`

- C compiler automatically generates shift/add code when multiplying by constant
Compiled Unsigned Division Code

C Function

```c
unsigned long udiv8 (unsigned long x)
{
 return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Explanation

```
Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
  - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
  - \( x >> k \) gives \( \lfloor x / 2^k \rfloor \)
  - Uses arithmetic shift
  - Rounds wrong direction when \( u < 0 \)

Operands:

\[
\begin{array}{c}
\text{binary} \ \cdot \cdot \cdot \\
\hline
0 \cdot \cdot \cdot 010 \cdot \cdot \cdot 000
\end{array}
\]

Division:

\[
\begin{array}{c}
\text{binary} \ \cdot \cdot \cdot \\
\hline
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot
\end{array}
\]

Result: \( \text{RoundDown}(x / 2^k) \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y )</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>( y &gt;&gt; 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>( y &gt;&gt; 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>( y &gt;&gt; 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2
- Want \( \left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0)
- Compute as \( \left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor \)
  - In C: \((x + (1<<k) - 1) >> k\)
  - Biases dividend toward 0

Case 1: No rounding

Dividend: \( u \)
\[
\begin{array}{c}
+2^k - 1 \\
\end{array}
\]
\[
\begin{array}{c}
0 \cdots 0 0 1 \cdots 1 1 \\
\end{array}
\]

Divisor: \( l \)
\[
\begin{array}{c}
2^k \\
\end{array}
\]
\[
\begin{array}{c}
0 \cdots 0 1 0 \cdots 0 0 \\
\end{array}
\]

\[
\begin{array}{c}
\left\lfloor \frac{u}{2^k} \right\rfloor \\
\end{array}
\]
\[
\begin{array}{c}
1 \cdots 1 1 1 \cdots 1 1 \\
\end{array}
\]

Biases dividend toward 0

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: $x$ 

\[
\begin{array}{c}
x \\
+2^k - 1 \\
\end{array}
\]

Quotient:

\[
\begin{array}{c}
1 \\
\cdots \\
\cdots \\
\cdots \\
\end{array}
\]

Divisor: $2^k$

\[
\begin{array}{c}
\frac{x}{2^k} \\
\end{array}
\]

Quotient:

\[
\begin{array}{c}
1 \\
\cdots \\
1 \\
1 \\
\end{array}
\]

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
long idiv8(long x)
{
 return x/8;
}
```

Compiled Arithmetic Operations

```assembly
 testq %rax, %rax
 js L4
L3:
 sarq $3, %rax
 ret
L4:
 addq $7, %rax
 jmp L3
```

Explanation

```c
if x < 0
 x += 7;
Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
  - Arith. shift written as `>>`

For Java Users

- Arith. shift written as `>>`
Arithmetic: Basic Rules

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

- Left shift
  - Unsigned/signed: multiplication by $2^k$
  - Always logical shift

- Right shift
  - Unsigned: logical shift, div (division + round to zero) by $2^k$
  - Signed: arithmetic shift
    - Positive numbers: div (division + round to zero) by $2^k$
    - Negative numbers: div (division + round away from zero) by $2^k$
  Use biasing to fix
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
  \[ 0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
  \[ \text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
  \[ \text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
  \[ \text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
  \[ \text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

- **Isomorphic Algebras**
  - Unsigned multiplication and addition
    - Truncating to \( w \) bits
  - Two’s complement multiplication and addition
    - Truncating to \( w \) bits

- **Both Form Rings**
  - Isomorphic to ring of integers mod \( 2^w \)

- **Comparison to (Mathematical) Integer Arithmetic**
  - Both are rings
  - Integers obey ordering properties, e.g.,
    
    \[
    u > 0 \quad \Rightarrow \quad u + v > v
    \]
    \[
    u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
    \]
  - These properties are not obeyed by two’s comp. arithmetic
    
    \[
    TMax + 1 = Tmin
    \]
    \[
    15213 \times 30426 = -10030 \quad \text{(16-bit words)}
    \]
Reading Byte-Reversed Listings

■ Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

■ Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmp $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

■ Deciphering Numbers

- Value: 0x12ab
- Pad to 32 bits: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00