Sample

Duration: 4 questions, 100 Minutes

closed notes/books, you can use a handwritten A4 size cheatsheet, please show your work

Name:....................................
ID#:....................................

Question 1 [25pts]: Given a 2D-mesh topology with \(p \) nodes, what is its diameter and bisection width? Now assume you can add \(2(\sqrt{p} - 1) \) more edges on this network, what is the optimum placement of these edges that improves both the diameter and the bisection width? What is the new diameter and bisection width?

Hint: you can start with a small \(p \) and generalize your solution
Question 2 [15pts]: Suppose you observe a speedup that is larger than \(p \) where \(p \) is the number of processing elements, explain all possible reasons.
Question 3 [35pts]: Consider the 2D partitioning of a large $n \times n$ dense matrix on p processing elements (i.e. each process is assigned a block of size $n/\sqrt{p} \times n/\sqrt{p}$). What would be the most suitable network topology for computing the transpose of the matrix. Give the parallel running time of the algorithm on the network topology you have proposed.

Hint: the transpose (i.e. A^T) of a matrix A is defined as $[A^T]_{(i,j)} = [A]_{(j,i)}$ in which the subscripts denote the row and column indices of a matrix element.
Question 4 [25pts]: Assume a large number of MPI processes execute the following pseudo code segment where nb_procs is the number of MPI processes and rank is the process rank:

```plaintext
for i=1 to nb_procs-1
    if (rank = i-1) then
        MPI_Send(datas,n,MPI_DOUBLE,i,tag,MPI_COMM_WORLD)
    end if
    if (rank = i ) then
        MPI_Recv(datar,n,MPI_DOUBLE,i-1,tag,MPI_COMM_WORLD,&status)
    end if
end for
```

Explain what this code segment is intending to do. How would you modify it to make it run faster?