Sample Final

Duration: 4 questions, 100 Minutes

closed notes/books, you can use a handwritten A4 size cheatsheet, please show your work

Name:..................................
ID#:.................................

Question 1 [35pts]: Consider the Simultaneous Subspace (or Vector) iterations for finding k-smallest eigenvalues and the corresponding eigenvectors. Assuming small k, what is the most time consuming operation? Find the sequential and parallel cost of this operation assuming the matrix is banded with a bandwidth b.
Question 2 [14pts]: What is the main difficulty involved in parallelism using multisec- tioning technique for solving eigenvalue problems? What are some of the solutions to these problems?
Question 3 [35pts]: Consider the Gauss-Seidel iterative scheme for solving a linear system \(Ax = b \):

\[x_{i+1} = (D + L)^{-1}(-Ux_i + b) \]

in which \(D, L, \) and \(U \) represent the diagonal, strictly lower triangular, and strictly upper triangular parts of \(A \), respectively. Assuming \(A \) is a banded matrix, provide the partitioning of the data and parallelize the Gauss-Seidel iterations.
Question 4 [16pts]: Are the following true or false?

(a) Spectral graph portioning requires computing all the eigenvalues of the Laplacian matrix. [T / F]

(b) Dynamic load balancing is always better than static load balancing. [T / F]

(c) Partitioning required for the Parallel sparse DS factorization is the same as partitioning required for sparse matrix vector multiplication [T / F]

(d) We can not represent skew symmetric (i.e. \(A^T = -A \)) matrices as graphs. [T / F]