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ABSTRACT 
In this paper, generating weekly course timetable for a 
university department is studied. In a course 
timetabling problem, there are time slots in a week and 
the courses are assigned to these time slots by 
considering the conflictions about the classrooms, 
instructors, students. In this problem, there are some 
constraints which are grouped as hard constraints and 
soft constraints. The hard constraints should be 
satisfied for an optimal solution. But the soft 
constraints cannot be always satisfied because of the 
limited resources, but it is good if they can be satisfied 
as much as possible. In this study, genetic algorithm is 
used to solve this problem. The representation, fitness 
functions are explained in detail. Although genetic 
algorithms are well-suited for the global exploration, 
they usually fail in local exploitation. Because of this 
situation, some hybridization methods are designed to 
improve the genetic algorithm’s performance. And 
also a multi objective fitness function is designed for 
the two important rules in the department. These 
methods are tested in computer environment with real 
computer engineering department’s data of a 
university. The experiment results show that this 
improvement increases the genetic algorithm’s 
performance incredibly. 

KEYWORDS 
Weekly course timetable; Local search; Hybrid genetic 
algorithm. 

1 INTRODUCTION 

Scheduling by human hand is difficult because of its 
constraints and complex structure. In general, 
scheduling is an assignment of the events to the time 
slots optimally. Earlier the mathematical methods were 
used to solve these problems but they failed because of 
the complex structure of scheduling. Later, heuristics 
methods have been used such as simulated annealing, 
tabu search, honey bee optimization because to find an 
optimal solution which satisfies the whole constraints 
requires logical reasoning and requires searching 
possible solutions with a well-determined heuristic 
function. Abramsom used simulated annealing method 
in his timetable study and then compared his study 
with other six methods (Abramson, 1991, Abramson, 

Dang and Krisnamoorthy, 1999). Schaerf tried to solve 
scheduling problems with tabu search method 
(Schaerf, 1996). Nowadays, genetic algorithm (GA), 
which is fast and prefers different candidate solutions, 
has been chosen because of its four main 
characteristics (Goldberg, 1989): 

 GA uses coding of parameters instead of their
real values.

 GA evaluates a lot of candidate solutions
instead of one solution. By this, it can avoid
from the local optimum.

 To obtain optimal solution GA uses
independent fitness function. It doesn’t need
any derivative or similar information. So it
can be used in a lot of problems.

 GA shows different approach based on
probabilities at every time. So it obtains
results that the other techniques cannot
achieve.

In this paper, generating weekly course timetable 
of a university department is studied. This problem is 
solved with genetic algorithm. In Section 3, the 
problem definition and methods are explained in 
detail. Later, in Section 4, the proposed local search 
methods, which are incorporated with genetic 
algorithm to improve the genetic algorithm’s 
performance, are given. In Section 5, a multi objective 
fitness function for unsolvable constraints because of 
limited resources is proposed. In Section 6, experiment 
results are shown. Finally, in Section 7, the comments 
about the study are given. 

2 RELATED WORK

One of the problems of scheduling is weekly course 
timetabling problem. In course timetabling problem, 
the courses are assigned to the time slots by taking 
consideration to the constraints. Genetic algorithm first 
was used by Colorni in course timetabling problems 
(Colorni, Dorigo and Maniezzo, 1992). In his study the 
solution is represented by matrix, where the rows are 
instructor’s information and the columns are lecture 
hours. He obtains better results against the other 
heuristic methods. Yu and Sung also used sector based 
GA in their university course timetabling problem (Yu 
and Sung, 2002). In their study, the rows of solutions 
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represent the whole classrooms and the columns 
represent all the time slots from Monday to Friday. 
Özcan and Alkan proposed steady state GA for a 
university course timetabling problem (Ozcan and 
Alkan, 2002). In their representation, each gene has 
two values which are the lecture day of the course and 
the lecture hour of the course in that day. Yiğit solved 
high school course timetable with GA (Yigit, 2006). 
The genes represent the time slots and their values are 
the code of instructors, courses and classrooms. 
Beligiannis and his friends proposed an adaptive 
algorithm based on evolutionary computation 
(Beligiannis, Moschopoulos, Kaperonis and 
Likothanassis, 2008). In their study, solutions are 
represented by matrix where the rows are whole 
classrooms, columns are all the time periods in the 
week and the cells are instructor information. 

3 PROBLEM DEFINITION AND 
METHODS 

In this section, firstly problem definition of weekly 
course timetable of a university department is given. 
Then the representation and the other methods of 
genetic algorithm are explained in detail. There is 
some information about course timetable which are 
given below: 

 There are classrooms for lectures.

 There are instructors for each course.

 There are 6 × 8 time slots in a week. Six days
and eight lecture hours between 8.00 – 17.00
(except lunch time) in each day.

 There are students in department. These are
first year students, second year students, third
year students and fourth year students.

 Some classrooms have materials such as
projector, computers. And some courses need
these specific classrooms.

The course timetable that uses this information 
should satisfy some constraints. These constraints are 
divided into two categories. The first one is the hard 
constraints. The second one is the soft constraints. In 
hard constraints, all the constraints should be satisfied. 
But in soft constraints, all the constraints cannot be 
satisfied because of limited resources but it is good if 
they can be satisfied as much as possible. The hard 
constraints are given below: 

 There shouldn’t be more than one lecture in a
classroom at the same time.

 The students shouldn’t have more than one
lecture at the same time.

 The instructors shouldn’t have more than one
lecture at the same time.

 There shouldn’t be any lecture in lunch time
(12.00 – 13.00).

 Block lectures shouldn’t be separated by
lunch time or following day.

 There shouldn’t be any lecture on Saturday.
 The courses should be in a correct classroom.

For example, lab course needs a classroom
that has computers.

 Common courses which are given in all the
departments such as history should be in a
correct time slots.

The soft constraints are given below: 

 The preferences of instructors for lecture
times in the week.

 The preferences about student. For example,
there is no any lecture on Monday for the first
year students.

 The first year and second year courses
shouldn’t conflict.

 The second year and third year courses
shouldn’t conflict.

To solve this problem genetic algorithm is used. 
There are some operations which are based on genetic 
structure. The solution should be represented in 
chromosomes, so the phenotype of the candidate 
solutions should be converted to genotype. Then these 
individuals reproduce at each generation by crossover 
operation. At the end individuals that survive for the 
next generation represent the candidate solutions. The 
best individual that fits to excepted solution is chosen. 
These operations are explained below. 

3.1 Representation 

Deciding the chromosome structure is important for
this problem. So this operation should be performed 
carefully to obtain optimal solutions. If it is considered 
that no more than one lecture in a classroom at the 
same time, the gene values in the chromosome can be 
permutation. In this problem, the count of genes in a 
chromosome is equal to (total course count × 
maximum block lecture hour). For example, assume 
that there are 30 courses and the maximum block 
lecture hour of a course is 3 so, the gene count 
becomes 30 × 3 = 90. The first three genes represent 
the first course in database. And these genes represent 
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the first lecture hour, second lecture hour and third 
lecture hour of that course respectively.  The next three 
genes represent the second course and so on. There are 
48 lecture hours in a week as it is given before. The 
genes values are between 0 and (48 × classroom 
count), so the first hard constraint which is no more 
than one lecture in a classroom at the same time is 
satisfied at the beginning (Karaboga, 2004). The 
chromosome structure is shown in Figure 1. 

 

Figure 1: The structure of chromosome. 

This chromosome represents the weekly course 
timetable. In here the first gene is equal to the first 
lecture hour information of the first course in database. 
The second gene is the second lecture hour 
information of the first course and the third gene 
represents the third lecture hour information of the first 
course. Assume there are ten classrooms in a 
department, for the first gene 97 ÷ 10 = 9 and 97 % 10 
= 7 values are obtained from value 97. In here value 9 
is equal to 10th lecture hour of the week, in other 
words Tuesday at 9.00 am, value 7 is equal to 8th 
classroom in database. 

3.2 Fitness Function 

After deciding the chromosome structure, the suitable 
fitness function should be determined. In this problem, 
the constraints are tried to be satisfied, so a penalty 
cost is given for an unsatisfied constraint depending of 
its priority. The aim to solve this problem is 
minimizing the fitness value. The penalty costs for 
each constraint are given below: 

 If an instructor or students have more than
one lecture at the same time, the penalty cost
is 10000.

 If a lecture is separated by lunch time or
following day, the penalty cost is 5000.

 If a lecture is on Saturday, the penalty cost is
3000. 

 If a course isn’t in a correct classroom, the
penalty cost is 2103.

 If an instructor’s preferences aren’t satisfied,
the penalty cost is 500.

 If student’s preferences aren’t satisfied, the
penalty cost is 10.

In this fitness function, the hard constraints have 
higher penalty cost value. So the chromosome that has 
higher fitness function value, have a less chance to 
survive for the following generations. The soft 
constraints have lower penalty cost value. Because 
they cannot always be satisfied, their effects to the 
fitness function are a little. One can predict the 
unsatisfied constraints at each generation by looking to 
fitness value of a chromosome. The 2103 value is 
given to the fourth constraint above in order to make 
this prediction clearly. 

3.3 Other Operators 

To select parents roulette wheel algorithm is used 
(Eiben and Smith, 2007). In this algorithm individuals 
have a chance proportional to their fitness values. The 
better individuals have much chance to be selected. 

In crossover operation, the parents which are 
selected in selection operation reproduce. For this 
operation, order crossover is used (Davis, 1985). 

In mutation operation, the child’s genes are 
mutated by swapping the values randomly in the 
selected substring (Eiben and Smith, 2007).  Also 
second mutation operator is used. In this operator the 
selected gene value is replaced with a new value. 

In survival operation, the individuals are selected 
for the next generation. The new generation consists of 
parents and children. Elitism is used to survive some 
of the better parents and remaining consists of children 
(Eiben and Smith, 2007). 

Finally, in termination the algorithm is finished 
when the optimal solution is obtained or when 
maximum generation count is reached or when the 
user performs the stop operation. 

4 IMPROVING GENETIC 
ALGORITHM WITH PROPOSED 
LOCAL SEARCH METHODS 

In this section we study how the performance of the 
method, which is explained in Section 3, is improved
by local search methods. Because of the complex and
combinatorial structure of timetabling problems, 
finding optimal solution is very hard. Although genetic 
algorithms are well suited to perform global 
exploration, they usually fail in local exploitation. 
Various hybridization approaches have been suggested 
to solve this problem. Cheng and his friends give a 
detail survey of hybrid genetic algorithm approaches 
in their study. They especially mention to local search 
approaches which are incorporated with genetic 
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algorithms as an add-on extra to the main loop of 
recombination and selection. With these approaches, 
genetic algorithms perform global exploration among 
the population, while heuristic methods perform local 
exploitation around chromosomes.  They also mention 
that in genetic algorithm the selection of chromosomes 
is based on fitness at their birth, however with hybrid 
methods the selection is based on fitness after local 
search and this hybrid approaches can be viewed as the 
combination of Darwin’s evolution with Lamarck’s 
evolution (Cheng, Gen and Tsujimura, 1999). 

Also there have been other studies in the literature 
about this approach. Renders and Bersini used hill 
climbing search method to hybridize the genetic 
algorithm (Renders and Bersini, 1994). Ishibuchi and 
Murata proposed a local search algorithm for a flow-
shop scheduling (Ishibuchi and Murata, 1998). In their 
purpose, the current solution’s neighbours are 
examined. If the neighbours’ solution is better than 
current solution, these are replaced with each other. 
This operation has been done until all the neighbours 
of current solution are examined. Abdullah and 
Turabieh proposed a local search method for a course 
timetabling problem (Abdullah and Turabieh, 2008). 
In their study, they assign time slots to each event in 
order until an improvement occurs for that event. This 
is done for all the events in that chromosome. 

Now the proposed local search methods which 
hybridize the method in Section 3 are explained in 
detail. Two different local search methods are 
determined for hard constraints and soft constraints. 
These methods are performed after crossover and 
mutation operations. In the first method, the hard 
constraints are examined and are tried to be satisfied if 
it is possible. This method is explained in detail below: 

 Consider the whole genes of the chromosome
one by one.

 If a hard constraint occurs in a gene, assign
whole available values one by one to that
gene.

 If an improvement is obtained, break the
assignment and go to the next gene.

 Do these operations until all the genes are
examined.

 After above operations, if the current
chromosome is better than the initial
chromosome, replace them.

In the second method, the soft constraints are 
examined. Unlike the first method, the second method 
isn’t too strict because the soft constraints don’t have 

to be satisfied at each time. The second method is 
explained below: 

 Consider the whole genes of the chromosome
one by one.

 If a soft constraint occurs in a gene, assign an
available value randomly to that gene.

 Do these operations until all the genes are
examined.

 After above operations, if the current
chromosome is better than the initial
chromosome, replace them.

Apart from these, a repair function is used to 
improve the chromosomes. In this function, if a block 
lectures are separated by lunch time or following day, 
it is corrected by shifting. In this operation, if the 
earlier time slot is available, block lectures are shifted
to that time slot. 

Furthermore, a neighbourhood search-based 
mutation is used. Various examples are shown in 
literature (Cheng, Gen and Tsujimura, 1999). In this 
method, the chromosome is mutated more than once 
under the same circumstances and the best of the 
solutions is chosen. 

5 A MULTI-OBJECTIVE FITNESS 
FUNCTION FOR THE TWO RULES 

Generally, in a multi objective optimization (MOO) 
more than one fitness functions are described for multi 
criteria of the problem. These fitness functions are 
performed simultaneously and the non-dominated 
solutions are chosen for the result. There are some 
studies about MOO. Mumford proposed two different 
fitness functions in his timetabling study (Mumford, 
2007). The first fitness function minimizes the overall 
length of the examination period and the second fitness 
function minimizes the total proximity cost. Burke and 
Petrovic also proposed multi criteria objective fitness 
function for a timetabling problem (Burke and 
Petrovic, 2002). 

In our problem, the department has two important 
rules. The first rule is the students cannot take any 
course from third year courses unless they pass the 
whole courses from the first year. The second rule is 
the students cannot take any courses from fourth year 
courses unless they pass the whole courses from 
second year. So a second year student can take any 
course from first year again, and similarly third year
student can take any course from second year again. 
Because of this, first year courses shouldn’t conflict 
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with second year courses as much as possible and 
second year courses shouldn’t conflict with third year 
courses as much as possible. But these constraints may 
not always be satisfied completely because of too 
many courses and limited time slots in a week. To 
obtain optimal solutions, a multi objective fitness 
function is proposed. In this function, there are two 
fitness functions: The first one minimizes the first rule, 
and the second one minimizes the second rule.  To 
calculate the multi objective fitness function value, 
firstly the numbers of conflictions are calculated for 
both fitness function and then the pareto values are 
calculated for the chromosomes. The non-dominated 
chromosomes have 0 pareto values. If a solution is 
dominated by one solution, its pareto value becomes 1, 
if dominated by two solutions, the value becomes 2 
and so on. At the end, pareto values are used to update 
the main fitness function which is described in Section 
3. In update operation the multi objective fitness
function value for a chromosome is added to the main 
fitness function by multiplying its pareto value with 
1000 (pareto value ×1000). For example, if the pareto 
value of an optimal solution (main fitness value is 0) is 
0, its main fitness value becomes 0. But if the pareto 
value of it is 1, its main fitness value becomes 1000, 
now this is not an optimal solution, so it isn’t selected 
for an optimal solution again. 

6 EXPERIMENTAL RESULTS 

The implementation is made with Microsoft Visual 
Studio 2008 compiler. To run the methods firstly the 
parameters of genetic algorithm should be determined. 
These parameters are population size, crossover 
probabilities, mutation probabilities, number of 
keeping parents (Elitism). Values of these parameters 
are shown in Table 1. And then the parameters of 
weekly course timetable are determined. To do this, a 
computer engineering department’s data of a 
university are used. Values of these parameters are 
given in Table 2. 

Table 1: The parameters of genetic algorithm. 

Parameters Values 

Population Size 50 

Crossover Probability %75 

Mutation1 Probability %30 

Mutation2 Probability %10 

Elitism %50 

Table 2: The data of weekly course timetable. 

Data Values 
Course count 35 

Classroom count 9 
Instructor count 15 

Maximum block lecturehour 3 
Gene count 105 

Maximum gene value 432 
Total time slot 48 

Firstly, genetic algorithm which is described in 
Section 3 has been executed. Then hybrid method has 
been executed under these parameters several times. 
After hybridizing genetic algorithm with proposed 
local search methods, the performance of genetic 
algorithm is increased incredibly. The comparisons are 
shown in Table 3. 

Table 3: The comparisons of the methods. 

Method Generation Duration 

GA without soft constraints 30000 1 hour 

GA with soft constraints 150000 8 hour 

GA and proposed local search 
without soft constraints 

3 30 second 

GA and proposed local search with 
soft constraints 

10000 20 minute 

In all results the hard constraints are satisfied 
which means a valid weekly course timetable. The 
local search methods improve the candidate solutions 
in each generation if possible. Although the local 
search methods lead to extra time for duration of a 
generation, they reduce the generation count of the 
solution. This results in better duration time for the 
solution. The result of the sole use of genetic algorithm 
without considering the soft constraints is obtained for 
about 30000 generation which takes about 1 hour. If
the soft constraints are considered, the result is 
obtained for about 150000 generation which takes 
about 8 hour.  Because of the conflictions and limited 
resources, getting results by considering the soft 
constraints takes too much time. After hybridizing the 
genetic algorithm with proposed local search methods, 
the performance of genetic algorithm is increased. The 
results without considering the soft constraints are 
obtained for about 3 generation which takes about 30 
second. The improvement is remarkable which reduces 
the 30000 generation to 3 generation and 1 hour to 30 
second. If the soft constraints are considered, the result 
is obtained for about 10000 generation which takes 
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about 20 minute. The improvement is again 
remarkable when compare with the sole use of genetic 
algorithm. 

7 CONCLUSION 

Generating weekly course timetable by human hand is 
difficult because of its constraints and complex 
structure. Earlier, the mathematical methods were used 
but they failed because of the complex structure of the 
timetabling problem. Later heuristic methods were 
used such as simulated annealing, hill climbing. 
Nowadays, genetic algorithm has been used because it 
searches a lot of candidate solutions at the same time 
and it does not need any derivative or mathematical 
information. Although genetic algorithms are well-
suited for the global exploration, they usually fail in 
local exploitation. Because of this, various 
hybridization methods are proposed. With these 
approaches, genetic algorithms do global search within 
the population, while heuristic methods do local search 
around chromosomes. In this paper, firstly the 
representation and other methods of genetic algorithm 
are designed for the weekly course timetabling 
problem. Then the proposed local search methods are 
incorporated with genetic algorithm. With this 
hybridization the performance is increased incredibly. 
The solution without considering the soft constraints is 
obtained about 3 generation and with considering the 
soft constraints is obtained about 10000 generation. 
These are performed in less than one minute and 
twenty minute respectively. If it is compared with the 
operation of weekly course timetable by human hand, 
it is seen that this method provides gain for time and 
task force. In the future, this study can be extended for 
obtaining a faculty course timetable by considering the 
whole departments in that faculty. And also university 
scheduling and exam scheduling can be done by 
considering this study. 
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