
SOLVING WEEKLY COURSE TIMETABLING PROBLEM
WITH GENETIC ALGORITHM AND LOCAL SEARCH

Ozcan Dulger
Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

{odulger@ceng.metu.edu.tr}
ABSTRACT
In this paper, generating weekly course timetable for a
university department is studied. In a course
timetabling problem, there are time slots in a week and
the courses are assigned to these time slots by
considering the conflictions about the classrooms,
instructors, students. In this problem, there are some
constraints which are grouped as hard constraints and
soft constraints. The hard constraints should be
satisfied for an optimal solution. But the soft
constraints cannot be always satisfied because of the
limited resources, but it is good if they can be satisfied
as much as possible. In this study, genetic algorithm is
used to solve this problem. The representation, fitness
functions are explained in detail. Although genetic
algorithms are well-suited for the global exploration,
they usually fail in local exploitation. Because of this
situation, some hybridization methods are designed to
improve the genetic algorithm’s performance. And
also a multi objective fitness function is designed for
the two important rules in the department. These
methods are tested in computer environment with real
computer engineering department’s data of a
university. The experiment results show that this
improvement increases the genetic algorithm’s
performance incredibly.

KEYWORDS
Weekly course timetable; Local search; Hybrid genetic
algorithm.

1 INTRODUCTION

Scheduling by human hand is difficult because of its
constraints and complex structure. In general,
scheduling is an assignment of the events to the time
slots optimally. Earlier the mathematical methods were
used to solve these problems but they failed because of
the complex structure of scheduling. Later, heuristics
methods have been used such as simulated annealing,
tabu search, honey bee optimization because to find an
optimal solution which satisfies the whole constraints
requires logical reasoning and requires searching
possible solutions with a well-determined heuristic
function. Abramsom used simulated annealing method
in his timetable study and then compared his study
with other six methods (Abramson, 1991, Abramson,

Dang and Krisnamoorthy, 1999). Schaerf tried to solve
scheduling problems with tabu search method
(Schaerf, 1996). Nowadays, genetic algorithm (GA),
which is fast and prefers different candidate solutions,
has been chosen because of its four main
characteristics (Goldberg, 1989):

 GA uses coding of parameters instead of their
real values.

 GA evaluates a lot of candidate solutions
instead of one solution. By this, it can avoid
from the local optimum.

 To obtain optimal solution GA uses
independent fitness function. It doesn’t need
any derivative or similar information. So it
can be used in a lot of problems.

 GA shows different approach based on
probabilities at every time. So it obtains
results that the other techniques cannot
achieve.

In this paper, generating weekly course timetable
of a university department is studied. This problem is
solved with genetic algorithm. In Section 3, the
problem definition and methods are explained in
detail. Later, in Section 4, the proposed local search
methods, which are incorporated with genetic
algorithm to improve the genetic algorithm’s
performance, are given. In Section 5, a multi objective
fitness function for unsolvable constraints because of
limited resources is proposed. In Section 6, experiment
results are shown. Finally, in Section 7, the comments
about the study are given.

2 RELATED WORK

One of the problems of scheduling is weekly course
timetabling problem. In course timetabling problem,
the courses are assigned to the time slots by taking
consideration to the constraints. Genetic algorithm first
was used by Colorni in course timetabling problems
(Colorni, Dorigo and Maniezzo, 1992). In his study the
solution is represented by matrix, where the rows are
instructor’s information and the columns are lecture
hours. He obtains better results against the other
heuristic methods. Yu and Sung also used sector based
GA in their university course timetabling problem (Yu
and Sung, 2002). In their study, the rows of solutions

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
265

October 24-25, 2013, Kuşadası, Aydın, Turkey

represent the whole classrooms and the columns
represent all the time slots from Monday to Friday.
Özcan and Alkan proposed steady state GA for a
university course timetabling problem (Ozcan and
Alkan, 2002). In their representation, each gene has
two values which are the lecture day of the course and
the lecture hour of the course in that day. Yiğit solved
high school course timetable with GA (Yigit, 2006).
The genes represent the time slots and their values are
the code of instructors, courses and classrooms.
Beligiannis and his friends proposed an adaptive
algorithm based on evolutionary computation
(Beligiannis, Moschopoulos, Kaperonis and
Likothanassis, 2008). In their study, solutions are
represented by matrix where the rows are whole
classrooms, columns are all the time periods in the
week and the cells are instructor information.

3 PROBLEM DEFINITION AND
METHODS

In this section, firstly problem definition of weekly
course timetable of a university department is given.
Then the representation and the other methods of
genetic algorithm are explained in detail. There is
some information about course timetable which are
given below:

 There are classrooms for lectures.

 There are instructors for each course.

 There are 6 × 8 time slots in a week. Six days
and eight lecture hours between 8.00 – 17.00
(except lunch time) in each day.

 There are students in department. These are
first year students, second year students, third
year students and fourth year students.

 Some classrooms have materials such as
projector, computers. And some courses need
these specific classrooms.

The course timetable that uses this information
should satisfy some constraints. These constraints are
divided into two categories. The first one is the hard
constraints. The second one is the soft constraints. In
hard constraints, all the constraints should be satisfied.
But in soft constraints, all the constraints cannot be
satisfied because of limited resources but it is good if
they can be satisfied as much as possible. The hard
constraints are given below:

 There shouldn’t be more than one lecture in a
classroom at the same time.

 The students shouldn’t have more than one
lecture at the same time.

 The instructors shouldn’t have more than one
lecture at the same time.

 There shouldn’t be any lecture in lunch time
(12.00 – 13.00).

 Block lectures shouldn’t be separated by
lunch time or following day.

 There shouldn’t be any lecture on Saturday.
 The courses should be in a correct classroom.

For example, lab course needs a classroom
that has computers.

 Common courses which are given in all the
departments such as history should be in a
correct time slots.

The soft constraints are given below:

 The preferences of instructors for lecture
times in the week.

 The preferences about student. For example,
there is no any lecture on Monday for the first
year students.

 The first year and second year courses
shouldn’t conflict.

 The second year and third year courses
shouldn’t conflict.

To solve this problem genetic algorithm is used.
There are some operations which are based on genetic
structure. The solution should be represented in
chromosomes, so the phenotype of the candidate
solutions should be converted to genotype. Then these
individuals reproduce at each generation by crossover
operation. At the end individuals that survive for the
next generation represent the candidate solutions. The
best individual that fits to excepted solution is chosen.
These operations are explained below.

3.1 Representation

Deciding the chromosome structure is important for
this problem. So this operation should be performed
carefully to obtain optimal solutions. If it is considered
that no more than one lecture in a classroom at the
same time, the gene values in the chromosome can be
permutation. In this problem, the count of genes in a
chromosome is equal to (total course count ×
maximum block lecture hour). For example, assume
that there are 30 courses and the maximum block
lecture hour of a course is 3 so, the gene count
becomes 30 × 3 = 90. The first three genes represent
the first course in database. And these genes represent

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
266

October 24-25, 2013, Kuşadası, Aydın, Turkey

the first lecture hour, second lecture hour and third
lecture hour of that course respectively. The next three
genes represent the second course and so on. There are
48 lecture hours in a week as it is given before. The
genes values are between 0 and (48 × classroom
count), so the first hard constraint which is no more
than one lecture in a classroom at the same time is
satisfied at the beginning (Karaboga, 2004). The
chromosome structure is shown in Figure 1.

Figure 1: The structure of chromosome.

This chromosome represents the weekly course
timetable. In here the first gene is equal to the first
lecture hour information of the first course in database.
The second gene is the second lecture hour
information of the first course and the third gene
represents the third lecture hour information of the first
course. Assume there are ten classrooms in a
department, for the first gene 97 ÷ 10 = 9 and 97 % 10
= 7 values are obtained from value 97. In here value 9
is equal to 10th lecture hour of the week, in other
words Tuesday at 9.00 am, value 7 is equal to 8th
classroom in database.

3.2 Fitness Function

After deciding the chromosome structure, the suitable
fitness function should be determined. In this problem,
the constraints are tried to be satisfied, so a penalty
cost is given for an unsatisfied constraint depending of
its priority. The aim to solve this problem is
minimizing the fitness value. The penalty costs for
each constraint are given below:

 If an instructor or students have more than
one lecture at the same time, the penalty cost
is 10000.

 If a lecture is separated by lunch time or
following day, the penalty cost is 5000.

 If a lecture is on Saturday, the penalty cost is
3000.

 If a course isn’t in a correct classroom, the
penalty cost is 2103.

 If an instructor’s preferences aren’t satisfied,
the penalty cost is 500.

 If student’s preferences aren’t satisfied, the
penalty cost is 10.

In this fitness function, the hard constraints have
higher penalty cost value. So the chromosome that has
higher fitness function value, have a less chance to
survive for the following generations. The soft
constraints have lower penalty cost value. Because
they cannot always be satisfied, their effects to the
fitness function are a little. One can predict the
unsatisfied constraints at each generation by looking to
fitness value of a chromosome. The 2103 value is
given to the fourth constraint above in order to make
this prediction clearly.

3.3 Other Operators

To select parents roulette wheel algorithm is used
(Eiben and Smith, 2007). In this algorithm individuals
have a chance proportional to their fitness values. The
better individuals have much chance to be selected.

In crossover operation, the parents which are
selected in selection operation reproduce. For this
operation, order crossover is used (Davis, 1985).

In mutation operation, the child’s genes are
mutated by swapping the values randomly in the
selected substring (Eiben and Smith, 2007). Also
second mutation operator is used. In this operator the
selected gene value is replaced with a new value.

In survival operation, the individuals are selected
for the next generation. The new generation consists of
parents and children. Elitism is used to survive some
of the better parents and remaining consists of children
(Eiben and Smith, 2007).

Finally, in termination the algorithm is finished
when the optimal solution is obtained or when
maximum generation count is reached or when the
user performs the stop operation.

4 IMPROVING GENETIC
ALGORITHM WITH PROPOSED
LOCAL SEARCH METHODS

In this section we study how the performance of the
method, which is explained in Section 3, is improved
by local search methods. Because of the complex and
combinatorial structure of timetabling problems,
finding optimal solution is very hard. Although genetic
algorithms are well suited to perform global
exploration, they usually fail in local exploitation.
Various hybridization approaches have been suggested
to solve this problem. Cheng and his friends give a
detail survey of hybrid genetic algorithm approaches
in their study. They especially mention to local search
approaches which are incorporated with genetic

97 107 117 ……………….

First Course Last Course

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
267

October 24-25, 2013, Kuşadası, Aydın, Turkey

algorithms as an add-on extra to the main loop of
recombination and selection. With these approaches,
genetic algorithms perform global exploration among
the population, while heuristic methods perform local
exploitation around chromosomes. They also mention
that in genetic algorithm the selection of chromosomes
is based on fitness at their birth, however with hybrid
methods the selection is based on fitness after local
search and this hybrid approaches can be viewed as the
combination of Darwin’s evolution with Lamarck’s
evolution (Cheng, Gen and Tsujimura, 1999).

Also there have been other studies in the literature
about this approach. Renders and Bersini used hill
climbing search method to hybridize the genetic
algorithm (Renders and Bersini, 1994). Ishibuchi and
Murata proposed a local search algorithm for a flow-
shop scheduling (Ishibuchi and Murata, 1998). In their
purpose, the current solution’s neighbours are
examined. If the neighbours’ solution is better than
current solution, these are replaced with each other.
This operation has been done until all the neighbours
of current solution are examined. Abdullah and
Turabieh proposed a local search method for a course
timetabling problem (Abdullah and Turabieh, 2008).
In their study, they assign time slots to each event in
order until an improvement occurs for that event. This
is done for all the events in that chromosome.

Now the proposed local search methods which
hybridize the method in Section 3 are explained in
detail. Two different local search methods are
determined for hard constraints and soft constraints.
These methods are performed after crossover and
mutation operations. In the first method, the hard
constraints are examined and are tried to be satisfied if
it is possible. This method is explained in detail below:

 Consider the whole genes of the chromosome
one by one.

 If a hard constraint occurs in a gene, assign
whole available values one by one to that
gene.

 If an improvement is obtained, break the
assignment and go to the next gene.

 Do these operations until all the genes are
examined.

 After above operations, if the current
chromosome is better than the initial
chromosome, replace them.

In the second method, the soft constraints are
examined. Unlike the first method, the second method
isn’t too strict because the soft constraints don’t have

to be satisfied at each time. The second method is
explained below:

 Consider the whole genes of the chromosome
one by one.

 If a soft constraint occurs in a gene, assign an
available value randomly to that gene.

 Do these operations until all the genes are
examined.

 After above operations, if the current
chromosome is better than the initial
chromosome, replace them.

Apart from these, a repair function is used to
improve the chromosomes. In this function, if a block
lectures are separated by lunch time or following day,
it is corrected by shifting. In this operation, if the
earlier time slot is available, block lectures are shifted
to that time slot.

Furthermore, a neighbourhood search-based
mutation is used. Various examples are shown in
literature (Cheng, Gen and Tsujimura, 1999). In this
method, the chromosome is mutated more than once
under the same circumstances and the best of the
solutions is chosen.

5 A MULTI-OBJECTIVE FITNESS
FUNCTION FOR THE TWO RULES

Generally, in a multi objective optimization (MOO)
more than one fitness functions are described for multi
criteria of the problem. These fitness functions are
performed simultaneously and the non-dominated
solutions are chosen for the result. There are some
studies about MOO. Mumford proposed two different
fitness functions in his timetabling study (Mumford,
2007). The first fitness function minimizes the overall
length of the examination period and the second fitness
function minimizes the total proximity cost. Burke and
Petrovic also proposed multi criteria objective fitness
function for a timetabling problem (Burke and
Petrovic, 2002).

In our problem, the department has two important
rules. The first rule is the students cannot take any
course from third year courses unless they pass the
whole courses from the first year. The second rule is
the students cannot take any courses from fourth year
courses unless they pass the whole courses from
second year. So a second year student can take any
course from first year again, and similarly third year
student can take any course from second year again.
Because of this, first year courses shouldn’t conflict

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
268

October 24-25, 2013, Kuşadası, Aydın, Turkey

with second year courses as much as possible and
second year courses shouldn’t conflict with third year
courses as much as possible. But these constraints may
not always be satisfied completely because of too
many courses and limited time slots in a week. To
obtain optimal solutions, a multi objective fitness
function is proposed. In this function, there are two
fitness functions: The first one minimizes the first rule,
and the second one minimizes the second rule. To
calculate the multi objective fitness function value,
firstly the numbers of conflictions are calculated for
both fitness function and then the pareto values are
calculated for the chromosomes. The non-dominated
chromosomes have 0 pareto values. If a solution is
dominated by one solution, its pareto value becomes 1,
if dominated by two solutions, the value becomes 2
and so on. At the end, pareto values are used to update
the main fitness function which is described in Section
3. In update operation the multi objective fitness
function value for a chromosome is added to the main
fitness function by multiplying its pareto value with
1000 (pareto value ×1000). For example, if the pareto
value of an optimal solution (main fitness value is 0) is
0, its main fitness value becomes 0. But if the pareto
value of it is 1, its main fitness value becomes 1000,
now this is not an optimal solution, so it isn’t selected
for an optimal solution again.

6 EXPERIMENTAL RESULTS

The implementation is made with Microsoft Visual
Studio 2008 compiler. To run the methods firstly the
parameters of genetic algorithm should be determined.
These parameters are population size, crossover
probabilities, mutation probabilities, number of
keeping parents (Elitism). Values of these parameters
are shown in Table 1. And then the parameters of
weekly course timetable are determined. To do this, a
computer engineering department’s data of a
university are used. Values of these parameters are
given in Table 2.

Table 1: The parameters of genetic algorithm.

Parameters Values

Population Size 50

Crossover Probability %75

Mutation1 Probability %30

Mutation2 Probability %10

Elitism %50

Table 2: The data of weekly course timetable.

Data Values
Course count 35

Classroom count 9
Instructor count 15

Maximum block lecturehour 3
Gene count 105

Maximum gene value 432
Total time slot 48

Firstly, genetic algorithm which is described in
Section 3 has been executed. Then hybrid method has
been executed under these parameters several times.
After hybridizing genetic algorithm with proposed
local search methods, the performance of genetic
algorithm is increased incredibly. The comparisons are
shown in Table 3.

Table 3: The comparisons of the methods.

Method Generation Duration

GA without soft constraints 30000 1 hour

GA with soft constraints 150000 8 hour

GA and proposed local search
without soft constraints

3 30 second

GA and proposed local search with
soft constraints

10000 20 minute

In all results the hard constraints are satisfied
which means a valid weekly course timetable. The
local search methods improve the candidate solutions
in each generation if possible. Although the local
search methods lead to extra time for duration of a
generation, they reduce the generation count of the
solution. This results in better duration time for the
solution. The result of the sole use of genetic algorithm
without considering the soft constraints is obtained for
about 30000 generation which takes about 1 hour. If
the soft constraints are considered, the result is
obtained for about 150000 generation which takes
about 8 hour. Because of the conflictions and limited
resources, getting results by considering the soft
constraints takes too much time. After hybridizing the
genetic algorithm with proposed local search methods,
the performance of genetic algorithm is increased. The
results without considering the soft constraints are
obtained for about 3 generation which takes about 30
second. The improvement is remarkable which reduces
the 30000 generation to 3 generation and 1 hour to 30
second. If the soft constraints are considered, the result
is obtained for about 10000 generation which takes

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
269

October 24-25, 2013, Kuşadası, Aydın, Turkey

about 20 minute. The improvement is again
remarkable when compare with the sole use of genetic
algorithm.

7 CONCLUSION

Generating weekly course timetable by human hand is
difficult because of its constraints and complex
structure. Earlier, the mathematical methods were used
but they failed because of the complex structure of the
timetabling problem. Later heuristic methods were
used such as simulated annealing, hill climbing.
Nowadays, genetic algorithm has been used because it
searches a lot of candidate solutions at the same time
and it does not need any derivative or mathematical
information. Although genetic algorithms are well-
suited for the global exploration, they usually fail in
local exploitation. Because of this, various
hybridization methods are proposed. With these
approaches, genetic algorithms do global search within
the population, while heuristic methods do local search
around chromosomes. In this paper, firstly the
representation and other methods of genetic algorithm
are designed for the weekly course timetabling
problem. Then the proposed local search methods are
incorporated with genetic algorithm. With this
hybridization the performance is increased incredibly.
The solution without considering the soft constraints is
obtained about 3 generation and with considering the
soft constraints is obtained about 10000 generation.
These are performed in less than one minute and
twenty minute respectively. If it is compared with the
operation of weekly course timetable by human hand,
it is seen that this method provides gain for time and
task force. In the future, this study can be extended for
obtaining a faculty course timetable by considering the
whole departments in that faculty. And also university
scheduling and exam scheduling can be done by
considering this study.

REFERENCES

Abramson, D., 1991. Constructing School Timetables using
Simulated Annealing: Sequential and Parallel
Algorithms. Management Science, 37(1), pp. 98-113.

Abramson, D., Dang, H., Krisnamoorthy, M., 1999.
Simulated Annealing Cooling Schedules for the School
Timetabling Problem. Asia-Pacific Journal of
Operational Research, 16(1), pp. 1-22.

Schaerf, A., 1996. Tabu Search Techniques for Large High-
School Timetabling Problems. In Proc. of the Fourteenth
National Conference on AI. Vol(1), pp. 363-368.

Goldberg, D. E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.
USA.

Colorni, A., Dorigo, M., Maniezzo, V., 1992. A Genetic
algorithm to solve the timetable problem. Technical
Report 90-060, Politecnico di Milano. Milano Italy.

Yu, E., Sung, K., 2002. A genetic algorithm for a university
weekly courses timetabling problem. International
Transactions in Operational research, Vol(9), pp. 703-
717.

Ozcan, E., Alkan, A., 2002. Çok Nüfuslu Kararlı Hal
Genetik Algoritması Kullanarak Otomatik Çizelgeleme.
In TBD 19. Bilişim Kurultayı. pp. 149-155.

Yigit, T., 2006. Meslek Liseleri Haftalık Ders Çizelgelerinin
Genetik Algoritmalar Yardımıyla Oluşturulması. Gazi
Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi
Dergisi, Sayı: 19, pp. 25-39.

Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P.,
Likothanassis, S. D., 2008. Applying evolutionary
computation to the school timetabling problem: The
Greek case. Science Direct, Computers & Operations
Research, 35(4), pp. 1265-1280.

Karaboga, D., 2004. Yapay Zeka Optimizasyon
Algoritmaları, Atlas Yayın Dağıtım. Turkey.

Eiben, A. E., Smith, J. E., 2007. Introduction to Evolutionary
Computing, Springer, ISBN: 978-3-540-40184-1.

Davis, L., 1985. Applying adaptive algorithms to epistatic
domains. In Proceedings of the International Joint
Conference on Artificial Intelligence. pp. 162-164.

Cheng, R., Gen, M., Tsujimura, Y., 1999. A tutorial of job-
shop scheduling problems using genetic algorithms, part
2: hybrid genetic search strategies. Elsevier, Computers
& Industrial Engineering, Vol(36), pp. 343-364.

Renders, J., Bersini, H., 1994. Hybridizing genetic
algorithms with hill-climbing methods for global
optimization: two possible ways. In Fogel D, editor.
Proceedings of the First IEEE Conference on
Evolutionary Computation. FL: IEEE Press, pp. 312-
317.

Ishibuchi, H., Murata, T., 1998. A Multi-Objective Genetic
Local Search Algorithm and Its Application to Flowshop
Scheduling. IEEE Transactions on Systems, Man, and
Cybernetics—Part C: Applications and Reviews, 28(3).

Abdullah, S., Turabieh, H., 2008. Generating University
Course Timetable Using Genetic Algorithms and Local
Search. In Third 2008 International Conference on
Convergence and Hybrid Information Technology.
Vol(1), pp. 254-260.

Mumford, L. C., 2007. An Order Based Evolutionary
Approach to Dual Objective Examination Timetabling.
Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Scheduling, (CI-Sched).

Burke, K. E., Petrovic, S., 2002. Recent research directions
in automated timetabling. Elsevier, European Journal of
Operational Research, 140(2), pp. 266-280.

Gediz University 3rd International Symposium on Computing in Science & Engineering

ISCSE 2013 (http://iscse2013.gediz.edu.tr)
270

October 24-25, 2013, Kuşadası, Aydın, Turkey

