A Building Block Favoring Reordering Method for Gene Positions in
Genetic Algorithms

Onur Tolga Sehitoglu
Dept. of Computer Engineering
Middle East Technical University, Ankara
onur@ceng.metu.edu.tr

Abstract

This work proposes an algorithm to speed-
up convergence of genetic algorithms that is
based on the investigation of neighbouring
gene values of the successful individuals of
the chromosome pool. By performing some
statistical inference on neighbour gene val-
ues, coherent behaving genes are detected. It
is claimed that those coherent acting genes
are belonging to the same building block that
leads to the solution. It is desirable to keep
genes of the same building block together to
let them —probabilistically— live together in
next generations. Therefore, a reordering of
the gene positions is performed, periodically.
The proposed algorithm is implemented for
a minimum area non-overlapping rectangle
placement problem and results are compared
to a classical GA implementation.

1 Introduction

n-point crossover is known to favor the formation of
the so called building blocks. Building blocks are those
relatively short gene subsequences which, when com-
bined, form better solutions. The mechanism of ge-
netic algorithm (GA) implicitly assigns higher chances
to building blocks to exist over generations. In other
words, to survive.

The idea in this work is based on the fact that building
blocks mainly consist of those group of genes which are
closely located to each other. Now, consider two genes,
which due to the nature of the problem would tend to
form a building block, and are separated by some other
genes in the chromosome in the default gene ordering
of the chromosome representation. These two will not
easily be able to form a building block, when subject

Goktiirk Ucoluk
Dept. of Computer Engineering
Middle East Technical University, Ankara
ucoluk@ceng.metu.edu.tr

to n-point crossover; because the probability of hit-
ting some intermediate point as the cut-point of the
crossover is high. Therefore the order of genes in the
chromosome encoding plays an important role in the
convergence of the GA.

We propose a method in which permutations of the
gene ordering are considered dynamically. In Section
2 the proposed method is described. The method is
implemented for a minimum non-overlapping rectan-
gle placement problem and the implementation is de-
scribed in Section 3. In Section 4 results are compared
with the classical GA’s results.

2 Proposed Method

In each generation a single global permutation is con-
sidered. This permutation maps a gene number to
a position value in the chromosome encoding. The
crossover operation is based on this mapping instead
of the original gene order in the representation. Dur-
ing the evolution of the genetic algorithm, this global
permutation is readjusted by means of statistical anal-
ysis on neighbouring genes, calculated for the bests of
the pool.

e Consider that the solution to a subject problem
requires the determination of a set of parameters
X. As the first step GA requires the determi-
nation of a one-to-one mapping from the set of
parameters to the set of binary strings I', this is
called the encoding of the parameters.

Ei: Xy~ T; where X;eX, I el

We name I'; as genes. I';’s, each of which are bi-
nary strings, are concatenated into a one dimen-
sional binary array I' so that I'; is followed by
I'it1. An instance of T is called a chromosome.

o We define a permutation of genes as an ordering

relation of the genes in a chromosome. If P, rep-
resents such a permutation operator on a chromo-
some, it is defined by means of its gene elements
as:

A
[PPF]Z = Fp(i)

Here p is a permutation function:

p:{1,2,....,n}— {1,2,...,n} where

L exists.

n=T| and p~
As a part of the proposed method we define for
each gene position 7 of the chromosome a function
fi that admits a gene value as arguments and is
defined as:

F;:T;j—» R where T;€T

Please also note that, in the most general case, I';
can be a tuple representation of various features.
Therefore F; may be defined over the correspond-
ing allele tuple domain.

For denotational simplicity, we will define

A
fi = Fi(Ty)

so f; is a real value which is calculated from a T;

by means of F;.

When the building blocks of a GA is reverse
mapped to the actual problem domain, it is usu-
ally observed that the formation of blocks corre-
sponds to some patternal, structural, mathemat-
ical invariance or covariances.

The functions F; will serve to express features as
real values which will be used to discover some
invariance or covariances. So, in a way, we are
defining a handle, where the GA user has a chance
to hook-in his hint for defining the features which
may lead to building blocks.

At each generation we calculate a neighbour-
affinity-function A; that is defined for each neigh-
bour gene pair position in the current permuta-
tion over the whole pool. We propose it to be of
the most general form:

AD {fo16)s fo=1(i41)) Ipoor = [0,1] where

Of course if the chromosome composition is a vec-
tor of genes (due to the nature of the problem)
then all f;’s will reduce to a single f and hence
A; will reduce to a single function A4.

A; is a problem specific function and should be
coded according to the characteristics of the prob-
lem encoding. Since the aim is to construct good
building blocks, the result of .A? should be closer
to 1 for gene values acting coherently and con-
tributing for better solutions. Correlation and
standard deviation analysis can be used as alter-
natives for A;.

The next step is to modify the permutation map-
ping by looking at the results of neighbour-affinity
value calculations which are calculated from the
instances of the current generation of the pool.
We will be calling these values A?.

To do this, every gene position in the permutation
will be considered, and based on the right and left
neighbour-affinity values of each gene a decision
will be made for ots position. If this value is found
to be less then a threshold value 7, these two genes
will be considered as unrelated to each other and
the permutation will be changed to separate them.
Actually there exists 4 possible affinity cases for
a gene:

1. Affinity value is greater then T for both neigh-
bours so there is no problem with the current
ordering. The gene position is kept in the
permutation unaltered.

2. Affinity value with left gene is greater than T
but it is less than T for the right gene. This
means left neighbour is okay but we should
separate it from the right. So, gene exchanges
position with the left neighbour. In this way
the good affinity with the left neighbour is
preserved.

3. Affinity value with left gene is less than T but
it is greater than T for the right gene. Sim-
ilarly gene exchanges its position with the
right neighbour.

4. Both affinity values are less than 7. Gene is
moved to a random position in the permuta-
tion.

2[3] 4[5][6[7]8] 9f1o1] »

LT LT JTeJToJToTTeIT T T Neighbour
)]

affinity
s

o : Affinity value lessthant

[2]1]3]7]5]4]6 8 [10]9 fir] newe

Figure 1: Modification of order according to affinity
values

Modifications in the permutation map-
pings are kept to be as local as possi-

ble. The algorithm to do this is as follows:
fori+—2...ndo
{
if p[i — 1] is not modified in prev. iter.
ifA;,_1>7 NA<T
pli — 1] + p[i]
elseif A;_1 <7 NA;>T
pli] & pli +1]
elseif A, 1 <7 N A <T
Mowve pli] to a random location

2.1 GA Engine

e Initialize the global permutation P to [1,2,...,n]

e Generate a random population, evaluate it and store it also
as the former generation.
Pool size = 100 chromosomes

Repeat :

e Mutate.
Mutation Rate = Once each 10 generation one random
chromosome
Changes per Chromosome = Flip one randomly selected
gene

e Mate all the pool by forming random pairs.
Determine the crossover points.
Perform crossovers among the chromosomes according to
the permutation. Crossover point is taken in permutation
mapping.
Cross Over = At 10 random chosen random length gene
intervals

e Evaluate the new generation.
Keep Ratio = At most 10%

o If reorder period is reached:

- Calculate A? values for the selected-kept chromo-
somes according to current permutation mapping.

- Modify the ordering of each gene position according
to A; values and find the new permutation.

e Display/Record performance result.
e If it was not the last generation the user demanded, goto

Repeat.

3 Implementation

For testing and implementation of the proposed sys-
tem, a minimum area rectangle placement problem is
chosen. In this problem a set of rectangles is given as
input. The aim is to find a placement of all rectangles

such that all rectangles are in a bounding box which is
minimized in the area and no two rectangles intersect.
The input is the width and height information of n
rectangles.

3.1 Problem encoding

o I, = (w;, h;) is the width & height input of the it"
rectangle.

o I'; = (x;,y;,0;) where z; and y; are offsets from
the origin and o; € {0,1} is the orientation (not
rotated, rotated 90°) in the placement. Each gene
I'; defines a placement for I;. T'; in combination
with I; describes a rectangle positioning with ab-
solute coordinates.

e The fitness function for a chromosome is defined
as:
V=c¢Z+dO,+eB j=1,...,poolsize
where ¢, d, e are positive constant weights and Z is
the total area of the rectangles placed out of the
placement area, O is the total overlapping area
among all rectangle pairs, B is the area of the
minimum bounding box covering all rectangles in
the placement. The aim of the genetic algorithm
is to find a chromosome that minimizes V.

e One point crossover for crossover point k is
defined by means of the permutation mapping P

as:
pan_ [DA ifp() <k
TS\ TP () > k
ETL Tt ifp() >k

where I'* and T'P are crossedover to produce two
offsprings: I'4B and T'B4,

e Since the gene values are three-tuples of numeric
values, there is no need to define an auxilary func-
tion f; which will map them to [0,1]. Their nu-
merical values are directly used in the formula.

e The neighbour affinity function is defined to
be the total standart deviation of offset values
describing the placement:

AP =1 — (t\/ 04 (i) + u\/oy (i) + v/0,(7))

where o, (7) is defined as the variance of the differ-
ences of the a features of the (T'p-1(;), Tp-1(i41))
tuples in the population. ¢, u,v are positive
constant weights:

8i5,0) /M

Mk

M

2
28 sa(
i=1 j

oo(i) =1 2

I
-

dija = Tp=1(i) ja = Lp=1(i41) 4.

Due to the proposed algorithm, when A? is small
then two neighbour genes should be placed in rel-
atively arbitrary positions in the population. This
is so, a small A value means that they are sta-
tistically found not to cooperate well towards the
solution. When A? values become close to 1, the
relative placement of neighbour genes is almost
fixed in the population which means a building
block is established by these neighbours.

e Reorder frequency is chosen as 5. That means,
analysis of A; values and permutation modifica-
tion is done once in 5 generations.

3.2 Test results

The resulsts of the implementation of the proposed
algorithm to the resulst of the classical GA implemen-
tation where all other paramaters like crossover oper-
ations, mutation frequency, keep ratio' are the same
but no permutation shuffling is done. In the implemen-
tation of the proposed method, crossovers are carried
out by using the permutation information, and permu-
tation mapping is modified once in 5 generation. Tests
are repeated 20 times with different random seeds.
In Figure 2 the evolution of the best individual fit-
ness value is indicated. The proposed gene reordering
method converges significantly faster. It reaches the
mimimum in 150 generations compared to 550 to 600
generations of the classical GA version.

Keep=10 Run=1
6000 . . .

Classical GA' ——
% Proposed GA ------

5000 B
4000

3000 F

Best fitness

2000 |-}

1000 |

N N N N ’
500 600 700 800 900 1000
Generation

0 L L L L
0 100 200 300 400

Figure 2: Evolution of the best individual for a sample
execution

'Ratio of the best members of current generation to be
kept in the next generation

Distributions of the best individuals for all 20 execu-
tion cases through the generations is given in Figure 3.
The gene reordering version is consistently converging
to a solution in less number of generations for all cases.
furthermore, the classical version exhibits a slow con-
vergence behaviour which is also likely to get trapped
into a local minima more frequently.

Keep=10, normal execution of 20
7000 T T T

T T
Classical GA
6000 —

5000 [+ 1

4000 = R
=

Best fitness.

L L L L L
0 100 200 300 400 600 700 800 900 1000

500
Iteration

Keep=10, gene moved execution of 20
7000 T T T T T

T T
Proposed GA
6000 —

5000 - R

4
4000 |5 4

Best fitness.

L L L L L L ! !
0 100 200 300 400 600 700 800 900 1000

Figure 3: Distribution of the best fitness values for 20
executions where Keep ratio is 10

When the fitness values of the best individuals after
1000 iterations are compared it is observed that though
the proposed algorithm converges significantly faster it
does not find a worse solution than the original algo-
rithm (Figure 4). In contrary, since it gets caught in lo-
cal minima, the classical algorithm requires more than
1000 generations to achive the quality of the solution
which the proposed GA reaches in 150 generations.

Considering the reordering cost, it is also observed that
after a small number of generations neighbour affinity
values gets under the specified threshold and the sys-
tem does not require a permutation change. In most
of the cases a fixed permutation was converged to in
50 to 100 generations.

Keep=10, Best value after 1000

‘Proposed GA
Classical GA -------
=l Difference =««++«=+ 4

Fitness value
=
19
8

Test case

Figure 4: Best individuals fitness value after 1000 gen-
eration. (Small numerical value on fitness axis means
a better solution.

4 Conclusion

The proposed method achieved a high improvement
in the convergence speed without causing any genetic
drift problem leading to a local minima. On the con-
trary the quality of the solution is usually better after
a fixed number of iterations. Since the method con-
verges faster, it is also much more suitable for time

critical problems where a suboptimal solution is use-
ful.

References

[1] Thomas Béck. Evolutionary Algorithms in Theory
and Practice. Oxford University Press, 1996.

[2] David Beasley, David R. Bull, and Ralph R. Mar-
tin. An overview of genetic algorithms: Part 1,
fundamentals. University Computing, 15(2):58-69,
1993.

[3] David Beasley, David R. Bull, and Ralph R. Mar-
tin. An overview of genetic algorithms: Part 2,
research topics. University Computing, 15(4):170—
181, 1993.

[4] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, 1989.

[5] J.H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, 1975.

[6] Melanie Mitchell. An Introduction to Genetic Al-
gorithms. MIT press, 1996.

