MA5313 – Lecture 2 Supplement

Background Notions (cont.) Discrete Geometry and Topology: connectivity

Are the two 2x2 squares connected?

Background Notions (cont.) Discrete Geometry and Topology: <u>boundaries</u>

Background Notions (cont.) Discrete Geometry and Topology: convexity

! Problem: more than one connected digital line segments connecting two points

Hence, several definitions have been proposed

Background Notions (cont.) Discrete Geometry and Topology: convex hull - 1

Background Notions (cont.) Discrete Geometry and Topology: convex hull - 2

HW: think about it

Background Notions (cont.) Discrete Distances - 1

1.
$$d(p,q) \ge 0$$
 and $d(p,q) = 0 \Leftrightarrow p = q$;

- 2. d(p,q) = d(q,p) (symmetry);
- 3. $d(p,q) \leq d(p,r) + d(r,q)$ (triangle inequality).

the discrete distance between two vertices in a graph?

the smallest length of paths linking the two points.

Q: what is the metric in the cases of 4 and 8 connectivities?

Background Notions (cont.) Discrete Distances - 2

$$d_4[(x_1,y_1),(x_2,y_2)] = |x_2 - x_1| + |y_2 - y_1|,$$

$$d_8[(x_1, y_1), (x_2, y_2)] = \max\{|x_2 - x_1|, |y_2 - y_1|\}.$$

An alternative is to consider embedding into Euclidean space, ignoring the neighborhood relations.

$$d_{\mathcal{E}}[(x_1,y_1),(x_2,y_2)] = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.$$