Gene Regulatory Networks

slides adapted from
Shalev Itzkovitz’s talk
given at IPAM UCLA on July 2005
Protein networks - optimized molecular computers
E. coli – a model organism

Single cell, 1 micron length

Contains only ~1000 protein types at any given moment

still : Amazing technology

sensors

computer

engine

Communication bus
Can move toward food and away from toxins
Flagella assembly

- Composed of 12 types of proteins
- Assembled only when there is an environmental need for motility
- Built in an efficient and precise temporal order
Proteins are encoded by DNA

DNA - same inside every cell, the instruction manual, 4-letter chemical alphabet - A,G,T,C

E. Coli – 1000 protein types at any given moment

>4000 genes (or possible protein types) – need regulatory mechanism to select the active set
Gene Regulation

- Proteins are encoded by the DNA of the organism.
- Proteins regulate expression of other proteins by interacting with the DNA.

![Diagram showing gene regulation]

- DNA
- Promoter region
 - ACCGTGCAAT
- Coding region
- Protein
 - Inducer (external signal)
Activators increase gene production

- Activator X
- X binding site
- Gene Y
- Bound activator

No transcription

Increased transcription

X → Y
Repressors decrease gene production

Bound repressor

Unbound repressor

No transcription

X → Y
An environmental sensing mechanism

Environment → Signal 1 → X1 → gene 1
Environment → Signal 2 → X2 → gene 2
Environment → Signal 3 → X3 → gene 3
Environment → Signal 4 → Xm → gene k

Transcription factors → X1
Transcription factors → X2
Transcription factors → X3
Transcription factors → Xm

genes → gene 1 → X1
genes → gene 2 → X2
genes → gene 3 → X3
genes → gene k → Xm
Gene Regulatory Networks

- Nodes are proteins (or the genes that encode them)
The gene regulatory network of E. coli

- shallow network, few long cascades.
- modular
- compact in-degree (promoter size limitation)

Shen-Orr et. al. Nature Genetics 2002
Asymmetric degree distribution due to Promoter size limitation
What logical function do the nodes represent?
Example – Energy source utilization

The E. coli prefers glucose.

lacZ is a protein needed to break down lactose into carbon.

How will the E. coli decide when to create this protein?
Proteins have a cost

- E. Coli creates $\sim 10^6$ proteins during its life time
- ~ 1000 copies on average for each protein type

E. Coli will grow 1/1000 slower, Enough for evolutionary pressure
AND gate encoded by proteins and DNA

lacZ gene is controlled by 2 “sensory” proteins:

- Lactose sensor: Unbinds when senses lactose
- Glucose absence sensor: Binds when senses no glucose

Jacob & Monod, J. Mol. Biol. 1961
Experimental measurement of input function

The bacteria becomes green in proportion to the production rate

GFP

promoter

….ctgaagccgcttt….
Are there large recurring patterns which play a defined functional role?

logic network Recurring pattern Defined function
Network motifs

Subgraphs which occur in the real network significantly more than in a suitable random ensemble of networks.
Basic terminology

3-node subgraph
Basic terminology

4-node subgraph
Two examples of 3-node subgraphs

- Feed-forward loop
- 3-node feedback loop (cycle)
13 directed connected 3-node subgraphs
199 4-node directed connected subgraphs

And it grows pretty fast for larger subgraphs: 9364 5-node subgraphs, 1,530,843 6-node...
Real = 5

Rand = 0.5 ± 0.6

Zscore (#Standard Deviations) = 7.5
Network motifs

Subgraphs which occur in the real network significantly more than in a suitable random ensemble of networks.

Algorithm:

1) Count all n-node connected subgraphs in the real network.
2) Classify them into one of the possible n-node isomorphic subgraphs
3) Generate an ensemble of random networks - networks which preserve the degree sequence of the real network
4) Repeat 1) and 2) on each random network
 • Subgraphs with a high Z-score are denoted as network motifs.

\[Z = \frac{N_{\text{real}} - N_{\text{rand}}}{\sigma_{\text{rand}}} \]
Network motifs in E. coli transcription network
Only one 3-node network motif – the feedforward loop

N_{real} = 40
N_{rand} = 7 \pm 3
Z \text{ Score (} \# \text{SD} \text{)} = 10
Blue nodes =

FFL

X

Y

Z
The coherent FFL circuit

Diagram:

- X
- Y
- Z
- AND
- Sx
- Sy
Coherent FFL – a sign sensitive filter

Threshold for activating Y
Incoherent FFL – a pulser circuit

Diagram showing the relationships between Sx, Sy, Kyz, and Z over time.
A motif with 4 nodes: bi-fan

N_{\text{real}} = 203

N_{\text{rand}} = 47 \pm 12

Z \text{ Score} = 13
Another motif: Single Input Module

\[X \]

\[\begin{align*}
Z_1 & \quad Z_2 \\
\cdots & \quad \ldots \\
Z_n &
\end{align*} \]
Single Input Module motifs can control timing of gene expression

Shen-Orr et al. Nature Genetics 2002
Single Input Module motif is responsible for exact timing in the flagella assembly
Gene regulation networks can be simplified in terms of recurring building blocks.

Network motifs are functional building blocks of these information processing networks.

Each motif can be studied theoretically and experimentally.
Efficient detection of larger motifs?

• The presented motif detection algorithm is exponential in the number of nodes of the motif.

• More efficient algorithms are needed to look for larger motifs in higher-order organism that have much larger gene-regulatory networks.
More information:

http://www.weizmann.ac.il/mcb/UriAlon/

Papers
mfinder – network motif detection software
Collection of complex networks