Suffix Trees and Arrays

Some problems
- Given a pattern $P = P[1..m]$, find all occurrences of P in a text $S = S[1..n]$
- Another problem:
 - Given two strings $S_1[1..n_1]$ and $S_2[1..n_2]$ find their longest common substring.
 - Find i, j, k such that $S_1[i .. i+k-1] = S_2[j .. j+k-1]$ and k is as large as possible.
- Any solutions? How do you solve these problems (efficiently)?

Exact string matching
- Finding the pattern $P[1..m]$ in $S[1..n]$ can be solved simply with a scan of the string S in $O(m+n)$ time. However, when S is very long and we want to perform many queries, it would be desirable to have a search algorithm that could take $O(m)$ time.
- To do that we have to preprocess S. The preprocessing step is especially useful in scenarios where the text is relatively constant over time (e.g., a genome), and when search is needed for many different patterns.

Applications in Bioinformatics
- Multiple genome alignment
 - Michael Hohl et al. 2002
 - Longest common substring problem
 - Common substrings of more than two strings
- Selection of signature oligonucleotides for DNA arrays
 - Kaderali and Schliep, 2002
- Identification of sequence repeats
 - Kurtz and Schleiermacher, 1999

Suffix trees
- Any string of length m can be degenerated into m suffixes.
 - $abcdefgh$ (length: 8)
 - 8 suffixes:
 - h, gh, fgh, efgh, dfe, cdefgh, bcdefgh, abcdefgh
- The suffixes can be stored in a suffix-tree and this tree can be generated in $O(n)$ time
- A string pattern of length m can be searched in this suffix tree in $O(m)$ time.
 - Whereas, a regular sequential search would take $O(n)$ time.

History of suffix trees
- Weiner, 1973: suffix trees introduced, linear-time construction algorithm
- McCreight, 1976: reduced space-complexity
- Ukkonen, 1995: new algorithm, easier to describe
- In this lecture, we will only cover a naive (quadratic-time) construction.
Definition of a suffix tree

- Let $S = S[1..n]$ be a string of length n over a fixed alphabet Σ. A suffix tree for S is a tree with n leaves (representing n suffixes) and the following properties:
 - Every internal node other than the root has at least 2 children.
 - Every edge is labeled with a nonempty substring of S.
 - The edges leaving a given node have labels starting with different letters.
 - The concatenation of the labels of the path from the root to leaf i spells out the i-th suffix $S[i..n]$ of S. We denote $S[i..n]$ by S_i.

An example suffix tree

- The suffix tree for string: 1 2 3 4 5 6 x a b x a c

What about the tree for xabxa?

- The suffix tree for string: 1 2 3 4 5 x a b x a

The terminal character $\$$

- Note that if a suffix is a prefix of another suffix, we cannot have a tree with the properties defined in the previous slides.
 - e.g. xabxa

 The fourth suffix xa or the fifth suffix a won’t be represented by a leaf node.

- Solution: insert a special terminal character at the end such as $\$$. Therefore $xa\$ will not be a prefix of the suffix xabxa.

The suffix tree for xabxa$

Suffix tree construction

- Start with a root and a leaf numbered 1, connected by an edge labeled $S\$.
- Enter suffixes $S[2..n]\$; $S[3..n]\$; ...; $S[n]\$ into the tree as follows:
 - To insert $K_i = S[i..n]\$, follow the path from the root matching characters of K_i until the first mismatch at character $K_i[j]$ (which is bound to happen)
 (a) If the matching cannot continue from a node, denote that node by w
 (b) Otherwise the mismatch occurs at the middle of an edge, which has to be split
Suffix tree construction - 2

• If the mismatch occurs at the middle of an edge $e = S[u \ldots v]$
 – let the label of that edge be $a_1 \ldots a_l$
 – If the mismatch occurred at character a_k, then create a new node w, and replace e by two edges $S[u \ldots u+k-1]$ and $S[u+k \ldots v]$ labeled by $a_1 \ldots a_k$ and $a_{k+1} \ldots a_l$
• Finally, in both cases (a) and (b), create a new leaf numbered i, and connect w to it by an edge labeled with K_j \ldots $|K_j|

Example construction

• Let’s construct a suffix tree for $xabxac$

• Start with:

• After inserting the second and third suffix:

Example contd...

• Inserting the fourth suffix xac will cause the first edge to be split:

• Same thing happens for the second edge when ac is inserted.

Example contd...

• After inserting the remaining suffixes the tree will be completed:

Complexity of the naive construction

• We need time $O(n-1+i)$ time for the i^{th} suffix. Therefore the total running time is:

$\sum_{i} O(i) = O(n^2)$

• What about space complexity?
 – Can also take $O(n^2)$ because we may need to store every suffix in the tree separately,
 – e.g., abcdefghijklmn

Storing the edge labels efficiently

• Note that, we do not store the actual substrings $S[i \ldots j]$ of S in the edges, but only their start and end indices (i, j).
• Nevertheless we keep thinking of the edge labels as substrings of S.
• This will reduce the space complexity to $O(n)$
Using suffix trees for pattern matching

- Given S and P. How do we find all occurrences of P in S?
- **Observation.** Each occurrence has to be a prefix of some suffix. Each such prefix corresponds to a path starting at the root.
 1. Of course, as a first step, we construct the suffix tree for S. Using the naive method this takes quadratic time, but linear-time algorithms (e.g., Ukkonen's algorithm) exist.
 2. Try to match P on a path, starting from the root. Three cases:
 - (a) The pattern does not match → P does not occur in T
 - (b) The match ends in a node u of the tree. Set x = u.
 - (c) The match ends inside an edge (v, w) of the tree. Set x = w.
 3. All leaves below x represent occurrences of P.

Running Time Analysis

- Search time:
 - $O(m+k)$ where k is the number of occurrences of P in T and m is the length of P
 - $O(m)$ to find match point if it exists
 - $O(k)$ to find all leaves below match point

Scalability

- For very large problems a linear time and space bound is not good enough. This lead to the development of structures such as Suffix Arrays to conserve memory.

Two implementation issues

- Alphabet size
- Generalizing to multiple strings
One way to compute

• Use a different end character i for each string S_i
• Concatenate all the strings together
• Make suffix tree of concatenated string
• Make artificial suffixes actual suffixes
 – For any internal node v, $L(v)$ must be a substring of an original string
 • Only the leaf edge labels can span two original strings because of the uniqueness of each i
 – Postprocess and shorten leaf edge labels appropriately

Effects of alphabet size on suffix trees

• We have generally been assuming that the trees are built in such a way that
 – from any node, we can find an edge in constant time for any specific character in Σ
 • an array of size $|\Sigma|$ at each node
• This takes $\Theta(m|\Sigma|)$ space.

More compact representation

• We can try to be more compact taking only $O(m)$ space.
 – At each node, have pointers to only the edges that are needed
• This slows down the search time
• How much?
 – typically the minimum of $O(\log m)$ or $O(\log |\Sigma|)$ with a binary tree representation.
• This effects both suffix tree construction time and later searching time against the suffix tree.

Other methods are truly alphabet independent

• Z-computation, KMP, BM all have running times and space requirements that are truly independent of the alphabet size.
• This can make them superior to suffix tree approaches when $|\Sigma|$ is large.

Generalized suffix trees

• Build a suffix tree for a set of strings $S = \{S_1, ..., S_j\}$
• Some issues
• Nodes in tree may corresponds to substrings of potentially multiple strings S_i
 – compact edge labels: need 3 fields (start position, stop position, string)
 – leaf labels now a set of pairs indicating starting position and string

One way to compute

• Use a different end character i for each string S_i
• Concatenate all the strings together
• Make suffix tree of concatenated string
• Make artificial suffixes actual suffixes
 – For any internal node v, $L(v)$ must be a substring of an original string
 • Only the leaf edge labels can span two original strings because of the uniqueness of each i
 – Postprocess and shorten leaf edge labels appropriately
Another way to compute

- Build tree for S_1
- Given tree for strings S_1 through S_i, add suffixes for S_{i+1} as follows:
 - Search for S_{i+1} in tree till mismatch in position $j+1$ of S_{i+1}
 - Existing tree implicitly has every suffix of $S_{i+1}[1..j]$
 - Resume Ukkonen's algorithm for S_{i+1} in phase $j+1$ from point of last match

Suffix arrays

- More space efficient than suffix trees
- A suffix array for a string x of length m is an array of size m that specifies the lexicographic ordering of the suffixes of x.
 - Example of a suffix array (mississippi)
- $O(n)$ space
- Lookup query
 - Binary search
 - $O(m \log n)$ time; n is the size of the query
 - Can reduce time to $O(m + \log n)$ using a more efficient implementation

Suffix Arrays

- It can be built very fast.
- It can answer queries very fast:
 - How many times ATG appears (their pointers are all jammed together).
 - What is G-C contents.
- Disadvantages:
 - Can't do approximate matching
 - Hard to insert new stuff (need to rebuild the array) dynamically.
 - Pointers can cost too much space. 3G pointers?