CENG 465
Introduction to Bioinformatics

Spring 2009-2010

Tolga Can (Office: B-109)
e-mail: tcan@ceng.metu.edu.tr

Course Web Page:
http://www.ceng.metu.edu.tr/~tcan/ceng465_s0910/
Goals of the course

• Working at the interface of computer science and biology
 – New motivation
 – New data and new demands
 – Real impact
• Introduction to main problems in bioinformatics
• Opportunity to interact with algorithms, tools, data in current practice
High level overview of the course

• A way of thinking -- tackling “biological problems” computationally
 – how to look at a “biological problem” from a computational point of view?
 – how to formulate a computational problem to address a biological issue?
 – how to collect statistics from biological data?
 – how to build a “computational” model?
 – how to solve a computational modeling problem?
 – how to test and evaluate a computational algorithm?
Course outline

- Motivation and introduction to biology (1 week)
- Sequence analysis (4 weeks)
 - Analyze DNA and protein sequences for clues regarding function
 - Identification of homologues
 - Pairwise sequence alignment
 - Statistical significance of sequence alignments
 - Profile HMMS
 - Multiple sequence alignment
 - Efficient pattern search: suffix trees
- Phylogenetic trees (1 week)
Course outline

- Protein structures (4 weeks)
 - Structure prediction (secondary, tertiary)
 - Analyze protein structures for clues regarding function
 - Structure alignment

- Microarray data analysis (2 weeks)
 - Correlations, clustering

- Gene/Protein networks, pathways (2 weeks)
 - Protein-protein, protein/DNA interactions
 - Construction and analysis of large scale networks
Grading

- Midterm exam - 30%
- Final exam - 40%
- Assignments (written/programming) - 30%
Miscellaneous

• Course webpage
 – Lecture slides and reading materials
 – Assignments
 – Other relevant information

• Newsgroup
 – metu.ceng.course.465
 – You should follow the newsgroup for course related announcements
 – Students from other departments should get a CENG account for this semester (Room: A-210) in order to access the newsgroup
Bioinformatics: A simple view

Biological Data + Computer Calculations
What is Bioinformatics?

• *(Molecular)* **Bio-informatics**

• One idea for a definition?
 Bioinformatics is conceptualizing *biology in terms of molecules* (in the sense of physical-chemistry) and then applying “*informatics*” techniques (derived from disciplines such as applied math, CS, and statistics) to understand and *organize the information associated* with these molecules, *on a large-scale*.

• Bioinformatics is a practical discipline with many applications.
Computing versus Biology

• what computer science is to molecular biology is like what mathematics has been to physics
 -- Larry Hunter, ISMB’94

• molecular biology is (becoming) an information science
 -- Leroy Hood, RECOMB’00

• bioinformatics ... is the research domain focused on linking the behavior of biomolecules, biological pathways, cells, organisms, and populations to the information encoded in the genomes
 --Temple Smith, Current

Topics in Computational Molecular Biology
Computing versus Biology
looking into the future

• Like physics, where general rules and laws are taught at the start, biology will surely be presented to future generations of students as a set of basic systems duplicated and adapted to a very wide range of cellular and organismic functions, following basic evolutionary principles constrained by Earth’s geological history.

--Temple Smith, Current Topics in Computational Molecular Biology
DNA (Genotype) → Protein → Phenotype
Scales of life
Animal Cell

- Mitochondrion
- Nucleolus (rRNA synthesis)
- Nucleus
- Plasma membrane
- Cell coat
- Chromatin
- Cytoplasm
- Lots of other stuff/organelles/ribosome
Two kinds of Cells

• Prokaryotes – no nucleus (bacteria)
 – Their genomes are circular

• Eukaryotes – have nucleus (animal, plants)
 – Linear genomes with multiple chromosomes in pairs. When pairing up, they look like

/
Middle: centromere
Top: p-arm
Bottom: q-arm
Molecular Biology Information - DNA

• Raw DNA Sequence
 - Coding or Not?
 - Parse into genes?
 - 4 bases: AGCT
 - ~1 Kb in a gene, ~2 Mb in genome
 - ~3 Gb Human

atggcaat...
Molecular Biology Information: Protein Sequence

- 20 letter alphabet
 - ACDEFGHIKLMNPQRSTVWY but not BJOUXZ
- Strings of ~300 aa in an average protein (in bacteria),
 ~200 aa in a domain
- ~1M known protein sequences
Molecular Biology Information: Macromolecular Structure

- DNA/RNA/Protein
 - Almost all protein
Structure summary

• 3-d structure determined by protein sequence
• Cooperative and progressive stabilization
• Prediction remains a challenge
 – ab-initio (energy minimization)
 – knowledge-based
 • Chou-Fasman and GOR methods for SSE prediction
 • Comparative modeling and protein threading for tertiary structure prediction
• Diseases caused by misfolded proteins
 – Mad cow disease
• Classification of protein structures
Genes and Proteins

• One gene encodes one* protein.
• Like a program, it starts with start codon (e.g. ATG), then each three code one amino acid. Then a stop codon (e.g. TGA) signifies end of the gene.
• Sometimes, in the middle of a (eukaryotic) gene, there are introns that are spliced out (as junk) during transcription. Good parts are called exons. This is the task of gene finding.
<table>
<thead>
<tr>
<th>Amino Acid (AA)</th>
<th>Codon(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine (GLY)</td>
<td>GG*</td>
</tr>
<tr>
<td>Alanine(ALA)</td>
<td>GC*</td>
</tr>
<tr>
<td>Valine (VAL)</td>
<td>GT*</td>
</tr>
<tr>
<td>Leucine (LEU)</td>
<td>CT*</td>
</tr>
<tr>
<td>Isoleucine (ILE)</td>
<td>AT(*-G)</td>
</tr>
<tr>
<td>Serine (SER)</td>
<td>AGT, AGC</td>
</tr>
<tr>
<td>Threonine (THR)</td>
<td>AC*</td>
</tr>
<tr>
<td>Aspartic Acid (ASP)</td>
<td>GAT,GAC</td>
</tr>
<tr>
<td>Glutamic Acid (GLU)</td>
<td>GAA,GAG</td>
</tr>
<tr>
<td>Lysine (LYS)</td>
<td>AAA, AAG</td>
</tr>
<tr>
<td>Start: ATG, CTG, GTG</td>
<td></td>
</tr>
<tr>
<td>Arginine (ARG)</td>
<td>CG*</td>
</tr>
<tr>
<td>Asparagine (ASN)</td>
<td>AAT, AAC</td>
</tr>
<tr>
<td>Glutamine (GLN)</td>
<td>CAA, CAG</td>
</tr>
<tr>
<td>Cysteine (CYS)</td>
<td>TGT, TGC</td>
</tr>
<tr>
<td>Methionine (MET)</td>
<td>ATG</td>
</tr>
<tr>
<td>Phenylalanine (PHE)</td>
<td>TTT,TTC</td>
</tr>
<tr>
<td>Tyrosine (TYR)</td>
<td>TAT, TAC</td>
</tr>
<tr>
<td>Tryptophan (TRP)</td>
<td>TGG</td>
</tr>
<tr>
<td>Histidine (HIS)</td>
<td>CAT, CAC</td>
</tr>
<tr>
<td>Proline (PRO)</td>
<td>CC*</td>
</tr>
<tr>
<td>Stop: TGA, TAA, TAG</td>
<td></td>
</tr>
</tbody>
</table>
Molecular Biology Information: Whole Genomes

Genome sequences now accumulate so quickly that, in less than a week, a single laboratory can produce more bits of data than Shakespeare managed in a lifetime, although the latter make better reading.

1995
Bacteria, 1.6 Mb, ~1600 genes [Science 269: 496]

1997
Eukaryote, 13 Mb, ~6K genes [Nature 387: 1]

1998
Animal, ~100 Mb, ~20K genes [Science 282: 1945]

2000?
Human, ~3 Gb, ~100K genes [???]

Genomes highlight the Finiteness of the “Parts” in Biology
Human Genome Project

Impacting many disciplines

Global Carbon Cycles
Industrial Resources • Bioremediation

Evolutionary Biology • Biofuels • Agriculture • Forensics

Molecular and Nuclear Medicine • Health Risks

Courtesy
U.S. Department of Energy
Human Genome Program
Gene Expression Datasets:

The Transcriptome

Young/Lander, Chips, Abs. Exp.

Also: SAGE; Samson and Church, Chips; Aebersold, Protein Expression

Brown, microarray, Rel. Exp. over Brown, microarray, Rel. Exp. over

Protein Expression

Timecourse

Snyder, Transposons, Protein Exp.

Young/Lander, Chips, Abs. Exp.

Protein Expression
Systematic Knockouts

Other Whole-Genome Experiments

Construction of a modular yeast two-hybrid cDNA library from human EST clones for the human genome protein linkage map

For yeast: 6000 x 6000 / 2 ~ 18M interactions
Molecular Biology Information: Other Integrative Data

- Information to understand genomes
 - Metabolic Pathways (glycolysis), traditional biochemistry
 - Regulatory Networks
 - Whole Organisms
 Phylogeny, traditional zoology
 - Environments, Habitats, ecology
 - The Literature (MEDLINE)
- The Future....
Organizing Molecular Biology Information: Redundancy and Multiplicity

- Different Sequences Have the Same Structure
- Organism has many similar genes
- Single Gene May Have Multiple Functions
- Genes are grouped into Pathways
- Genomic Sequence Redundancy due to the Genetic Code

How do we find the similarities?

Integrative Genomics - genes ↔ structures ↔ functions ↔ pathways ↔ expression levels ↔ regulatory systems ↔
Human genome

Genes and gene-related sequences

900Mb

- Noncoding DNA
 - 810Mb
 - Pseudogenes
 - Gene fragments
 - Introns, leaders, trailers

- Coding DNA
 - 90Mb
 - Single-copy genes
 - Multi-gene families

- Regulatory sequences

Extragenic DNA

2100Mb

- Repetitive DNA
 - 420Mb
 - Non-coding tandem repeats
 - Genome-wide interspersed repeats

- Unique and low-copy number
 - 1680Mb

- Non-coding tandem repeats
 - Satellite DNA
 - Minisatellites
 - Microsatellites
 - DNA transposons
 - LTR elements
 - LINEs
 - SINEs
Where to get data?

• **GenBank**

• **Protein Databases**

• **And many others**
Data

• Diversity and size of information
 – Sequences, 3-D structures, microarrays, protein interaction networks, *in silico* models, bio-images

• Understand the relationship
 – Similar to complex software design
Scalability challenges

 - **Sequence**
 - Genomes (more than 150), ESTs, Promoters, transcription factor binding sites, repeats, ..
 - **Structure**
 - Domains, motifs, classifications, ..
 - **Others**
 - Microarrays, subcellular localization, ontologies, pathways, SNPs, ..
Challenges of working in bioinformatics

• Need to feel comfortable in interdisciplinary area
• Depend on others for primary data
• Need to address important biological *and* computer science problems
Skill set

• Programming
• Algorithms
• Machine learning/Pattern recognition/AI
• Statistics & probability
• Mathematics