Point Location

slides by Andy Mirzaian

(a subset of the original slides are used here)
Planar Point Location: Knowing where you are on the map

References:

- [M. de Berge et al] chapter 6
- [O’Rourke’98] chapter 7.6
- [Edelsbrunner ’87] chapter 11
- [Preparata-Shamos’85] chapter 2.2

Applications:

- GIS: Geographic Information Systems
- Computer Graphics
- Mobile Telecommunication
- Mobile Robotics
- …
Point Location in a Planar Subdivision

PSLG = Planar Straight-Line Graph

Locate a query point q in the PSLG: find which face of the PSLG contains q.

Complexity Measures:
- S - space to store the point location data structure
- T - preprocessing time to construct the data structure
- Q - query time to locate the PSLG face that contains the query point.
1D Optimal method: sorted array, $S = O(n)$, $T = O(n \log n)$, $Q = O(\log n)$.

2D: Shamos [1975]: Slab Method: $S = O(n^2)$, $T = O(n^2)$, $Q = O(\log n)$.

2D Optimal Method: $S = O(n)$, $T = O(n \log n)$, $Q = O(\log n)$.

2D Line Segments intersections: Randomized Incremental Method in $O(K + n \log n)$ expected time.
The Slab Method

- $O(n^2)$ space
- $O(n^2)$ preprocessing time
- $O(\log n)$ query time.

A given PSLG with n vertices (# edges $\leq 3n-6$). We may add a large bounding box.
The Slab Method

- $O(n^2)$ space
- $O(n^2)$ preprocessing time
- $O(\log n)$ query time.

A given PSLG with n vertices ($\#$ edges $\leq 3n-6$). We may add a large bounding box.

Query Answering:
- do binary search among slabs (in x-sorted order).
- do binary search vertically within the located slab.
- each binary search takes $Q = O(\log n)$ time.
The Plane Sweep Method:

- **Event schedule**: x-coordinate of PSLG vertices in increasing order. Maintain these in a priority queue Q.
- **Event Status**: vertical sorted ordering of sub-regions within the current slab. Maintain this in a dictionary D.

Create a sorted array of slabs. Every time a slab is completed, dump a copy of the current D in the next entry of the sorted array of slabs. [This will be the final data structure.]

Analysis:

- Event processing takes $O(\log n)$ time on Q, $O(e_v \log n)$ time on D, and $O(n)$ time to dump a copy of D into the permanent D.S. Here e_v is the number of edges incident to the current event vertex v.

- Total Preprocessing Time $T = O(n \log n + \sum_v e_v \log n + n \cdot n)$

 $= O(n \log n + n \log n + n^2) = O(n^2)$.

- Space $= O(n^2)$.
Randomized Incremental Method

Construct the Trapezoidal decomposition not by the sweep method but by a randomized incremental method. This at the same time constructs the query search structures and also has optimal expected performance.
Randomized Incremental Method

Defining features of a trapezoid Δ:

Δ is defined by up to 4 line segments $\text{left}(\Delta)$, $\text{right}(\Delta)$, $\text{top}(\Delta)$, $\text{bottom}(\Delta)$. (These are some edges of the PSLG, possibly not all distinct.)

right(Δ) is defined symmetrically.
CLAIM: If PSLG has \(n \) line segments, then \# trapezoids \(\leq 3n + 1 \).

Proof: Assume 2\(n \) end-points are in general position. Each end-point defines left/right wall of at most 3 trapezoids. Except the leftmost & rightmost trapezoids, each trapezoid is defined by 2 vertical walls (incident to 2 end-points).

\[
\therefore 2(\# \text{ trapezoids}) - 2 = 3 (\# \text{ end-points}) = 6n.
\]

\[
\therefore \# \text{ trapezoids} = 3n+1.
\]

If end-points are not in general position (i.e., some have equal x-coordinates, or coincide), then the count is even less. [Could use Euler’s formula too.]

Trapezoidal Map \(\mathcal{T}(S) \) \(O(n) \) space

of a set \(S \) of \(n \) non-crossing line segments can be represented by the adjacency structure of its trapezoids.

Adjacency: \(\Delta_1 \) and \(\Delta_2 \) are adjacent iff they share (portion of) a vertical wall.

A \(\Delta \) has at most 2 left neighbors and at most 2 right neighbors.
D(S): The Query Search Structure

- It's a rooted DAG, each node has out-degree at most 2.
- Leaves (i.e., nodes of out-degree 0) store trapezoids with 2-way cross-pointers with their counter-parts in \(\mathcal{T}(S) \).
- Internal nodes are either endpoints with x-value as key (left/right comparison), or a line-segment of S (below/above comparison).

\[
\mathcal{T} \quad S = \{ s_1, s_2 \} \quad D
\]
Randomized Incremental Construction of $\mathcal{T}(S)$ & $\mathcal{D}(S)$

Input: a set S of n non-crossing line-segments in the plane.

Output: $\mathcal{T}(S)$ & $\mathcal{D}(S)$.

1. Get a bounding box and initialize $\mathcal{T}(\emptyset)$ & $\mathcal{D}(\emptyset)$.
2. Randomly permute S into (s_1, s_2, \ldots, s_n).
3. for $k \leftarrow 1..n$ do
 (* insert s_k & update $\mathcal{T}(S_k)$ & $\mathcal{D}(S_k)$. $S_k = \{s_1, s_2, \ldots, s_k\}$ *)
 Let p_k & q_k be left & right ends of s_k, respectively
 $\Delta_0 \leftarrow$ Search (p_k, \mathcal{D}) ; $j \leftarrow 0$
 while q_k is to the right of right(Δ_j) do
 if s_k is below right(Δ_j)
 then $\Delta_{j+1} \leftarrow$ lower-right-neighbor of Δ_j
 else $\Delta_{j+1} \leftarrow$ upper-right-neighbor of Δ_j
 $j \leftarrow j+1$
 end-while
 $\Delta_0, \Delta_1, \ldots, \Delta_j$ are trapezoids intersected by s_k.
 Update $\mathcal{T}(S_k)$ & $\mathcal{D}(S_k)$ accordingly (see next slide).
end
Example of step 3

\[\mathcal{T}(S_{k-1}) \]

\[\Delta \]

\[p_k \quad s_k \quad q_k \]

\[\mathcal{D}(S_{k-1}) \]

\[\mathcal{T}(S_k) \]

\[A \quad C \quad D \]

\[\Delta \]

\[\mathcal{D}(S_k) \]

\[\mathcal{D}(S_{k-1}) \]

\[p_k \quad q_k \]

\[s_k \]

\[A \quad B \quad C \quad D \]
Example of step 3

\[\mathcal{T}(S_{k-1}) \]

\[\Delta_0 \quad \Delta_1 \quad \Delta_2 \quad \Delta_3 \]

\[p_k \quad s_k \quad q_k \]

\[\mathcal{T}(S_k) \]

\[A \quad C \quad E \quad F \quad G \]

\[p_k \quad s_k \quad q_k \]

\[D(S_{k-1}) \]

\[\Delta_0 \quad \Delta_1 \quad \Delta_2 \quad \Delta_3 \]

\[\mathcal{D}(S_k) \]

\[A \quad B \quad C \quad D \quad E \quad F \quad G \]

\[p_k \quad s_k \quad s_k \quad q_k \]
THEOREM: Randomized Incremental algorithm constructs trapezoidal map $T(S)$ & search structure $D(S)$ for a set S of n non-crossing line-segments with complexities:

1) $O(\log n)$ expected query time for any query point q.
2) $O(n)$ expected size of the search structure.
3) $O(n \log n)$ expected construction time.

[All these expectations are on the random ordering of the segments in S.]
Dealing with Degeneracy

What if more than one end-point in S has the same x-coordinate? How about vertical line-segments in S? …

Shear Transform: $\varphi : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x + \varepsilon y \\ y \end{pmatrix}$

Conceptually assume $\varepsilon > 0$ is sufficiently small. For a point $p = (x,y)$ assume (x,y) is representing $\varphi p = (x+\varepsilon y , y)$.

Properties:
1. No two end-points φp & φq of φS have the same (transformed) x-coordinate.

2. Preserves left/right relationships: p left of $q \iff \varphi p$ left of φq.

3. Preserves point-line incidence (it is affine transformation):
 point p above segment $s \iff \varphi p$ above segment φs.

 [Also holds with above replaced by on or below.]