This week

- Recap from CEng 477
 - The Display Pipeline
 - Basic Transformations / Composite Transformations
- Round-off Error Considerations
- Orientation representations
- Basic Orientation Interpolation Example

The Display Pipeline

Ray Casting Display Pipeline

Animation

- Animation is typically produced by the following:
 - Modifying the position and orientation of objects in world space over time; modifying the shape of objects over time; modifying display attributes of objects over time; transforming the observer position and orientation in world space over time; or some combination of these transformations

Applying Transformations to Points

- Points are represented in homogenous coordinates and the transformation matrix is left multiplied by the column vector that represents the point:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} = \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & m \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Composite Transformations

• A series of transformations can be multiplied together to produce a compound (or composite) transformation.

\[P' = M_1 M_2 M_3 M_4 M_5 M_6 P \]
\[M = M_1 M_2 M_3 M_4 M_5 M_6 \]
\[P' = MP \]

Basic Transformations

• Translation
• Scaling
• Rotations around major axes

Translation

\[
\begin{bmatrix}
 x + t_x \\
 y + t_y \\
 z + t_z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Scaling

\[
\begin{bmatrix}
 S_x \cdot x \\
 S_y \cdot y \\
 S_z \cdot z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 S_x & 0 & 0 & 0 \\
 0 & S_y & 0 & 0 \\
 0 & 0 & S_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Rotation around x-axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \theta & \sin \theta & 0 \\
 0 & -\sin \theta & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Rotation around y-axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & 0 & \sin \theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sin \theta & 0 & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation around z-axis

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Rotations: an alternative method

- The desired rotation defines a unit coordinate system

Extracting Transformations from a Matrix

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Round-off Errors

- Assume you want to rotate a sphere around the origin.
- How would you do that?

Three different ways

- Apply a delta y-axis rotation to the points on the sphere each frame
- Apply a delta y-axis rotation to the transformation matrix and then apply it to the points
- Add a delta value to an angle variable and construct the transformation matrix from scratch each frame

Approach 1

for each point P of the moon:

\[P' = P \]

\(R_5 \) y-axis rotation of 5 degrees repeat until done (done)

for each point P' of the moon:

\[P'' = R_y \theta P' \]

record a frame of the animation
Approach 2

Orientation Representation

• How do we represent the arbitrary orientation of an object in 3D space?

• Does that representation allow for interpolation if we want to interpolate the in-between frames of two given key-frames (key-orientations) of the object?

Approach 3

Orientation Representation

• Transformation Matrix Representation
• Fixed Angle Representation
• Euler Angle Representation
• Axis-Angle Representation
 – Example on Axis-Angle Representation
• Quaternion Representation

Transformation Matrix Representation

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

(a) Positive 90 degree y-axis rotation

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

(b) Negative 90 degree y-axis rotation

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

c) Half way between orientation representations

Fixed Angle Representation

Rotate about global axes in a fixed order

Rotating about global axes is what the rotation matrices do

Can use any triple of axes

Rotate about x, then y, then z

\[(10, 90, -45)\]
Fixed Angle Representation

a) Original definition
b) (0, 90, 0) orientation

Gimbal Lock

a) (-∞ < 0, 0, 0) orientation
b) (0, 90) orientation
c) (0, 90, 0) orientation

Euler Angle Representation

Rotate about local axes of object

Roll, Pitch, Yaw

(10, 90, -45)

Angle and Axis Representation

• Euler’s rotation theorem
 – One orientation can be derived from another by a single rotation about an axis
• So, we can use an axis and a single angle to represent an orientation (with respect to the object’s initial orientation)
• We can implement interpolation in this representations

Euler’s Theorem

\[R_x(\gamma)R_y(\beta)R_z(\alpha) = R_z(\alpha)R_y(\beta)R_x(\gamma) \]
\[R_x(\gamma)R_y(\beta)R_z(\alpha) = R_z(\alpha)R_y(\beta)R_x(\gamma) \]

Equivalence of Fixed angles and Euler angles
Interpolation Using Axis-Angle Representation

\[B = A_1 \times A_2 \]
\[\phi = \cos\left(\frac{|A_1 \cdot A_2|}{|A_1||A_2|}\right) \]
\[A_4 = R_{d(k \cdot \phi)}A_1 \]
\[\theta_k = (1-k)\cdot\theta_1 + k\cdot\theta_2 \]

Example

Representing Rotations Using Quaternions

\[q = Rot_{(\theta, (x, y, z))} = [\cos(\theta/2), \sin(\theta/2) \cdot (x, y, z)] \]

\[-q = Rot_{-(\theta, (x, y, z))} = [\cos(-\theta/2), \sin(-\theta/2) \cdot (-(x, y, z))] \]

Quaternions

- Similar to axis-angle representations, quaternions can be used to represent orientation with four values (a scalar and a 3D vector)

\[[s, x, y, z] \text{ or } [s, v]\]

Basic Quaternion Math

\[[s_1, v_1] + [s_2, v_2] = [s_1 + s_2, v_1 + v_2]\]

\[[s_1, v_1] \cdot [s_2, v_2] = [s_1 \cdot s_2 - v_1 \cdot v_2, s_1 \cdot v_2 + s_2 \cdot v_1 + v_1 \times v_2]\]

\[[0, v_1] \cdot [0, v_2] = [0, v_1 \times v_2] \quad \text{iff} \quad v_1 \cdot v_2 = 0\]

Unit-length Quaternion

\[q^{-1} = \frac{(1/\|q\|)^2 \cdot [s, -v]}{\|q\|} \]

where \[\|q\| = \sqrt{s^2 + x^2 + y^2 + z^2}\]
Quaternions

- Quaternion representation both allow for interpolation between arbitrary orientations and for representation of a series of rotations

Rotating Vectors Using Quaternions

\[v' = Rot(v) = q^{-1} \cdot v \cdot q \]

\[Rot_q(Rot_p(v)) = q^{-1} \cdot (p^{-1} \cdot v \cdot p) \cdot q \]

\[= ((pq)^{-1} \cdot v \cdot (pq)) \]

\[= Rot_{pq}(v) \]

\[Rot^{-1}(Rot(v)) = q \cdot (q^{-1} \cdot v \cdot q) \cdot q^{-1} = v \]

Interpolation of Rotations using Quaternion Representation

\[\cos \theta = q_1 \cdot q_2 = s_1 \cdot s_2 + v_1 \cdot v_2 \]

\[Sleep(q_1, q_2, \theta) = ((\sin((1 - \theta)/\theta)) \cdot q_1 + (\sin(\theta)) \cdot (\sin\theta) \cdot q_2) \]

- Linearly interpolated intermediate points
- Projection of intermediate points onto circle