Chapter 6
Decision Trees
An Example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Tempreature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>N</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>N</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>N</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>N</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>N</td>
</tr>
</tbody>
</table>

Outlook: sunny, overcast, rain

Humidity: high, normal

Windy: true, false

Class: N, P
Another Example - Grades

- Percent $\geq 90\%$?
 - Yes \rightarrow Grade = A
 - No \rightarrow 89% \geq Percent \geq 80%?
 - Yes \rightarrow Grade = B
 - No \rightarrow 79% \geq Percent \geq 70%?
 - Yes \rightarrow Grade = C
 - No \rightarrow Etc...
Yet Another Example

diagram:
- **tear production rate**
 - reduced
 - normal
 - none
 - astigmatism
 - no
 - yes
 - soft
 - spectacle prescription
 - myope
 - hypermetrope
 - hard
 - none
Yet Another Example

• English Rules (for example):

<table>
<thead>
<tr>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>If tear production rate = reduced then recommendation = none.</td>
</tr>
<tr>
<td>If age = young and astigmatic = no and tear production rate = normal</td>
</tr>
<tr>
<td>then recommendation = soft</td>
</tr>
<tr>
<td>If age = pre-presbyopic and astigmatic = no and tear production</td>
</tr>
<tr>
<td>rate = normal then recommendation = soft</td>
</tr>
<tr>
<td>If age = presbyopic and spectacle prescription = myope and</td>
</tr>
<tr>
<td>astigmatic = no then recommendation = none</td>
</tr>
<tr>
<td>If spectacle prescription = hypermetrope and astigmatic = no and</td>
</tr>
<tr>
<td>tear production rate = normal then recommendation = soft</td>
</tr>
<tr>
<td>If spectacle prescription = myope and astigmatic = yes and</td>
</tr>
<tr>
<td>tear production rate = normal then recommendation = hard</td>
</tr>
<tr>
<td>If age = young and astigmatic = yes and tear production rate =</td>
</tr>
<tr>
<td>normal then recommendation = hard</td>
</tr>
<tr>
<td>If age = pre-presbyopic and spectacle prescription = hypermetrope</td>
</tr>
<tr>
<td>and astigmatic = yes then recommendation = none</td>
</tr>
<tr>
<td>If age = presbyopic and spectacle prescription = hypermetrope</td>
</tr>
<tr>
<td>and astigmatic = yes then recommendation = none</td>
</tr>
</tbody>
</table>
Decision Tree Template

- Drawn top-to-bottom or left-to-right
- Top (or left-most) node = **Root Node**
- Descendent node(s) = **Child Node(s)**
- Bottom (or right-most) node(s) = **Leaf Node(s)**
- Unique path from root to each leaf = **Rule**
Introduction

• Decision Trees
 – Powerful/popular for classification & prediction
 – Represent rules
 • Rules can be expressed in English
 – IF Age <=43 & Sex = Male & Credit Card Insurance = No
 THEN Life Insurance Promotion = No
 • Rules can be expressed using SQL for query
 – Useful to explore data to gain insight into relationships of a large number of candidate input variables to a target (output) variable

• You use mental decision trees often!
• Game: “I’m thinking of…” “Is it …?”
Decision Tree – What is it?

- A structure that can be used to divide up a large collection of records into successively smaller sets of records by applying a sequence of simple decision rules

- A decision tree model consists of a set of rules for dividing a large heterogeneous population into smaller, more homogeneous groups with respect to a particular target variable
Decision Tree Types

- Binary trees – only two choices in each split. Can be non-uniform (uneven) in depth
- N-way trees or ternary trees – three or more choices in at least one of its splits (3-way, 4-way, etc.)
Scoring

• Often it is useful to show the proportion of the data in each of the desired classes
• Clarify Fig 6.2
Decision Tree Splits (Growth)

- The best split at root or child nodes is defined as one that does the best job of separating the data into groups where a single class predominates in each group
 - Example: US Population data input categorical variables/attributes include:
 - Zip code
 - Gender
 - Age
 - Split the above according to the above “best split” rule
Example: Good & Poor Splits

Good Split

Original Data

Poor Split
Split Criteria

• The best split is defined as one that does the best job of separating the data into groups where a single class predominates in each group

• Measure used to evaluate a potential split is **purity**
 – The best split is one that increases purity of the sub-sets by the greatest amount
 – A good split also creates nodes of similar size or at least does not create very small nodes
Tests for Choosing Best Split

• Purity (Diversity) Measures:
 – Gini (population diversity)
 – Entropy (information gain)
 – Information Gain Ratio
 – Chi-square Test

We will only explore Gini in class
Gini (Population Diversity)

- The Gini measure of a node is the sum of the squares of the proportions of the classes.

Root Node: $0.5^2 + 0.5^2 = 0.5$ (even balance)

Leaf Nodes: $0.1^2 + 0.9^2 = 0.82$ (close to pure)
Pruning

- Decision Trees can often be simplified or pruned:
 - CART
 - C5
 - Stability-based

We will not cover these in detail
Decision Tree Advantages

1. Easy to understand
2. Map nicely to a set of business rules
3. Applied to real problems
4. Make no prior assumptions about the data
5. Able to process both numerical and categorical data
Decision Tree Disadvantages

1. Output attribute must be categorical
2. Limited to one output attribute
3. Decision tree algorithms are unstable
4. Trees created from numeric datasets can be complex
Alternative Representations

- Box Diagram
- Tree Ring Diagram
- Decision Table
- Supplementary Material
End of Chapter 6