Range Queries
(optional: Square Root Complexity)

CENG 213 Data Structures
Yusuf Sahillioğlu
Goal

• Compute a value based on a subarray of an array.
• Consider range \([3, 6]\) below.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 3 & 8 & 4 & 6 & 1 & 3 & 4
\end{array}
\]

\[
\sum_{q}(3, 6) = 14, \min_{q}(3, 6) = 1, \max_{q}(3, 6) = 6.
\]
Goal

• Compute a value based on a subarray of an array.
• Typical range queries:
 • $\text{sum}_q(a,b)$: calculate the sum of values in range $[a,b]$.
 • $\text{min}_q(a,b)$: find the minimum value in range $[a,b]$.
 • $\text{max}_q(a,b)$: find the maximum value in range $[a,b]$.
Trivial Solution

```c
int sum(int a, int b) {
    int s = 0;
    for (int i = a; i <= b; i++) {
        s += array[i];
    }
    return s;
}
```
Trivial Solution

- Works in $O(n)$ time, where n is the array size.
- We will make this fast!
Static Array Queries

- Assume array is static: values never updated.
- We will handle sum queries and min/max queries in this setting.
Prefix Sum Array

- Value at position k is $\text{sum}_q(0, k)$.
- Can be constructed in $O(n)$ time. How?

Array:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Prefix Sum:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>22</td>
<td>23</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>
Prefix Sum Array

- Value at position k is $\sum_{q}(0, k)$.
- Can be constructed in $O(n)$ time. How?
 - Dead simple application of dynamic programming.
 - $P[0] = A[0]$; for ($i = 1$ to $n - 1$) $P[i] = P[i - 1] + A[i]$;

Array:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Prefix Sum:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>22</td>
<td>23</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>
Prefix Sum Array

- \(\sum_q(a,b) = \sum_q(0,b) - \sum_q(0,a-1)\)
 - Define \(\sum_q(0,-1) = 0\).
- \(O(n)\): \(\sum_q(3,6) = 8 + 6 + 1 + 4 = 19\).
- \(O(1)\): \(\sum_q(3,6) = \sum_q(0,6) - \sum_q(0,2) = 27 - 8\).
Prefix Sum Array

• Can be generalized to higher dimensions.

• Sum of gray subarray: $S(A) - S(B) - S(C) + S(D)$ where $S(X)$ is the sum of values in a rectangular subarray from the upperleft corner to the position of X.
Sparse Table

- Handles minimum (and similarly max) queries.
- $O(n \log n)$ preprocessing, then all queries in $O(1)$.
Sparse Table

• Precompute all values of $\min_q(a, b)$ where $b - a + 1$ (the length of the range) is a power of 2.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 3 & 4 & 8 & 6 & 1 & 4 & 2 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\min_q(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\min_q(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\min_q(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
Sparse Table

• Precompute all values of $\min_q(a,b)$ where $b - a + 1$ (the length of the range) is a power of 2.
• How many precomputed values?
Sparse Table

• Precompute all values of $\min_q(a, b)$ where $b - a + 1$ (the length of the range) is a power of two.

• How many precomputed values?
 • $O(n \log n)$ because
 • there’re $O(\log n)$ range lengths that are powers of 2.
 • there’re $O(n)$ values at each range, e.g., n values for range of length 1, n-1 vals for range of length -1, ..
Sparse Table

- Precompute all values of $\min_q(a, b)$ where $b - a + 1$ (the length of the range) is a power of two.
- Each of the $O(n \log n)$ values will be computed in $O(1)$ via the recursion (DP again!):

$$\min_q(a, b) = \min(\min_q(a, a+w-1), \min_q(a+w, b))$$

where $b-a+1$ is a power of two and $w = (b-a+1)/2$ \(\text{//mid.}\)
Sparse Table

• Precompute all values of $\min_q(a, b)$ where $b - a + 1$ (the length of the range) is a power of two.
• Each of the $O(n \log n)$ values will be computed in $O(1)$ via the recursion (DP again!):

• Hence the $O(n \log n)$ preprocessing time.
Sparse Table

- Query response in $O(1)$ via
 \[
 \min_q(a, b) = \min(\min_q(a, a+k-1), \min_q(b-k+1, b))
 \]
 where k is the largest power of 2 that doesn’t exceed $b-a+1$.

Here, the range $[a, b]$ is represented as the union of the ranges $[a, a+k-1]$ and $[b-k+1, b]$, both of length k.

Range length 6, the largest power of 2 that doesn’t exceed 6 is 4, $k=4$.

$\min_q(1, 4) = 3$

$\min_q(3, 6) = 1$
Dynamic Array Queries

• Now we will enable updates on array, hence dynamic.
• We will handle sum queries, min/max queries, and update queries in this setting.
Binary Indexed Tree*

- Dynamic variant of a Prefix Sum Array.
 - Handles range sum queries in $O(\log n)$ time. //PSA $O(1)$
 - Handles updating a value in $O(\log n)$ time. //PSA not*
 - Using two BITs make min queries possible.
 - This is more complex than using a Segment Tree (later).

* PSA can handle this but needs $O(n)$ to rebuild PSA again.

* BIT aka Fenwick Tree.
Binary Indexed Tree

• Tree is conceptual; we actually maintain an array.
 • Array is 1-indexed to make the implementation easier.
Binary Indexed Tree

- Let $p(k)$ denote the largest pow of 2 that divides k. We store a BIT as an array such that
 \[\text{tree}[k] = \text{sum}_q(k - p(k)+1,k) \]
- That is, each position k contains the sum of values in a range of the original array whose length is $p(k)$ and that ends at position k.
 - See slides 30-31 for the BIT construction.
- Since $p(6) = 2$, tree[6] contains value of sum$_q(5,6)$.
Binary Indexed Tree

• $\text{sum}_q(1,k)$ can be computed in $O(\log n)$ because a range $[1,k]$ can always be divided into $O(\log n)$ ranges whose sums are stored in the tree.

Array:

| 1 | 3 | 4 | 8 | 6 | 1 | 4 | 2 |

BIT:

| 1 | 4 | 4 | 16 | 6 | 7 | 4 | 29 |

The diagram shows the process of summing the elements from index 1 to index 8 using a Binary Indexed Tree (BIT).
Binary Indexed Tree

- $\text{sum}_q(1,k)$ can be computed in $O(\log n)$ because a range $[1,k]$ can always be divided into $O(\log n)$ ranges whose sums are stored in the tree.

Array:

BIT:
Binary Indexed Tree

- \(\text{sum}_q(1,7) = \text{sum}_q(1,4) + \text{sum}_q(5,6) + \text{sum}_q(7,7) \)
 \[= 16 + 7 + 4 = 27.\]
Binary Indexed Tree

• \(\text{sum}_q(a,b) = \text{sum}_q(1,b) - \text{sum}_q(1,a-1) \) //PSA trick for \(a>1 \)

• \(\text{sum}_q(3,6) = \text{sum}_q(1,6) - \text{sum}_q(1,2) = 23 - 4 = 19. \)

Array:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 3 & 4 & 8 & 6 & 1 & 4 & 2
\end{array}
\]

BIT:
Binary Indexed Tree

- After updating a value in the array, several values in the BIT should be updated.
- If the value at position 3 changes, the sums of the following ranges change:
Binary Indexed Tree

- After updating a value in the array, several values in the BIT should be updated.
- Each array element belongs to $O(\log n)$ ranges, hence update cost is $O(\log n)$.
Binary Indexed Tree

- Implementation made efficient via bit operations.

\[p(k) = k \& -k \] \(//\)largest pow of 2 that divides \(k\).

\[/zeroes all the bits except the last set one.\]

\[/p(6)=2: 0110 \rightarrow 0010, p(7)=1: 0111 \rightarrow 0001, ..\]

- Computation of sum_{\(q\)}(1,\(k\)):
- \(O(\log n)\) values are accessed and each move to the next position takes \(O(1)\) time.

```c
int sum(int k) {
    int s = 0;
    while (k >= 1) {
        s += tree[k];
        k -= k & -k;
    }
    return s;
}
```
Binary Indexed Tree

- Implementation made efficient via bit operations.
 \[p(k) = k \& -k \] //largest pow of 2 that divides \(k \)

- Addition of \(x \) to position \(k \):
 - \(O(\log n) \) values are accessed and each move to the next position takes \(O(1) \) time.
Binary Indexed Tree

• Implementation made efficient via bit operations.
 \[p(k) = k \& -k \] //largest pow of 2 that divides \(k \)

• Initial construction of a BIT is \(O(n\log n) \).
 • Initialize all elements to 0.
 • Fill all range sums (of length \(p(k) \)).
 • Call add() \(n \) times using the input values: add(1..n,A[i]).
Binary Indexed Tree

• Implementation made efficient via bit operations.

\[p(k) = k \& -k \] //largest pow of 2 that divides \(k \)

• Initial construction of a BIT is \(O(n) \).
 • Construct a PSA in \(O(n) \).
 • Fill all range sums (of length \(p(k) \)).
 • Use PSA lookups in \(O(1) \) time per sum.
Segment Tree

- A more general data structure than BIT.
 - BIT supports sum queries (min queries possible but complicated).
 - ST supports sum, min, max, gcd, xor in $O(\log n)$ time.
 - ST takes more memory and is harder to implement.
Segment Tree

- Tree is conceptual; we actually maintain an array.
 - Array is 0-indexed* to make the implementation easier.
 - Array size is a power of 2 to make the implementation easier.
 - Append extra elements to get this property, if necessary.

* Query ranges are 0-based but the tree array 1-based.
Each internal tree node stores a value based on an array range whose size is a power of 2.

Array:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

ST \((\text{sum}_q) \):
Segment Tree

- Any range \([a, b]\) can be divided into \(O(\log n)\) ranges whose values are stored in tree nodes.

Array:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 8 & 6 & 3 & 2 & 7 & 2 & 6 \\
\end{array}
\]

ST \((\text{sum}_q)\):

\[
\text{sum}_q(2, 7) = 9 + 17
\]
Segment Tree

- At most 2 nodes on each level needed $\Rightarrow O(\log n)$ nodes/ranges needed, so sum_q complexity is $O(\log n)$.

Array:

ST (sum_q):

$\text{sum}_q(2,7) = 9 + 17$
Segment Tree

- After an update, update all nodes whose value depends on the updated value.

Array:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

ST \((\text{sum}_q) \):
Segment Tree

- Do this by traversing the path from the updated element to root and updating nodes along the path.

Array:

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
```

ST (sum_q):

```
  39
 /   \
22    17
 / \
13   9   9
   / \
  5   8   2
```

```
Segment Tree

• The path from bottom to top always consists of $O(\log n)$ nodes, so update complexity is $O(\log n)$. 

Array:

ST ($\text{sum}_q$):
Segment Tree

- Implementation with an array of $2n$ elements where $n$ is the size of the original array and a power of 2.
Segment Tree

- Tree nodes stored from top to bottom.
  - tree[n] to tree[2n-1], the bottom level, input values.
Segment Tree

- Parent of tree[$k$] is tree[$\lfloor k/2 \rfloor$].
- Children of tree[$k$] is tree[$2k$] and tree[$2k+1$].
Segment Tree

- \( \text{sum}_q(a, b) \) in \( O(\log n) \) because ST has \( O(\log n) \) levels and we move one level higher at each step.

```c
int sum(int a, int b) {
 a += n; b += n; //range initially [a+n, b+n].
 int s = 0;
 while (a <= b) {
 if (a%2 == 1) s += tree[a++];
 if (b%2 == 0) s += tree[b--];
 a /= 2; b /= 2;
 }
 return s;
}
```

\[ \text{sum}_q(2, 7) = 9 + 17 \]
Segment Tree

• `add()` increases the array value at position `k` by `x` in $O(\log n)$ because ST has $O(\log n)$ levels and we move one level higher at each step.

```c
void add(int k, int x) {
 k += n;
 tree[k] += x;
 for (k /= 2; k >= 1; k /= 2) {
 tree[k] = tree[2*k] + tree[2*k+1];
 }
}
```
Segment Tree

- ST can be constructed in $O(n)$. How?
Segment Tree

- ST can be constructed in $O(n)$. How?
  - Calling add $n$ times on initially 0 array is not $O(n)$. 
Segment Tree

• Go from the last intermediate node to the first (root), fill their values by adding their children at indices $2k$ and $2k+1$. Each visited once, hence $O(n)$. 
Segment Tree

- ST can also be used for min queries.
- Divide a range into two parts, compute the answer separately for both parts and then combine answers.
- Already did this for the sum queries.
- Similarly, it handles max, gcd, bit op (xor) queries.
ST can also be used for min queries.
Every tree node contains the smallest value in the corresponding array range.
Instead of sums, minima are computed.
2D Segment Tree

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Array:

```
7 6 1 6
8 7 5 2
3 9 7 1
8 5 3 8
```

2D ST (sum$_q$):
2D Segment Tree

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Array: 2D ST (sum$_q$):

Merge 2 rows (column-wise additions) into a new ST
2D Segment Tree

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Array:

```
 7 6 1 6
 8 7 5 2
 3 9 7 1
 8 5 3 8
```

2D ST ($\text{sum}_q$):

```
20 13
7 6 1 6
22 15
8 7 5 2
20 12
8 3 9 7 1
24 13
11 10 9
```

Sum for gray region can be obtained from the merged ranges.
2D Segment Tree

- Segment Tree of Segment Trees.
- Supports rectangular subarray queries to a 2D array.

Array:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>1</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

2D ST (sum_q):

Sum for gray region can be obtained from the merged ranges.
Lazy Propagation

- An optimization to make range updates faster.
- When there are many updates and updates are done on a range, we can postpone some updates and do those updates only when required.
Lazy Propagation

- \( s/z \): sum of values in the range / value of a lazy update.
Lazy Propagation

- ST after increasing the elements in \([a, b]\) by 2.

- When the elements in \([a, b]\) are increased by \(u\), we walk from the root towards the leaves and modify the nodes of the tree as follows.
Lazy Propagation

- ST after increasing the elements in $[a, b]$ by 2.

- If $[x, y]$ partially inside $[a, b]$, we increase the $s$ value of the node by $hu$, where $h$ is the size of the intersection of $[a, b]$ and $[x, y]$, and recur.
Lazy Propagation

- ST after increasing the elements in $[a,b]$ by 2.

- If $[x,y]$ completely inside $[a,b]$, we increase the $z$ value of the node by $u$, and stop.
Lazy Propagation

- ST after increasing the elements in $[a,b]$ by 2.

- The idea is that updates will be propagated downwards only when it is necessary, which guarantees that the operations are always efficient.
Lazy Propagation

- ST after computing $\text{sum}_q(a,b)$.

- Notice how the lazy update is applied to 28, and propagated below to 8 and 2 (blue part).
Additional Technique

• Increasing the elements in \([a, b]\) by \(x\) can also be done via Difference Array – has nothing to do w/ ST.

<table>
<thead>
<tr>
<th>Array:</th>
<th>DA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3 1 1 1 5 2 2</td>
<td>3 0 -2 0 0 4 -3 0</td>
</tr>
</tbody>
</table>

• DA indicates the differences between consecutive values in the original array \(A\).
• Thus, \(A\) is the prefix sum array of the DA.
Additional Technique

Array:  

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

DA:  

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>-3</td>
<td>0</td>
</tr>
</tbody>
</table>

- We can update a range in A by changing just two elements in DA: to increase A[1,4] by 5, it suffices to increase DA[1] by 5 and decrease DA[5] by 5.

- General, \([a,b]\) by \(x\) \(\Rightarrow\) DA\([a]\]+=x\) and DA\([b+1]\]-=x, hence just 2 updates to update \(O(n)\)-range: \(O(1)\).
Segment Tree w/ DS Nodes

- Nodes contain data structures that maintain info about the corresponding ranges.
- ST supporting “how many times does $x$ appear in the range $[a,b]$?”. 

Array:

ST:
Segment Tree w/ DS Nodes

- Nodes contain data structures that maintain info about the corresponding ranges.
- ST supporting “how many times does $x$ appear in the range $[a, b]$?”. Array:

```
 3 1 2 3 1 1 1 2
```

ST:

```
 1 2 3
 1 1 2
```

```
 1 3
 1 1
```

```
 2 3
 1 1
```

```
 1 2
```

```
 1 2
 1 1
```

```
 1 2
 1 1
```

```
 1 2
 1 1
```

```
 1 2
 1 1
```

- Query answered by combining results from nodes that belong to the range.
• Nodes contain data structures that maintain info about the corresponding ranges.

• ST supporting “how many times does $x$ appear in the range $[a,b]$?”.

Array:

```
 3 1 2 3 1 1 1 2
```

ST:

```
 1 2 3
 4 2 2

1 2 3
1 1 2

1 3
1 1

3 1
1 1

2 3
1 1

1 2
```

• Answering takes $O(f(n) \log n)$, where $f(n)$ is the time needed for processing a single node during an operation. Linear search above.
Square Root Complexity

- Algorithm w/ a $O(\sqrt{n})$ time complexity.
- Poor man’s logarithm.
Square Root Complexity

• A familiar problem: \( \sum_{q}(a,b) \) and update/add.

<table>
<thead>
<tr>
<th>PSA</th>
<th>( O(1) )</th>
<th>( O(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>( O(\log n) )</td>
<td>( O(\log n) )</td>
</tr>
<tr>
<td>ST</td>
<td>( O(\log n) )</td>
<td>( O(\log n) )</td>
</tr>
</tbody>
</table>

• Let’s do it this way: \( O(\sqrt{n}) \) | \( O(1) \)
Square Root Complexity

- Divide the array into blocks of size \( \sqrt{n} \) so that each block contains the sum of elements inside it.

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>17</th>
<th>20</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Square Root Complexity

- Update the sum of a *single* block after each update, hence $O(1)$.
Square Root Complexity

• For sum, divide the range into 3 parts s.t. the sum consists of values of single elements (3+6+2) and sums of blocks between them (15+20).

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>15</th>
<th>20</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

• # of single elements is $O(\sqrt{n})$ //block size is $\sqrt{n}$.
• # of blocks is $O(\sqrt{n})$ //need $\sqrt{n}$ blocks to save $n$ vals.
• Hence, range sum in $O(\sqrt{n})$ time.
Square Root Complexity

• The purpose of the block size \( \sqrt{n} \) is that it balances two things: the array is divided into \( \sqrt{n} \) blocks, each of which contains \( \sqrt{n} \) elements.

• In practice, divide into \( k \) blocks each of which contains \( n/k \) elements.

• Optimal parameter depends on the problem & input.
  • If an algo often goes through the blocks but rarely inspects single elements inside the blocks, it may be a good idea to increase block sizes: divide the array into \( k < \sqrt{n} \) blocks, each of which contains \( n/k > \sqrt{n} \) elements.
Optional Part

- Remaining slides are optional for CENG 213 purposes.
- We dig more into square root complexity with examples from number theory.
- We also present a binary search algorithm for square root computation.
Square Root Complexity

• Some basic things related to prime numbers*.
  • Prime or not?
  • Euler’s totient function.

* Prime number: natural number greater than 1 that has no divisors other than 1 and itself: 2, 3, 5, 7, ..
Square Root Complexity

• Is $n$ prime?
Square Root Complexity

- Is $n$ prime? iterate through all numbers from 2 to $n-1$. Return false if division successful. $O(n)$. 
Square Root Complexity

• Is \( n \) prime? iterate through all numbers from 2 to \( \sqrt{n} \). Return false if division successful. \( O(\sqrt{n}) \).

• If a number has a factor larger than \( \sqrt{n} \), then it surely has a factor less than \( \sqrt{n} \) (already checked); o/w their multiplication would be \( >n \), contradiction.

\[
\begin{align*}
36 &= 2 \times 18 = 3 \times 12 = 4 \times 9 = 6 \times 6
\end{align*}
\]
Square Root Complexity

• Is $n$ prime? iterate through all numbers from 2 to $\sqrt{n}$. Return false if division successful. $O(\sqrt{n})$.

• A larger-than-$\sqrt{n}$ factor of $n$ must be multiplied by a smaller factor that has already been checked.

\[
\begin{align*}
36 \\
2 \times 18 \\
3 \times 12 \\
4 \times 9 \\
6 \times 6
\end{align*}
\]
Square Root Complexity

- Is \( n \) prime? So, we will go up to \( \sqrt{n} \). But 6 by 6 instead of 1 by 1. Still \( O(\sqrt{n}) \) but cool.

- All primes (>3) are of the form \( 6k \pm 1 \). Why?
• Is $n$ prime? So, we will go up to $\sqrt{n}$. But 6 by 6 instead of 1 by 1. Still $O(\sqrt{n})$ but cool.
• All primes (>3) are of the form $6k\pm1$ ‘cos all numbers are of the form $6k+i$ for $i=0..5$.
• $6k+0$, $6k+2$, $6k+4$ are even (not prime). $6k+3$ divisible by 3 (not prime).
• So, $6k+1$ and $6k+5$ can be prime. Write as: $6k\pm1$.
• With this in mind, write the primality test code with increments of 6. *see slide 88 for another cool pattern.*
bool isPrime(int n) {
    if(n<=1) ret false; if(n<=3) ret true;
    if(n%2==0 || n%3==0) ret false;
    for(i=5;i*i<=n;i+=6)
        if(n%i==0 || n%(n+2)==0) ret false;
    ret true; // 6k-1  6k+1
}
Square Root Complexity

- Prime factorization: every number can be broken down into prime factors, i.e., prime numbers are the basic building blocks of all numbers: $12 = 2 \times 2 \times 3$. 
Prime factorization of \( n \) requires a search for prime factors in the range \([2, \sqrt{n}]\), hence \( O(\sqrt{n})^* \).

There may be at most 1 prime factor in the range \([\sqrt{n}, n]\) ‘cos o/w 2 factors’ multiplication would be \( >n \), contradiction.

* We can find the unique prime factors in \( O(\sqrt{n}) \) by this search but cannot decide their multiplicity. That’s why prime factorization is very slow to solve for big numbers – foundation of cryptography.
Square Root Complexity

- A simple prime factorization algo is Trial Division.

```python
def trial_division(n):
 """Return a list of the prime factors for a natural number.""
 a = [] # Prepare an empty list.
 f = 2 # The first possible factor.
 while n > 1:
 if (n % f == 0):
 a.append(f) # The remainder of n divided by f might be 0.
 n /= f # If so, it divides n. Add f to the list.
 else:
 f += 1 # But if f is not a factor of n,
 return a # Prime factors may be repeated; 12 factors.
```

At least 2x more efficient:

```python
def trial_division(n):
 a = []
 while n%2 == 0:
 a.append(2)
 n/=2
 f=3
 while f * f <= n:
 if (n % f == 0):
 a.append(f)
 n /= f
 else:
 f += 2
 # Only odd number is possible
 if n>1: a.append(n)
 return a
```

Some prime factorizations:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>$2^2 \cdot 3^3$</td>
<td>128</td>
<td>$2^7$</td>
<td>148</td>
<td>$2^2 \cdot 37$</td>
</tr>
<tr>
<td>109</td>
<td>109</td>
<td>129</td>
<td>$3 \cdot 43$</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>110</td>
<td>$2 \cdot 5 \cdot 11$</td>
<td>130</td>
<td>$2 \cdot 5 \cdot 13$</td>
<td>150</td>
<td>$2 \cdot 3^2 \cdot 5^2$</td>
</tr>
<tr>
<td>168</td>
<td>$2^3 \cdot 3 \cdot 7$</td>
<td>169</td>
<td>$13^2$</td>
<td>169</td>
<td>132</td>
</tr>
<tr>
<td>188</td>
<td>$2^2 \cdot 47$</td>
<td>189</td>
<td>$3^3 \cdot 7$</td>
<td>190</td>
<td>$2 \cdot 5 \cdot 19$</td>
</tr>
</tbody>
</table>
Square Root Complexity

- For a base-2 $m$-digit number $n$, if we go from 3 to only $\sqrt{n}$, $\pi(2^{m/2}) \approx 2^{m/2} / ((m/2)\ln2)$ divisions are required.

$\pi(n)$: prime counting function, number of primes less than $n$. 

```python
1 def trial_division(n):
2 a = []
3 while n%2 == 0:
4 a.append(2)
5 n/=2
6 f=3
7 while f * f <= n:
8 if (n % f == 0):
10 a.append(f)
11 n /= f
12 else:
13 f += 2
14 If n>1: a.append(n)
15 #Only odd number is possible
16 return a
```
Square Root Complexity

- $\pi(2^{m/2})$ is exponential in $m$, the problem size.
- Problem size is not $n$ as we’re dealing with 1 number whose value is $n$. 
Square Root Complexity

- Euler’s totient function $\phi(n)$: # of +ve integers less than $n$ that are relatively prime to $n$.

- $\phi(n) = n-1$ if $n$ is prime (top line). Makes sense!
Square Root Complexity

- Euler’s totient function $\phi(n)$: number of positive integers less than $n$ that are relatively prime to $n$.
- App: a regular $n$-gon can be constructed with ruler-and-compass technique if $\phi(n)$ is a power of 2.

- 6-gon creation: [Link to image](http://ceng.metu.edu.tr/~ys/rulercompasshexagon-wiki.gif)
Square Root Complexity

- Euler’s totient function $\phi(n)$: # of +ve integers less than $n$ that are relatively prime to $n$.
- We don’t need the proper prime factorization since the exponents $\alpha_i$ are not required in $\phi(n)$.
- Hence, $O(\sqrt{n})$ time required (slide 81).
Square Root Complexity

- A cool pattern for primes: square of a prime is always one more than a multiple of 24.

Either p-1 or p+1 must be a multiple of 4: 4n.
Hence (p-1)(p+1) must be a multiple of 8: 8h.

Either (p-1) or (p+1) must be a multiple of 3: 3r.
Hence (p-1)(p+1) must be a multiple of 3: 3i.

Being multiples of 8 & 3, (p-1)(p+1) is multiple of 24.
Square Root Computation

- \( \sqrt{n} \) computation algorithm in \( O(\log n + p) \), where \( p \) is the # digits in fractional part: \( \sqrt{10} = 3.162 \) if \( p=3 \).
Square Root Computation

- $\sqrt{n}$ computation algorithm in $O(\log n + p)$.
- Integer part is found via binary search ($n=10$):

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
s & m & e & s & m & e & s & m & e
\end{array}
\]

$5^2 > 10$ so go to left. // $e = m - 1$.

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
s & m & e & s & m & e & s & m & e
\end{array}
\]

$2^2 < 10$ so go to right. // $s = m + 1$.

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
s & e & m & s & e & m & s & e & m
\end{array}
\]

$3^2 < 10$ so go to right. // $s = m + 1$. 


Square Root Computation

• $\sqrt{n}$ computation algorithm in $O(\log n + p)$.

• Integer part is found via binary search ($n=10$):

1 2 3 4 5 6 7 8 9 10

$4^2 < 10$ so go to left. // $e = m - 1$.

1 2 3 4 5 6 7 8 9 10

Break ‘cos $e < s$.

3 vs. 4, 3 wins ‘cos $4^2 > 10$ and no recovery then.

• $O(\log n)$ time for the integer part.
Square Root Computation

- $\sqrt{n}$ computation algorithm in $O(\log n + p)$.
- Fractional part is found via linear search ($p=3$):
  \[
  3.?? = 10
  \]
  \[
  3.1^2 < 10
  \]
  \[
  3.2^2 > 10 \quad //\text{stop, keep 1.}
  \]
Square Root Computation

- $\sqrt{n}$ computation algorithm in $O(\log n + p)$.
- Fractional part is found via linear search ($p=2$):

\[
\begin{align*}
3.?? &= 10 \\
3.1^2 &< 10 & 3.11^2 &< 10 \\
3.2^2 &> 10 \quad //\text{stop, keep 1.} & 3.12^2 &< 10 \\
& \quad : & & \quad : \\
3.15^2 &< 10 & 3.16^2 &< 10 \\
3.17^2 &> 10 \quad //\text{stop, keep 6.}
\end{align*}
\]
Square Root Computation

- \( \sqrt{n} \) computation algorithm in \( O(\log n + p) \).
- Fractional part is found via linear search (\( p=3 \)):
  - At most 9 checks for each of \( p \) digits: \( O(p) \).

- Overall, \( O(\log n + p) \approx O(\log n) \) as \( p \) insignificant.