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A Proposed Methodology for Evaluating HDR 1

False Color Maps 2
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Color mapping, which involves assigning colors to the individual elements of an underlying data distribution, is a commonly
used method for data visualization. Although color maps are used in many disciplines and for a variety of tasks, in this study
we focus on its usage for visualizing luminance maps. Specifically, we ask ourselves the question of how to best visualize a
luminance distribution encoded in a high-dynamic-range (HDR) image using false colors such that the resulting visualization is
the most descriptive. To this end, we first propose a definition for descriptiveness. We then propose a methodology to evaluate it
subjectively. Then, we propose an objective metric that correlates well with the subjective evaluation results. Using this metric,
we evaluate several false coloring strategies using a large number of HDR images. Finally, we conduct a second psychophysical
experiment using images representing a diverse set of scenes. Our results indicate that the luminance compression method
has a significant effect and the commonly used logarithmic compression is inferior to histogram equalization. Furthermore, we
find that the default color scale of the Radiance global illumination software consistently performs well when combined with
histogram equalization. On the other hand, the commonly used rainbow color scale was found to be inferior. We believe that the
proposed methodology is suitable for evaluating future color mapping strategies as well.
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1. INTRODUCTION 11

In image processing and computer graphics, false (or pseudo) colors are commonly used to visualize 12
intensity distributions. If the underlying signal to be visualized is in the photometric domain, then 13
they can be used to visualize luminances by assigning different colors to different degrees of the sig- 14
nal. Alternatively, if the signal is in the radiometric domain, as in infrared imaging, then they enable 15
us to visually observe the radiance distributions that would otherwise be invisible. Regardless of the 16
application domain, there are many degrees of freedom as to how to represent a given signal using 17
false colors. As a mini-experiment, we invite the reader to try to judge which of the 12 different visu- 18
alizations shown in Figure 1 most accurately conveys the luminance distribution in the scene? In this 19
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Fig. 1. The same high-dynamic-range image can be visualized in false color in different ways. One can change the type of
compression for luminances and the color scale from which the colors are sampled. Here, 12 different combinations are shown.
Which one is more informative? Our study aims to answer this question through subjective and objective evaluations using a
large number of images.

article, we argue that the answer of this question is not obvious, and research is needed to determine20
the best way to visualize a luminance map using false colors.21

The use of color maps in visualization is prevalent. It involves assigning different colors to different22
degrees of a modality with the goal that the color map conveys extra information that is not directly23
visible in the original signal. However, injudicious use of color maps can cause confusion rather than24
facilitating understanding [MacDonald 1999]. Therefore, it is critical to make the right choice for the25
task at hand.26

There are many tasks that require studying luminance distributions to extract meaningful scene in-27
formation. For example, Theodor and Furr apply the techniques of high-dynamic-range (HDR) imaging28
to study fossils [2009]. Cultural heritage and archeology also benefit from working directly with lumi-29
nance maps as opposed to low-dynamic-range (LDR) footage [Happa et al. 2010]. Similarly, many other30
fields such as structural engineering [Grinzato et al. 2009], architecture [Cai 2013], medical imaging,31
and forensics [Brown et al. 2010] also use HDR luminance data for the purpose of scene and/or object32
analysis. It is clear that an enhanced depiction of luminance and/or radiance data using false colors33
can be beneficial to these disciplines.34

Beltran et al. [2005] evaluate HDR photography as an alternative to taking precise measurements35
using spot meters. The authors found that the difference between actual luminance measurements36
and those obtained from HDR images are minimal. They therefore argue that HDR photographs can37
be used to rapidly assess the lighting requirements of various environments. False coloring, to this38
end, may facilitate quick inspection of lighting values in such photographs.39

Despite its importance, we often observe that false color visualization is performed in an ad hoc40
manner. The typical workflow involves compressing the luminance data using a logarithmic function41
followed by mapping of the colors into an arbitrary color scale—and often the rainbow color scale. We42
argue that both of these choices, namely the compression function and the color scale, are critical, and43
ad hoc choices can impair the quality of the visualization. Our goal in this article is to allow making44
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these choices in a more principled manner by studying which compression functions and color scales 45
produce more descriptive visualizations. 46

To this end, we first propose a definition of descriptiveness. This definition involves maximizing the 47
number of just-noticeably-different colors within a false color image. We then carry out a psychophysi- 48
cal experiment to compare the effectiveness of 12 sample false coloring strategies commensurate with 49
this definition. Next, we develop an objective metric that correlates well with the results of the sub- 50
jective experiment. Then, by using this metric, we evaluate these sample false coloring strategies on 51
more than 100 images. Finally, we conduct a second psychophysical experiment involving images of 52
various scenes using the best performing methods in the first two evaluations. The results indicate 53
that histogram equalization outperforms all other compression methods. As for the color scale, the de- 54
fault color scale used in the Radiance ray tracer is found to be superior, especially when combined with 55
histogram equalization as the compression function. 56

The rest of this article is organized as follows. In Section 2 we review the related work for using 57
color in visualization in general and then more specifically for HDR image visualization. In Section 3, 58
we outline a framework for producing false color maps from HDR photographs. Next, in Sections 4, 59
5, and 6, we describe our subjective and objective evaluations. Finally, we conclude our article with a 60
discussion, conclusions, and ideas for future research directions. 61

2. RELATED WORK 62

2.1 Tone Mapping 63

Tone mapping or tone reproduction is the process of reducing the dynamic range of an HDR image to 64
prepare it for display on LDR display devices [Reinhard et al. 2010]. Many tone mapping operators 65
(TMOs) have been developed since the introduction of the problem into computer graphics [Tumblin 66
and Rushmeier 1991]. These are generally classified as global and local operators. Global operators 67
preserve the monotonicity of the luminance values in that higher luminances in the input image get 68
mapped to higher (or equal) luminances in the compressed image. Thus, their compression function 69
can be represented as a curve. The histogram adjustment method by Ward et al. [1997] and the global 70
photographic operator by Reinhard et al. [2002] are two examples of notable global operators. Local 71
operators, on the other hand, can alter the luminance values such that monotonicity is not preserved. 72
This often leads to better visibility in high-contrast image regions but makes it impossible to repre- 73
sent their compression using a single curve. Among a large number of local operators, fast bilateral 74
filtering [Durand and Dorsey 2002], gradient domain compression [Fattal et al. 2002], and the local 75
photographic operator [Reinhard et al. 2002] are representative examples. There are a large number 76
of TMOs that are beyond the scope of our review. We refer the reader to Reinhard et al. [2010] for a 77
detailed coverage of the subject. 78

2.2 Color in Visualization 79

Color is an indispensable element of data visualization. Although its correct use can greatly en- 80
hance the effectiveness of the visualization, its ad hoc or incorrect use can cause further confusion 81
[MacDonald 1999]. When using color for visualization, one of the first choices that needs to be made is 82
the selection of a color scale. For univariate data, an appropriate color scale should preferably satisfy 83
the following properties [Trumbo 1981; Levkowitz and Herman 1992]: 84

Order: The colors chosen to represent a set of data values must exhibit a perceived order that is 85
congruent with the order of the data values themselves. 86

Uniformity: The perceived difference between the colors should correspond to the difference in 87
magnitude of data values. 88
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Continuity: The color scale should not create artificial boundaries that do not exist in the data. In89
other words, the color scale should be (perceived as) continuous.90

Satisfying all three properties does not necessarily imply that a color scale is ideal for any given91
task. For instance while the linearized grayscale is continuous, uniform, and has a natural order, it92
displays a low contrast between its colors and suffers from visibility problems in dark regions, limiting93
its use for visualizing high-contrast information. We refer the reader to an excellent survey by Silva94
et al. [2011] for comprehensive guidelines of using color in visualization.95

2.3 Color Maps for HDR Images96

Although color maps for HDR images are commonly used for visualizing luminance distributions, to97
our knowledge there is no scientifically validated way to represent an HDR image in false colors. The98
most well-known tool that accomplishes this task is the Radiance software [Larson and Shakespeare99
1998], which contains several color palettes and two methods of compression, namely linear and loga-100
rithmic. Based on the information provided to us by the developers,1 the SPEC color scale represents101
spectral colors (i.e., the rainbow scale). HOT is a heated-body (thermal) scale that goes from black to102
white by passing through red and yellow. The ECO scale is borrowed from Ecotech, an environmental103
simulation software. PM3D is borrowed from Gnuplot [Williams et al. 2010], and the default scale,104
DEF, is a mixture of thermal and spectral scales.105

In a more recent study, Akyüz [2013] performed a preliminary experiment to evaluate the perfor-106
mance of several compression functions, namely linear, logarithmic, and sigmoidal scaling, when used107
together with the rainbow scale. The participants were asked to rank these methods based on how108
well they represent the luminance distribution in three HDR images. For all three images, sigmoidal109
scaling was found to outperform the other methods. However, this experiment was limited in the sense110
that it only involved a single color scale and was based on purely subjective opinion.111

3. COLOR MAPPING FRAMEWORK112

In this section, we describe our framework that we used to convert an HDR image into false colors. We113
assume that the HDR image represents a luminance distribution stored in a linear RGB color space.114
Therefore, we first compute the luminance values by using an appropriate linear transformation that115
depends on the actual color space. For instance, if the HDR image is stored in the sRGB color space,116
its luminance values (Y ) can be computed by the following formula [ITU (International Telecommuni-117
cation Union) 2002]:118

Y = 0.2126R + 0.7152G + 0.0722B. (1)

The remaining process involves two stages. The first one is the compression of the luminance values119
and the second one is the mapping of the compressed values to color values (C) in a given color scale.120

3.1 Compression Stage121

In the compression stage, one can apply an initial transformation to the luminance data to reduce122
its dynamic range. Otherwise, the ensuing color mapping would simply yield large regions of uniform123
color resulting in a flat visualization. While any TMO can be used to compress the luminance data,124
local operators may be unsuitable, as they do not preserve the monotonicity of luminance values. Here,125
we describe three global compression strategies:126

1Personal communication with Greg J. Ward and Axel Jacobs.
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Logarithmic Scaling (LOG): Logarithmic scaling, which approximates the human visual response 127
to light [Drago et al. 2003], is defined as 128

flog(Y ) = log(Y + ε) − log(Ymin + ε)
log(Ymax + ε) − log(Ymin + ε)

, (2)

where a small epsilon value (ε) is introduced to avoid singularity for black pixels. In this article, we 129
used ε = 10−6. 130

Sigmoidal Compression (SIG): Sigmoidal compression was originally proposed by Naka and 131
Rushton [1966] as a model of biological systems and was later used in a well-known tone mapping 132
operator due to its simplicity and ability to produce natural looking images [Reinhard et al. 2002]. Its 133
compression curve also mimics the S-shaped curves used in traditional photography when plotted on 134
a logarithmic luminance axis: 135

fsig(Y ) = αY/Ȳ
1 + αY/Ȳ

, (3)

where α denotes a user-defined key value and Ȳ is the log-average luminance: 136

Ȳ = exp

(
1
N

∑
x,y

log(Y (x, y) + ε)

)
, (4)

with N representing the number of pixels in the image. We set α = 0.18 as a generally used default 137
value [Reinhard et al. 2002]. 138

Histogram Equalization (HIS): Histogram equalization redistributes the luminance values such 139
that each bin contains equal number of pixels [Gonzalez and Woods 1992]. In a false coloring frame- 140
work, this means that each color value will be used for approximately equal number of times. His- 141
togram equalization can be represented by using the following formula assuming an 8-bit output range: 142

143

fhis(Y ) = round
(

255
cdf(Y ) − cdfmin

N − cdfmin

)
. (5)

Here, cdf(.) represents the cumulative distribution function of luminance values and cdfmin is the min- 144
imum non-zero value of the cdf. 145

3.2 Color Mapping Stage 146

In this stage, a false color image is produced by mapping the compressed luminance values into color 147
values from a given color scale. Algorithm 1 is used for this purpose: 148

ALGORITHM 1: Color Selection Algorithm for Logarithmic and Sigmoidal Compression
Y ′ = f (Y )
for i = 0 → 255 do

bin[i] = i
255 (Y ′

max − Y ′
min)

end
for each pixel Y ′

m,n ∈ Y ′ do
find k where |Y ′

m,n − bin[k]| is minimum
Cm,n = PALETTE[k]

end

In this algorithm, f (.) can be substituted with flog(.), fsig(.), or fhis(.) for different compression func- 149
tions. Cm,n represents the false color value selected from the given color scale. 150
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Fig. 2. Color scales evaluated in our study.

3.3 Color Scale Selection151

Selection of a good color scale is critical for visualization. As described in Section 2.3, several color152
scales are commonly used for visualizing HDR images in false color. Among these, the rainbow scale153
and the heated-body scale are commonly used for other visualization tasks as well. Therefore, in this154
study we chose to include the following four color scales. Each scale is represented by a palette of 256155
distinct colors (Figure 2).156

Rainbow scale (RBS): This scale is one of the most commonly used scales in the literature. As157
the ordering of the colors is roughly based on their wavelength, it is also called the spectral scale.158
The palette of this scale is generally produced by varying the hue attribute in a color space such as159
HSV while keeping the other attributes constant. We have used hue angles between 0◦ (red) to 270◦160
(magenta) to represent high and low luminances, respectively.161

Heated-body scale (HBS): This scale represents a progression of colors going from black to white162
while passing through orange and yellow. The hue angle varies approximately between 15◦ and 60◦.163
The advantage of this scale is attributed to the fact that the human visual system is most sensitive to164
luminance changes in that portion of the spectrum. We have used the perceptually linearized version165
of this scale, in which luminance difference between different color values correspond to roughly equal166
brightness differences.167

Radiance default color scale (DEF): This is the default false color scale used in the Radiance168
software [Larson and Shakespeare 1998]. The scale is developed by Larson to represent a mix between169
the heated-body and rainbow scales. It was designed to maximize the number of named colors while170
still depicting a progression from cold to hot [Larson 2013].171

Linearized optimal color scale (LOCS): This scale is designed to create a maximum number of172
just noticeable differences (JNDs) while preserving a natural order [Levkowitz and Herman 1992]. To173
our knowledge, this scale has not been used for visualizing HDR images in false color. This scale is also174
perceptually linearized.175

Each of these four color scales satisfy the desired properties discussed in Section 2.2 to different176
extents. The HBS and LOCS satisfy all three of the order, uniformity, and continuity properties. RBS177
satisfies the continuity and order property, but the latter requires observers to be familiar with the178
spectral progression of colors. The DEF color scale, on the other hand, only satisfies the continuity179
property.180

The 3 compression functions and 4 color scales gives rise to 12 false coloring strategies. In the fol-181
lowing, we will refer to these strategies using the abbreviations shown in parenthesis. For instance,182
histogram equalization with the Radiance default scale will be identified as HIS-DEF. Other methods183
will be denoted similarly.184

4. PSYCHOPHYSICAL EXPERIMENT ONE185

We conducted a psychophysical experiment to evaluate the effectiveness of different false coloring186
strategies. Our experiment was was aimed to answer the following two questions: (1) Which of the187
aforementioned strategies is better for visualizing an HDR image in false color and (2) whether a188
quantitative metric can be derived that correlates well with the human observers’ responses so any189
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Fig. 3. A tone mapped visualization of the HDR image used in the subjective evaluation. Image is retrieved from the HDR
photographic survey [Fairchild 2007].

future strategy can be objectively evaluated using this metric. To this end, we first need to define the 190
characteristics of a good false coloring strategy. 191

4.1 Criterion of Evaluation 192

First, it should be kept in mind that which false coloring strategy is the best depends on the application 193
at hand. Certain compression functions and color scales may be more appropriate for certain applica- 194
tions. This is similar to the issue faced when evaluating tone mapping operators in that which TMO 195
is the best depends on the purpose of tone mapping. For instance, a TMO used for medical imaging is 196
likely to be desirable if it preserves visibility of small scale details. On the other hand, a TMO used 197
for entertainment is likely to be desirable if it preserves, and even exaggerates, contrast at the cost of 198
losing small details [Akyüz and Reinhard 2008]. Therefore, the studies that evaluate TMOs usually 199
define the criteria according to which the tone mapping quality should be judged [Drago et al. 2002]. 200

We adopt a similar approach in the current study. We define our criteria as if the luminance of two 201
regions perceivably differ in the original image; they should be mapped to perceivably different colors 202
in the false color image. In other words, we expect a false color visualization to convey noticeable 203
luminance differences. This may be compared to preserving visibility during tone mapping. However, 204
we also expect the order of luminances to be preserved. That is a lower luminance pixel should not be 205
represented by a color that suggests a higher luminance than another pixel which actually has higher 206
luminance. 207

4.2 Stimuli 208

In our experiment, we used a single calibrated HDR image depicting a scene of extremely high dynamic 209
range (Figure 3) taken from a public HDR image database [Fairchild 2007]. The actual scene had a 210
contrast ratio of a 1,000,000:1 and even when recorded the resulting HDR image retained a contrast 211
ratio of 800,000:1 (the drop was due to flare). Eighteen exposures that are one f-stop apart were used 212
to capture the scene. As shown in Figure 3, the image contains two sets of colored checkers, one in 213
the dark region that receives no direct illumination, and the other directly illuminated by a bright 214
light source. In addition to having an extremely high dynamic range, this image contains 48 uniform 215
patches that can be used as test stimuli. To this end, we selected pairs of patches that are closest in 216
luminance giving rise to 24 pairs of stimuli. 217
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Table I. Mean Percentages of Correct Answer for Each
Compression-Color Scale Combination Averaged

over All Participants

LOG SIG HIS Average
RBS 61% 55% 71.1% 62.4%
HBS 65.5% 69% 76.8% 70.4%
DEF 67% 65.2% 72% 68.1%
LOCS 70% 63.7% 81% 71.6%
Average 65.9% 63.2% 75.2%

4.3 Experimental Process218

During the experiment, we asked the participants to indicate which of the two patches in a randomly219
selected pair from a false color image has a higher luminance. To prevent other factors, such as the220
proximity of a patch to the light source, from affecting participants’ decisions, all parts of the image221
were masked out with a neutral gray color except the patches being compared. On the top-left corner of222
the screen the current color scale was shown to remind the participants of the progression of the colors223
with luminance. The participants indicated their responses by clicking on the patch that appears to224
have a higher luminance. After each response, a new random pair was automatically shown from the225
remaining stimuli. To avoid confusing the participants by rapidly switching between different color226
scales, all pairs from one scale were first consumed before proceeding with the next scale. The order227
of the compression functions was randomized within each color scale. The scales were randomized for228
each participant. The duration of the experiment took about 30 minutes for each participant.229

We also used an eye-tracker, SMI Red 60/120Hz, to measure the duration that each participant230
looked at the color scale. This was used to rank the scales in terms of intuitiveness, as a less intuitive231
scale may require studying of the palette for a longer time.232

All stimuli were shown on an NEC SpectraView Reference 241W monitor calibrated to the sRGB233
profile using an X-Rite i1Display Pro colorimeter. The peak display luminance was set to 80cd/m2 for234
full sRGB compliance. The black level was measured as 0.5cd/m2. The participants viewed the display235
in a dark room from a distance of approximately 70cm. No head mounting was used to avoid discomfort.236
At this distance, the angular size of a center pixel was approximately 0.0221◦ in both dimensions.237

Fourteen participants (4F and 11M) contributed to the experiment. Each participant received a brief238
training about the color scales and the relationship between the colors and luminance values prior to239
taking the experiment.240

4.4 Results241

The mean percentages of correct answers for each compression-color scale combination is shown in242
Table I. As can be seen from this table, histogram equalization together with the linearized optimal243
color scale (LOCS) yields the highest percentage of correct answers (81%). Sigmoidal compression with244
the rainbow scale yields the lowest percentage (55%), which is slightly higher than what would be245
obtained by chance if subjects were making random decisions (50%). We can also observe that his-246
togram equalization-based methods outperform logarithmic and sigmoidal compression for all color247
scales. Logarithmic compression surpasses sigmoidal compression except with the heated-body scale.248
When averaged across all color scales, histogram equalization clearly outperforms the other two com-249
pression types. When averaged across all compression types, LOCS marginally outperforms HBS and250
DEF. However, the rainbow color scale (RBS) clearly underperforms in this task.251

These observations are supported with a two-way within-subjects ANOVA test that was conducted252
to understand whether these differences are statistically significant. These results are summarized253
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Table II. Statistical Result for the User Study

Factor Statistical result
Compression F(2, 26) = 28.99, p < 0.001
Color scale F(2, 39) = 5.284, p = 0.004
Compression × Color scale F(6, 78) = 2.101, p = 0.062

Fig. 4. Statistical similarity groups of the user study. Items underlined by the same line are statistically similar.

Table III. Total Times in Minutes and Seconds
during Which Participants Looked at the Palettes

Shown in the Top-Left Corner (Accumulated
over All Compression Types and Participants)

Color scale Total time (m:ss)
HBS 3:59
LOCS 4:50
RBS 4:54
DEF 5:31

in Table II. Based on these, we can observe that both the compression type and the color scale have 254
a statistically significant effect on the quality of the visualization (p < 0.05 for both). However, the 255
interaction between the compression type and color scale was found to be marginally insignificant 256
(p = 0.062). Therefore, pairwise differences between compression type and color scale combinations 257
were not computed. 258

Next, we performed pairwise t-tests with Bonferroni correction to identify which compression and 259
color scales statistically differ from each other. We found that histogram equalization is significantly 260
better than logarithmic and sigmoidal scaling, but the latter two are statistically equivalent. As for the 261
color scale, LOCS, heated-body, and Radiance scales formed the first group, and Radiance and rainbow 262
scales formed the second. Figure 4 illustrates the similarity groups. 263

Finally, in Table III, we report the total time elapsed when participants studied the color palettes 264
shown in the top-left corner during the experiment. This duration was the shortest for the heated- 265
body and linearized optimal color scales. This can be expected, as their color palettes are ordered in 266
increasing order of luminance, which facilitates making decisions. The rainbow scale had a similar 267
timing to that of LOCS. Radiance’s default color scale took the longest time for the participants to 268
interpret the relationship between colors and luminance. This could be expected, as this color scale 269
has the least intuitive ordering. 270

4.5 Discussion 271

The subjective study reveals that histogram equalization outperforms other dynamic range reduction 272
methods irrespective of the color scale that was being used along with it. Next, we set out to under- 273
stand whether this result can be explained by examining some low level image statistics. For example, 274
it could be hypothesized that histogram equalization was better in this task, as it produces images 275
with higher entropy. To this end, we experimented with several image statistics such as variance and 276
entropy but could not find a strong correlation. That is, a false color visualization strategy with high 277
variance or entropy did not perform well in the user study. 278
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Fig. 5. Correlation between the number of patches for which �ECIE00 > 1 and the mean correct answer percentage across all
patches and participants. Dashed line shows the least-squares fit.

Next, we hypothesized that the best false color image must have the highest perceivable color differ-279
ence between the patches that were compared. To test this hypothesis, we compared the CIEDE2000280
[Sharma et al. 2005] color differences (�ECIE00) between the compared patches and the mean number281
of correct answers given for those patches. Surprisingly, these two variables also did not have a strong282
correlation. Further investigation revealed that as �ECIE00 values increased the number of correct an-283
swers also increased. However, as color difference grew, the number of correct answers could not go284
beyond 14 (the number of participants). Therefore, we slightly modified the correlation variables and285
compared the number of patches where �ECIE00 > 1 with the number of correct answers.2 The Pearson286
product-moment correlation coefficient indicated a strong positive correlation between the two vari-287
ables, r = 0.77, n = 12, p = 0.0018 (also see Figure 5). If HIS-LOCS is removed as an outlier, then the288
correlation coefficient increases to r = 0.84. This high correlation suggests that the total number of289
patch pairs with �ECIE00 > 1 in a false color image is a good indicator of perceived difference between290
those patches. It should be noted that the color difference value is not linearly correlated with the ac-291
tual luminance difference of the patches due to the initial non-linear compression (see Mantiuk et al.292
[2009] for an experimental demonstration of this phenomenon). However, it can still be used to indi-293
cate the presence of a perceivable color difference. This observation enabled us to perform the objective294
evaluation explained in the next section.295

5. OBJECTIVE EVALUATION296

For the objective evaluation, we used the 105 images in the HDR photographic survey [Fairchild 2007].297
This survey contains various images depicting different environments. To understand the diversity of298
the images in this survey we clustered them into six bins using the k-means algorithm. As features we299
have used the HSV and gradient magnitude histograms. That is, for the purpose of clustering, each300

2�ECIE00 value of 1 corresponds to the human detection threshold [Reinhard et al. 2008].
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Fig. 6. The images in the HDR photographic survey [Fairchild 2007] are categorized into six clusters using a k-means algo-
rithm according to their HSV and gradient magnitude histograms as feature vectors. See Table IV for a description of image
characteristics in each cluster. The images with a red border are used for the second psychophysical experiment. In cluster order,
their names are BarHarbor, Niagara, Amikeus, HancockIn, HancockOut, and LasVegas.

Table IV. Characteristics of Images in Different Clusters

Cluster 1 Mostly sunset and sunrise images with bimodal
histogram distributions

Cluster 2 Daytime outdoor images with mostly blue tones
Cluster 3 Daytime outdoor images with mostly foliage
Cluster 4 Darker outdoor images and several indoor

images
Cluster 5 Images containing buildings and man-made

structures
Cluster 6 Night scenes

image was represented as a 60-dimensional feature vector with each component represented using 15- 301
bin histograms [Ben-Haim et al. 2006]. The resulting clusters are depicted in Figure 6. We can see that 302
each cluster contains images with different characteristics, although outdoor environments are more 303
heavily represented than indoor ones (see Table IV). This clustering is performed to demonstrate the 304
variability of the images in the objective evaluation dataset. 305

Each image was visualized in false color using the 12 compression type–color scale combinations 306
discussed earlier. As our metric, we decided to use the number of pixel pairs where �ECIE00 > 1. The 307
decision to use pixel pairs instead of larger patches was motivated by the fact that the latter requires 308
segmenting the input images into uniform patches—an operation that would be dependent on the 309
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Fig. 7. Left: Bar plot summarizing the results of the objective evaluation. Each colored box shows the number of times each
method was ranked the first, the second, and so on. Right: The mean rankings of each method.

segmentation algorithm used. To avoid such interaction effects, we opted to use pixel values directly.310
All visualizations are sorted according to this metric to create a ranking. We have repeated this process311
for each HDR image and obtained 105 rankings. The aggregate results are shown as a bar plot on the312
left of Figure 7 with mean rankings shown on the right of the same figure.313

According to the results, histogram equalization combined with the Radiance color scale (HIS-DEF)314
produced the maximum number of pixel pairs with �ECIE00 > 1 for 103 of the 105 images in the315
database. As such, it was the clear winner according to the objective metric. The only two images316
where it came the second were North Bubble and Delicate Arch, which had relatively low dynamic317
ranges, 200:1 and 500:1, respectively. For those images, LOG-DEF was the winner.318

The second-best method was found to be HIS-RBS, which was followed by HIS-LOCS and HIS-HBS319
(determined by the mean rankings of the algorithms). Here, we can see that histogram equalization320
approach gives the best results regardless of the color scale being used. These results support the321
findings of the user study where histogram equalization outperformed logarithmic and sigmoidal com-322
pressions for all color scales. However, the rankings of color scales within this compression type has323
changed. Whereas HIS-LOCS was the winner in the user study, it was the third best in the objective324
evaluation. Also HIS-DEF was the third best in the user study, and it was found to be the winner in the325
objective evaluation. Finally, HIS-RBS had the worst performance in the user study within histogram326
equalization, although it came as the second best in the objective evaluation.327

The rankings of the remaining methods were more intermixed. The methods with the worst ranking328
were SIG-LOCS and LOG-HBS, which were found to be the third and fourth methods from the last,329
respectively, in the user study as well. The differences between the rankings of the methods were con-330
firmed by Friedman rank sum test, χ2(11) = 905.31, p < 0.001 [Hollander et al. 2013]. To understand331
which methods truly differ from each other, we performed Wilcoxon post hoc tests with Bonferroni332
correction applied. The similarity groups at 95% significance level are shown in Figure 8.333

6. PSYCHOPHYSICAL EXPERIMENT TWO334

The overall correlation between the rankings of the subjective evaluation and objective evaluation335
was found to be 0.586 according to Spearman’s rank correlation. This moderate correlation suggests336
that further investigation could be needed to determine the most suitable approach for false color337
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Fig. 8. Statistical similarity groups for the rankings of each compression type–color scale combination. Methods underlined by
the same line are statistically similar. Rankings are given in increasing order from left to right and top to bottom.

visualization. To this end, we selected the best performing five methods, namely HIS-DEF, HIS-RBS, 338
HIS-LOCS, LOG-DEF, and HIS-HBS, and compared them in a final experiment. Also, to help general- 339
ize this experiment for changing scene conditions, we selected one HDR image from each cluster shown 340
in Figure 6, resulting in a total of six scenes (the selected images are indicated by a red border in the 341
figure). 342

The experiment was designed as a paired comparison experiment due its increased reliability over 343
rating, ranking, and similarity experiments [Mantiuk et al. 2012]. The participants were shown an 344
HDR image in the middle of the screen with two different false color versions on either side. The HDR 345
image was initially linearly mapped to the computer screen such that the mean luminance value was 346
set to 127.5. The participants could change this scaling factor by pressing the UP and DOWN arrow 347
keys to allow bringing different regions of the image into proper exposure. The scaled HDR image was 348
shown after applying gamma correction by using the sRGB gamma. The display device, which was NEC 349
Spectraview Reference 241W, was calibrated to the sRGB profile as in experiment one. The experiment 350
was conducted in a dark room and the participants sat approximately 70cm from the display device. 351

The participants’ task was to choose the false color image that best describes the distribution of 352
luminance across the HDR image. On top of each false color image, the corresponding color palette 353
was visualized to help participants interpret the meaning of the colors. The participants could choose 354
the image they prefer by pressing the LEFT and RIGHT arrow keys, which drew a gray border around 355
the selected the image. They could then finalize their decision and move on the next trial by pressing 356
the ENTER key. The experiment started with a short warm-up session during which the responses 357
were not recorded. The mean experimental duration was 21 minutes with a standard deviation of 11 358
minutes. A short break was given in the middle of the experiment. A total of 17 participants (7F and 359
10M) with normal or corrected-to-normal color vision participated in this experiment. 360

A complete block design was utilized in which each participant judged all stimuli. This amounted 361
to C(5, 2) = 10 responses per each HDR image and 6 × 10 = 60 responses in total. The responses 362
were collected in a preference for each HDR image. By summing up these individual matrices, the 363
aggregate preference matrix was generated. The per-scene and overall results of the experiment are 364
shown in Tables V and VI. 365

According to the overall results HIS-DEF was preferred the highest number of times (281). It was 366
followed by HIS-HBS (256), HIS-RBS (204), and HIS-LOCS (195). The least-preferred method was 367
LOG-DEF (84). This overall trend also exhibits itself in per-scene results as well. In four of six scenes, 368
HIS-DEF was preferred the highest number of times, with HIS-HBS being the winner in the remaining 369
two. LOG-DEF was the least preferred in all scenes as well. The preference counts of HIS-LOCS was 370
more variable across scenes. HIS-RBS, on the other hand, was more stable but was preferred relatively 371
fewer number of times. 372
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Table V. Per-Scene Results Aggregated Over Participants. A: HIS-DEF, B: HIS-HBS, C: HIS-LOCS, D:
HIS-RBS, E: LOG-DEF. Each Entry Shows the Number of Times the Row Method Was Preferred over
the Column Method. Please Refer to Figure 6 for the Images. The Numbers in Parenthesis Show the

Cluster Number of the Corresponding Image. The Algorithms Whose Total Scores Differ by at Least 14
Statistically Differ from Each Other

Amikeus (3) A B C D E Total BarHarbor (1) A B C D E Total
A 0 11 11 12 15 49 A 0 7 11 8 15 41
B 6 0 7 8 13 34 B 10 0 10 12 14 46
C 6 10 0 10 14 40 C 6 7 0 7 15 35
D 5 9 7 0 12 33 D 9 5 10 0 13 37
E 2 4 3 5 0 14 E 2 3 2 4 0 11

HancockIn (4) A B C D E Total HancockOut (5) A B C D E Total
A 0 8 5 13 11 37 A 0 8 16 15 17 56
B 9 0 11 11 14 45 B 9 0 13 11 13 46
C 12 6 0 12 11 41 C 1 4 0 3 7 15
D 4 6 5 0 13 28 D 2 6 14 0 16 38
E 6 3 6 4 0 19 E 0 4 10 1 0 15

LasVegas (6) A B C D E Total Niagara (2) A B C D E Total
A 0 10 12 12 15 49 A 0 10 13 12 14 49
B 7 0 8 10 15 40 B 7 0 13 9 16 45
C 5 9 0 9 15 38 C 4 4 0 8 10 26
D 5 7 8 0 15 35 D 5 8 9 0 11 33
E 2 2 2 2 0 8 E 3 1 7 6 0 17

Table VI. The Aggregate Results Combined
over All Scenes and Participants. The

Algorithms Whose Total Scores Differ by at
Least 32 Statistically Differ from Each Other

Aggregate A B C D E Total
A 0 54 68 72 87 281
B 48 0 62 61 85 256
C 34 40 0 49 72 195
D 30 41 53 0 80 204
E 15 17 30 22 0 84

To understand whether the results are significant, we performed the least significant difference373
test [Starks and David 1961]. This test computes a D value using the following formula:374

D = 4

[
t∑

i=1

a2
i − 1

4 tn2(t − 1)2

]/
(nt), (6)

where ai denotes the total preference count of method i, t is the number of methods, and n is the375
number of participants. However, when aggregating the per-scene results, n must be set to the product376
of the number of participants and the number of scenes. The D value approaches zero if the preference377
counts are similar. Larger D values indicate higher confidence of a statistically significant result. In378
our experiment, we found that D = 181.286. This value is then compared with the upper 100p% point379
of the χ2 distribution with (t−1) degrees of freedom, where p indicates the desired level of significance.380
In our experiment, we set p = 0.001, which corresponds to a χ2 value of 18.465, allowing us to strongly381
reject the null hypothesis that all methods are equal.382
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Fig. 9. Statistical similarity groups of the second experiment. Items underlined by the same line are statistically similar. The
numbers indicate the difference of preference counts between the methods.

Once the null hypothesis is rejected, one can proceed with identifying which algorithms statisti- 383
cally differ from each other. A suitable method for this task is the test of equality of two pre-assigned 384
treatments [Starks and David 1961]. This test computes a critical difference value, mc, as follows: 385

mc = �1.96(0.5nt)0.5 + 0.5�. (7)

The algorithms with preference counts greater than or equal to the mc value can considered to statisti- 386
cally differ from each other. In our experiment, we found mc = 32 for the aggregate results and mc = 14 387
for the individual scene results. 388

The statistical similarity groups based on the aggregate results are shown in Figure 9. According 389
to this, HIS-DEF and HIS-HBS emerged in the first similarity group, followed by HIS-RBS and HIS- 390
LOCS. LOG-DEF was isolated in the third group. 391

The second psychophysical experiment reveals interesting findings, which can be deduced by compar- 392
ing Figures 4, 8, and 9. First, all experiments establish histogram equalization as the most preferred 393
method of visualization. As for the color scale, the first experiment found DEF, HBS, and LOCS to be 394
in the same statistical similarity group. The objective metric isolated HIS-DEF into the first group. 395
The second experiment placed HIS-DEF and HIS-HBS in the first group as well. In the light of all 396
three experiments, we can confidently argue that HIS-DEF appears to be a more favorable method 397
of visualizing HDR images in false color than the other evaluated methods. Irrespective of the color 398
scale, it is also observed that histogram equalization appears to a more preferred method of luminance 399
compression than logarithmic and sigmoidal compression for the task of displaying HDR images in 400
false color. 401

7. DISCUSSION 402

Based on the results of the two psychophysical experiments and the objective evaluation, we can argue 403
that histogram equalization-based luminance compression gives the best color mapping results regard- 404
less of the color scale being used. We believe that this finding is important because it is not common 405
practice to use this method of compression for visualizing HDR luminance maps in false color. More 406
often, logarithmic scaling is used—a method found to be inferior by our experiments. Furthermore, 407
Akyüz had found that sigmoidal compression may outperform logarithmic scaling [2013]. But in our 408
study, we found these two methods to have a very similar performance (logarithmic scaling was only 409
marginally better in the first experiment). Because these finding are obtained from a diverse set of 410
images and through subjective and objective evaluations, our findings are likely to generalize to other 411
images as well. 412

What makes histogram equalization better in this task? We believe that this can be attributed to 413
the more uniform distribution of the luminance values across the display range. Although histogram 414
equalization may not be the best method for photographic tone mapping, it appears to produce more 415
informative false color visualizations due to a more balanced use of colors. However, it is important 416
to note that histogram equalization distorts the relationships between luminances. In general, it vi- 417
olates the uniformity principle discussed in Section 2.2. Therefore, in applications where preserving 418
uniformity is important, logarithmic scaling may be a better choice (LOG-DEF was found to be the 419
best among logarithmic compression methods). 420
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Furthermore, the selection of parameters (such as ε and α) may affect the performance of logarithmic421
and sigmoidal compression methods. As histogram equalization does not need user parameters, it is422
likely to better adapt to the contents of each individual image, which may be one of the reasons for the423
overall superiority of this technique over the other compression methods.424

The effect of color scale was less pronounced. Moreover, it shows some variability between the sub-425
jective and objective evaluations. The first subjective evaluation indicated that the rainbow color scale426
is inferior to the other color scales in this task. However, it performed relatively well in the objective427
evaluation. It is possible that some of the perceptual challenges presented by this color scale, such as428
the highlighting effect of saturated yellows, which may subjugate other hues [Rogowitz and Treinish429
1998], are not captured by the objective metric. Second, yellow is known to have the least number of430
perceived saturation steps [Wang et al. 2008]. This may make it difficult for the observers to distin-431
guish small saturation variations in yellow. Furthermore, the ordering of the colors in the rainbow432
scale is not necessarily intuitive for people—an issue that is irrelevant to the objective metric [Borland433
and Taylor 2007]. However, in the light of all three experiments, DEF appears to be a more preferred434
color scale than the other evaluated scales. In particular, the HIS-DEF combination was found to be in435
the first statistical similarity group in all of the evaluations performed.436

An important visual phenomenon that is ignored by our metric is visual masking. According to437
this phenomenon, natural images may contain highly textured and high-contrast regions that may438
induce visual masking for the neighboring pixels. In such regions, it is known that the threshold of439
luminance discrimination is elevated [Daly 1993]. This means that a pixel pair with �ECIE00 > 1 in440
the false color map may not have visibly differed in the HDR image due to the masking effect. In441
other words, in regions affected by visual masking, this color difference could be too conservative.442
For these regions, pixels with visually unnoticeable luminance differences (due to masking) could be443
rendered with visually different colors. While the currently proposed metric does not capture this444
effect, modulating our metric output with the output of a visual masking model is feasible, and this445
can be an interesting future research direction.446

8. CONCLUSIONS AND FUTURE WORK447

In this work, we conducted a comprehensive evaluation of false color mapping strategies for luminance448
distributions (i.e., HDR images). Our study included a carefully designed psychophysical experiment449
that allowed us to extract a correlation between people’s preferences and a metric based on color differ-450
ences. Using this metric, we carried out an objective experiment using a large number of HDR images.451
To further build confidence on the results, we conducted a second psychophysical experiment using452
HDR images of different types of scenes. The findings of all experiments suggest that HIS-DEF is453
generally the most preferred method of false color visualization for HDR images.454

Certainly, false color visualization strategies are not limited to the methods tested in this study. One455
can think of different compression functions and color scales. However, we believe that the experimen-456
tal methodology described in this article can be useful for future studies that may perform similar457
evaluations.458

Using local compression functions instead of global ones may be more effective in conveying the459
visibility of small luminance variations. However, it should be kept in mind that local mappings may460
distort the monotonicity of luminances. As such, we leave it as a future work to study their appropri-461
ateness for different applications.462

It is important to keep in mind that our study approaches the problem of false color visualization463
from a specific perspective. In particular, we have only used natural photographic images in our eval-464
uations, and even there, the scene type seemed to have some impact on which method of visualiza-465
tion is the best. This suggests that in other domains where HDR images are used, such as medical466
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imaging and remote sensing, different false color visualization strategies may in fact be more appro- 467
priate. Further research is required to answer this question. 468

In all, the current study sheds light on the issue of false color visualization of HDR images, for which 469
no systemic evaluation has hitherto been conducted and proposes several evaluation strategies which 470
may benefit future studies. 471
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Erik Reinhard, Erum Arif Khan, Ahmet Oğuz Akyüz, and Garrett M. Johnson. 2008. Color Imaging: Fundamentals and Appli-524
cations. AK Peters, Wellesley, MA.525

Erik Reinhard, Michael Stark, Peter Shirley, and Jim Ferwerda. 2002. Photographic tone reproduction for digital images. ACM526
Trans. Graph. 21, 3 (2002), 267–276.527

Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec. 2010. High Dynamic Range Imaging: Acquisition, Display528
and Image-Based Lighting (second ed.). Morgan Kaufmann, San Francisco, CA.529

Bernice E. Rogowitz and Lloyd A. Treinish. 1998. Data visualization: The end of the rainbow. IEEE Spectr. 35, 12 (1998), 52–59.530
Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. 2005. The CIEDE2000 color-difference formula: Implementation notes,531

supplementary test data, and mathematical observations. Color Res. Appl. 30, 1 (2005), 21–30.532
Samuel Silva, Beatriz Sousa Santos, and Joaquim Madeira. 2011. Using color in visualization: A survey. Comput. Graph. 35, 2533

(2011), 320–333. DOI:http://dx.doi.org/10.1016/j.cag.2010.11.015534
T. H. Starks and H. A. David. 1961. Significance tests for paired-comparison experiments. Biometrika (1961), 95–108.535
Jessica M. Theodor and Robin S. Furr. 2009. High dynamic range imaging as applied to paleontological specimen photography.536

Palaeontol. Electron. 12, 1 (2009).537
Bruce E. Trumbo. 1981. A theory for coloring bivariate statistical maps. Am. Stat. 35, 4 (1981), 220–226.538
Jack Tumblin and Holly Rushmeier. 1991. Tone Reproduction for Realistic Computer Generated Images. Technical Report GIT-539

GVU-91-13. Graphics, Visualization, and Useability Center, Georgia Institute of Technology.540
Lujin Wang, Joachim Giesen, Kevin T. McDonnell, Peter Zolliker, and Klaus Mueller. 2008. Color design for illustrative visual-541

ization. IEEE Trans. Vis. Comput. Graph. 14, 6 (2008), 1739–1754.542
Greg Ward, Holly Rushmeier, and Christine Piatko. 1997. A visibility matching tone reproduction operator for high dynamic543

range scenes. IEEE Trans. Vis. Comput. Graph. 3, 4 (1997).544
Thomas Williams, Colin Kelley, and many others. 2010. Gnuplot 4.4: an interactive plotting program. (March 2010).545

Received November 2014; revised March 2016; accepted April 2016

ACM Transactions on Applied Perception, Vol. 14, No. 1, Article 2, Publication date: June 2016.

http://dx.doi.org/10.1109/38.773961
http://dx.doi.org/10.1016/j.cag.2010.11.015


Query

Q1: AU: Please provide full mailing and email addresses for all authors.


