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ABSTRACT
High dynamic range (HDR) imaging techniques allow photographers to capture the luminance distribution in the
real-world as it is, freeing them from the limitations of capture and display devices. One common approach for
creating HDR images is the multiple exposures technique (MET). This technique is preferred by many photogra-
phers as multiple exposures can be captured with off-the-shelf digital cameras and later combined into an HDR
image. In this study, we propose a storage scheme in order to simplify the maintenance and usability of such se-
quences. In our scheme, multiple exposures are stored inside a single JPEG file with the main image representing
a user-selected reference exposure. Other exposures are not directly stored, but rather their differences with each
other and the reference is stored in a compressed manner in the metadata section of the same file. This allows a
significant reduction in file size without impacting quality. If necessary the original exposures can be reconstructed
from this single JPEG file, which in turn can be used in a standard HDR workflow.
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1 INTRODUCTION
HDR imaging has been a rapidly emerging research
field now finding applications in consumer photography
and electronics [CNEa]. There are many approaches
to create HDR images and videos including those in-
volving dedicated HDR capture hardware [AlllC16a].
However, such devices are not only rare, but are also
not preferred by most users due to their high cost. This
typically leaves the photographers with the option of
creating HDR images from multiple exposures. In
this technique, a bracketed sequence of exposures are
captured with a standard digital camera, with each
exposure taken with a different exposure time. In
such a sequence, short exposures contain detail in
low-luminance regions whereas long exposures contain
detail in high-luminance regions. By merging them
into a single HDR image, the entire luminance range of
the scene can be represented [Rei10a].

Arguably, the most problematic approach of this tech-
nique is the requirement of storing multiple images
(typically 3 to 9) for each captured scene, together with
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the HDR image itself. While the individual exposures
can be purged after the HDR image is created, keep-
ing them around may be preferable for several reasons.
First, as typical display devices are low dynamic range
(LDR), storing these LDR images allow one to rapidly
view the captured scene, without resorting to tone map-
ping [Rei07a]. Second, the HDR image may often con-
tain ghosting artifacts due to camera and object motion
during the capture process. As new and improved algo-
rithms are proposed continually, keeping the individual
images allow one to create higher quality HDR images
using these improved algorithms.

However, storing a large number of images for each
scene (i.e. individual exposures, the HDR image, tone
mapped image) is problematic for different reasons.
It not only incurs extra storage costs but also makes
photo-album maintenance a tedious task due to image
repetition. These storage and maintenance problems
may even discourage photographers from taking mul-
tiple exposures and shy away from HDR photography.

In this paper, we propose a method known as com-
pressed exposure sequences (CES), which allows em-
bedding the entirety of the information in a bracketed
sequence into a single JPEG file. The main image,
which will be shown by a standard image viewer, is typ-
ically selected as the middle exposure although another
exposure or the tone mapped HDR image can be used
as well. Differences between the subsequent exposures
are stored in a compressed manner in the metadata sec-



tion of the JPEG file. As demonstrated by several ex-
periments, this scheme not only yields a smaller total
file size but significantly simplifies the maintenance of
exposure sequences while having a minimal impact on
image quality.

2 RELATED WORK
There are many approaches to compress HDR images.
JPEG-2000 [Sko01a] and JPEG-XR [Duf09a] have
been developed to overcome the bit-depth limitation
of the original JPEG format. Although the new stan-
dards offer superior compression performance to the
original JPEG, they failed to achieve the desired level
of adoption arguably due to their lack of backward
compatibility with the original JPEG format.

All JPEG standards provide additional marker segments
to keep an application specific data inside metadata sec-
tions [Pen92a, Wal92a]. This ability is used to create
backward compatible HDR compression methods for
images. JPEG-HDR is an extension to the standard
JPEG format to store HDR images in a backward com-
patible manner [War06a]. The same ideas are extended
to the video domain to allow for backward compatible
HDR video storage [Man06a]. Beside these, there are
dedicated HDR file formats such as RGBE, LogLuv,
and OpenEXR [War94a, Lar98a, Kai02a]. However
none of these file formats are backward compatible with
existing software.

The most recent JPEG format, known as JPEG-XT, also
uses JPEG application markers to store HDR images.
JPEG-XT is backward-compatible with widely know
JPEG format and provides lossy and lossless compres-
sion for high dynamic range images [Art15a].

The method proposed here can be seen as an exten-
sion of these backward-compatible storage schemes for
HDR imaging. But unlike the existing methods that
store a tone mapped image as the main image and auxil-
iary data for reconstructing the HDR image, we propose
to store the entirety of information present in an expo-
sure sequence. This simplifies the maintenance and us-
ability of bracketed exposure sequences. It also allows
for creating an HDR image at any time in future, using
the original sequence stored in an efficient manner.

3 THE PROPOSED METHOD
The proposed method is termed as compressed expo-
sure sequences (CES) as it aims to store multiple expo-
sures inside a single JPEG file where the main image
represents a user-selected reference exposure. CES is
comprised of two main pipelines, one for compression
and the other for decompression. In the compression
pipeline, we use the multiple exposures of a scene and
create a new JPEG image that stores all of the neces-
sary data to recreate all of the original exposures. The

decompression pipeline reads the main image from the
JPEG file together with its metadata and reconstructs
the original exposures. These pipelines are illustrated
in Figures 1 and 2 with the details elaborated below.

Compression Pipeline

The compression pipeline is demonstrated in Figure 1.
Initially, all exposures are loaded and sorted according
to their exposure times. Thus, we get the image set
〈I1, I2, ..., Im, ..., In〉 from the shortest to the longest ex-
posure, where Im refers to the middle exposure. All of
these exposures are comprised of 24-bits per pixel (i.e.,
8-bits per color channel). We also extract the exposure
times from the EXIF data during exposure loading, and
label them as 〈E1,E2, ...,Em, ...,En〉.

During the compression pipeline, the main aim is to
store the minimum necessary data for each exposure in-
side the JPEG application markers, so that we can recre-
ate each exposure using this auxiliary information. To
save space, exposures are not directly stored inside the
metadata, instead for each exposure the difference with
respect to a reference image is stored. Therefore, at the
initial state of the pipeline, we choose a reference image
for each exposure according to Equation 1:

Ire fx =

{
Ix+1 if x < mid,
Ix−1 if x > mid.

(1)

In other words, the reference exposure for a given expo-
sure is an adjacent exposure in terms of exposure time.
Choosing such adjacent exposures as reference maxi-
mizes the coherency between them.

The next stage in the pipeline is to align each expo-
sure with its reference to compensate for the camera
movement during the image capture process. The me-
dian threshold bitmap (MTB) algorithm [War03a] was
used to determine misalignments. This algorithm was
selected due to its simplicity, efficiency, and robust-
ness against exposure differences. After the alignment
process, we apply the inverse camera response func-
tion (iCRF) on aligned nonlinear exposures to linearize
them (Equation 2). The resulting linear images are sym-
bolized as Lx. Without loss of generality, we used the
radiometric self calibration approach [Mit99a] to re-
cover the camera response function. At this point we
move from the integer domain to the floating point do-
main:

Lx = 255 f−1
(

Ix

255

)
. (2)

The difference between an exposure and its reference is
computed as defined in Equation 3:

Ldi fx =
∣∣Lx− kxLre fx

∣∣ . (3)
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Figure 1: The compression pipeline of the CES algorithm.
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Before computation of this difference, we find the best
exposure ratio kx that minimizes the mean value of this
difference using the gradient descent algorithm:1

kx = argmin
k

∣∣Lx− kLre fx

∣∣ . (4)

This is done to bring the difference values as close as
possible to zero to obtain higher compression rates.

The sign matrix stores the sign of the difference ma-
trix for each pixel. The values for the sign matrix are
selected as either 0 or 10, with the former indicating a
positive difference and the latter a negative one. The
reason for selecting these values instead of 0 and 1 is
that if we apply lossy compression for the sign matri-
ces, we can interpret values less than 5 as positive and
the others as negative. This provides robustness against
the lossy compression artifacts:

Lsignx =

{
10 if Lx− kxLre fx < 0
0 otherwise

(5)

As explained above, the result of the computed differ-
ences yield two data set for each exposure, namely the
difference and sign matrices. Before applying compres-
sion to difference matrices, we apply gamma correction
to them to simulate a simple form of perceptual encod-
ing as shown in Equation 6. This provides a larger pixel
value range for dark pixels for which the quantization
artifacts would be more noticeable. In this step, we
move back to the integer domain which enables better
compression at the cost of introducing quantization er-
rors:

Pdi fx = 255
(

Ldi fx

255

)1.0/2.2

(6)

After perceptual encoding, we apply compression to
the difference and sign matrices to decrease the data
storage size. Our method allows for both lossless and
lossy compression. Lossless compression is done us-
ing the ZLIB’s Huffman coding based compression al-
gorithm [Deu96a], whereas for lossy compression we
use JPEG compression. The results of compressions
are saved inside the JPEG metadata sections. In addi-
tion to the difference and sign matrices, we also store
the exposure time ratios, alignment data, and the cam-
era response function coefficients inside the JPEG ap-
plication markers as well. The middle exposure, Im, is
stored as the main JPEG image. It is important to note
that this middle exposure is not re-encoded, but copied
as a binary data stream to prevent re-encoding artifacts.

1 Note that the actual exposure time ratios are not always the
best choice for k due to the presence of under- and over-
exposure regions.

Decompression Pipeline
The decompression pipeline is the reverse of the com-
pression pipeline. Initially, the main JPEG image and
its metadata are loaded followed by decompressing the
metadata to recover the sign and difference matrices
(Figure 2).

This is followed by applying perceptual decoding to
undo the effect of perceptual encoding that was per-
formed during compression:

Ldi fx = 255
(

Pdi fx

255

)2.2

. (7)

Next, each exposure is reconstructed one by one start-
ing from the exposures closest to the middle exposure
by using Equation 8:

Lx = kxLre f +Ldi fx L′signx (8)

where

L′signx =

{
1 Lsignx < 5
−1 otherwise

(9)

At this point, all of the computed data is still in lin-
earized form and must be converted to the nonlinear
camera response domain using the recorded camera re-
sponse function:

Ix = 255 f
(

Lx

255

)
(10)

Finally, we align the exposures using the stored shift
amounts to reconstruct a close approximation of the
original JPEG exposures.

4 RESULTS
In this section, we present the results of the experiments
conducted using a dataset of 10 exposure sequences
representing various scene conditions (Figure 3).

The quality measurements are done using two well-
known objective image quality metrics, namely
structural similarity index (SSIM) [Wan04a] and
peak signal-to-noise ratio (PSNR) [Teo94a] using the
original exposures as ground-truth for both metrics.

Initially, we show the visual quality of our method in
lossless compression mode. Then we demonstrate the
effect of lossy compression on both file size and recov-
ered image quality.

Lossless Compression
Here we illustrate the lossless compression and decom-
pression results of our algorithm via a test case con-
taining five exposures of the Mug image. In Figure 4,
the first line shows the original exposure set, the sec-
ond line displays the recovered exposures by using our
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Figure 3: Our quality experiments are conducted using 10 exposure sequences whose middle exposures with two
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Figure 4: The results of lossless compression for a test image. The insets show the selected regions in the original
resolution.



method, and finally the last line represents the differ-
ence between the original and the recovered images.
For each exposure we calculate the SSIM index and the
PSNR value to show the perceptual and numerical sim-
ilarity between the recovered and original images. The
results show that the recovered exposures are very close
to the original ones in the lossless compression case, as
expected. The reason for not obtaining exact equality
is due to the quantization of the image differences to
whole numbers. If the storage size is not very critical
and the main aim is to be able to reconstruct the orig-
inal exposures, our lossless compression mode offers a
plausible solution.

Lossy Compression
For many applications, reducing the image size can
be important to minimize the storage and transmission
costs, and therefore using the lossless mode may not be
desirable. In Figure 5, we report the results obtained
in case the image difference data is compressed in a
lossy manner. Similar to Figure 4, the top row shows
the originals, the middle row our reconstructions, and
the bottom row their differences. Although the SSIM
and PSNR values can be seen to have dropped com-
pared to the lossless mode, the reconstructions can still
be considered close to the originals.

The Effect of Perceptual Encoding
In this section, we demonstrate the effect of using per-
ceptual encoding before compressing the image differ-
ence data. In Figure 6, (a) represents the original image,
(b) the result obtained with perceptual encoding, (c) the
result without perceptual encoding, and (d) the differ-
ence between the two. As can be seen both visually
and numerically indicated by the SSIM and PSNR val-
ues, perceptual encoding has an important contribution
to the quality of the reconstructed exposures.

The Effect of Exposure Ratio Optimization
We described in Section 3 that optimizing the exposure
ratios to compute image differences leads to better re-
sults than using the actual exposure time values (see
Equation 4). This can be explained using the follow-
ing simplified example. Imagine that two pixels’ values
are 170 and 200 in an exposure captured with ∆t expo-
sure time. Due to sensor saturation, the same pixels’
values could be both clamped at 255 in the next expo-
sure captured with 2∆t exposure time. If one uses the
actual exposure time ratio to normalize the second im-
age one would obtain 127.5 for both pixels. The differ-
ence of these with 170 and 200 would yield 42.5 and
72.5 respectively. These are the values that would be
compressed with the JPEG compression algorithm.
On the other hand, if one scales the second image with
a ratio of 185/255, both pixels in the difference im-
age would attain the value of 15. Note that not only

this difference would compress better, the reconstruc-
tion error from encoding/decoding such a difference
would actually be smaller. Although this example is
an over-simplification, we observed in practice that it is
the very reason that optimizing the exposure ratios im-
proves the reconstruction quality over using the actual
exposure times. As demonstrated in Figure 7, the bene-
fit of this optimization is most visible in long exposures
with large saturated regions.

Table 1 shows the effect of this optimization for 4 dif-
ferent image sets each comprised of 9 exposures. It not
only leads to decrease in the compressed image size,
but also produces higher SSIM and PSNR values.

The Effect of JPEG Compression
Lossy compression results are also affected by JPEG
compression quality, which control the degree of quan-
tization of the DCT coefficients. We therefore con-
ducted experiments to determine the effect of JPEG
compression on both image quality and size. The re-
sults are shown in Table 2. When we consider both im-
age quality and the amount of compression achieved,
the quality level of 85 yields a good compromise. At
this level, the compressed image size was found to stay
lower than the total size of the original exposures, while
the SSIM and PSNR values were generally high.

5 CONCLUSION & FUTURE WORK
In this study, we presented a scheme called compressed
exposure sequences that provides a simple solution
for storage and maintenance of bracketed exposure
sequences commonly used by HDR photographers.
We used JPEG as a container format due to its wide
availability and its support for metadata, which makes
our solution possible. Our two modes, namely lossless
and lossy, provide flexibility to the users. Those who
prioritize image quality over storage size may choose
to use the lossless mode. Conversely, those users who
are mainly concerned with the storage size can opt for
the lossy mode. In both modes, the middle exposure is
stored exactly as it is produced by the camera so the
users can be certain that it remains unaltered by our
algorithm.

We have shown that plausible results are obtained by
using a dataset of 10 exposure sequences. As one of
the primary future works, we plan to extend this dataset
with more images. Secondly, the effect of camera and
object movement on both image quality and storage
size must be better evaluated. Finally, as bracketed
sequences resemble video frames that are captured in
close succession, video compression algorithms can be
used to further reduce the storage size without compro-
mising quality.
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Figure 5: The results of lossy compression with JPEG compression quality value of 85 for a test image.
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Figure 6: a: Original image (Urgup), b: Reconstructed image with perceptual encoding, c: Reconstructed image
without perceptual encoding, d: Difference between b and c (10 times enlarged).

Mug Urgup Sunset Selimiye
(32.6 MB) (41.5 MB) (39.5 MB) (33.7 MB)

Computed
Exposure Rate

Actual
Exposure Rate

Computed
Exposure Rate

Actual
Exposure Rate

Computed
Exposure Rate

Actual
Exposure Rate

Computed
Exposure Rate

Actual
Exposure Rate

CES Size (MB) 23.4 27.8 31.4 33.7 31.7 33.3 29.8 32

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Exp 1 0.96 45.36 0.96 44.48 0.96 44.64 0.95 42.66 0.94 37.68 0.93 37.48 0.97 46.49 0.96 43.34
Exp 2 0.96 44.40 0.97 44.91 0.94 41.35 0.93 40.37 0.92 36.01 0.93 36.16 0.96 44.64 0.96 42.90
Exp 3 0.95 42.82 0.96 44.03 0.94 39.46 0.93 38.55 0.90 34.53 0.91 34.85 0.95 41.83 0.95 41.68
Exp 4 0.95 41.33 0.96 43.14 0.94 38.41 0.93 37.94 0.93 34.87 0.94 35.17 0.94 40.62 0.94 40.94
Exp 5 1.00 ∞ 1.00 ∞ 1.00 ∞ 1.00 ∞ 1.00 ∞ 1.00 ∞ 1.00 ∞ 1.00 ∞

Exp 6 0.96 42.35 0.96 41.36 0.93 33.53 0.91 32.71 0.95 32.26 0.94 31.68 0.93 37.84 0.94 38.69
Exp 7 0.95 40.04 0.90 36.68 0.90 29.88 0.83 27.21 0.92 29.80 0.89 27.68 0.90 34.82 0.89 34.21
Exp 8 0.95 39.51 0.83 32.96 0.88 28.15 0.76 23.30 0.92 30.25 0.83 25.17 0.92 36.06 0.82 31.85
Exp 9 0.95 38.50 0.77 29.50 0.90 28.43 0.67 20.86 0.92 30.71 0.72 22.27 0.93 34.87 0.72 27.20

Table 1: The effect of exposure rate optimization (Equation 4) on total size and image quality. The Computed
Exposure Rate column shows the results obtained by using Equation 4 to compute the exposure ratios. The Actual
Exposure Rate column shows the results if the original exposure time ratios are used. Note that the optimization
yields both smaller total size (CES Size) and better image quality (SSIM and PSNR).



a b c d

e f g h

SSIM : 0.93

PSNR: 37.67

SSIM : 0.91 

PSNR: 30.71

SSIM : 0.72 

PSNR: 22.27

SSIM : 0.93

PSNR: 37.47

Figure 7: a: Original image (Sunset, shortest exposure), b: Reconstructed image with exposure rate optimiza-
tion, c: Reconstructed image with the original exposure time ratios, d: Difference between b and c (10 times
enlarged). e: Original image (Sunset, longest exposure), f: Reconstructed image with exposure rate optimization,
g: Reconstructed image with original the exposure time ratios, h: Difference between f and g (10 times enlarged).
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JPEG QUALITY

40 50 60 70 80 85 90

Original Exposure Size
(MB) CES Size (MB) % CES Size (MB) % CES Size (MB) % CES Size (MB) (% CES Size (MB) % CES Size (MB) % CES Size (MB) %

Mug 32.6 10.1 30.98 11.2 34.36 12.5 38.34 14.9 45.71 19.3 59.20 23.4 71.78 31 95.09

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.92 36.02 0.93 36.85 0.93 37.48 0.94 38.37 0.94 39.24 0.95 39.89 0.95 40.56
Avg 0.94 39.06 0.94 39.87 0.94 40.10 0.95 41 0.96 41.72 0.96 42.32 0.96 42.93

Max 0.96 44.07 0.96 44.90 0.97 44.89 0.97 45.71 0.97 46.29 0.97 46.74 0.97 47.15

Hotel Courtyard 50.9 21.4 42.04 23.5 46.17 25.9 50.88 29.8 58.55 36.5 83.30 42.4 83.30 53.2 104.52

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.74 24.74 0.76 25.57 0.77 26.12 0.79 26.78 0.81 27.87 0.83 28.56 0.84 29.6
Avg 0.80 28.20 0.82 29.27 0.83 29.71 0.84 30.41 0.86 31.61 0.87 32.38 0.89 33.29

Max 0.93 38.83 0.94 39.91 0.94 40.31 0.95 40.96 0.96 41.54 0.96 42.27 0.96 42.59

Sunset 39.5 14.40 36.46 16.00 40.51 17.90 45.32 21.20 53.67 26.70 67.59 31.80 80.51 40.70 103.04

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.77 26.06 0.78 26.71 0.78 27.29 0.79 28.10 0.80 29.10 0.81 29.74 0.82 30.66
Avg 0.83 29.27 0.84 29.97 0.85 30.48 0.85 31.17 0.86 32.06 0.87 32.63 0.88 33.44

Max 0.88 33.05 0.89 33.53 0.89 33.80 0.90 34.12 0.91 34.71 0.92 35.19 0.93 35.83

Trees 64.8 27.1 41.82 29.8 45.99 32.8 50.62 37.6 58.02 45.8 70.68 53 81.79 65.9 101.70

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.66 20.20 0.68 20.84 0.70 21.26 0.72 21.8 0.74 22.58 0.76 23.16 0.78 24.04
Avg 0.72 25.12 0.75 25.84 0.76 26.38 0.78 27.08 0.8 28.05 0.82 28.71 0.84 29.61

Max 0.83 32.65 0.85 33.45 0.86 33.92 0.88 34.73 0.89 35.6 0.9 36.19 0.91 36.88

Cave 30.60 14.00 45.75 15.60 50.98 17.40 56.86 20.30 66.34 25.10 82.03 29.40 96.08 37.50 122.55

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.71 27.90 0.73 28.81 0.74 29.36 0.76 30.07 0.79 31.15 0.80 31.84 0.83 32.94
Avg 0.86 34.24 0.87 34.87 0.88 35.61 0.89 36.62 0.90 37.85 0.91 38.65 0.92 39.72

Max 0.98 39.84 0.98 39.48 0.98 40.88 0.99 42.81 0.99 44.26 0.99 45.38 0.99 46.60

Lake 65.6 28.6 43.60 31.7 48.32 35 53.35 40.3 61.43 49.4 75.30 57.5 87.65 71.8 109.45

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.52 17.98 0.55 18.57 0.58 19.07 0.61 19.69 0.64 20.6 0.67 21.27 0.7 22.31
Avg 0.67 24.67 0.69 25.47 0.71 26.05 0.74 26.74 0.77 27.84 0.79 28.57 0.81 29.52

Max 0.84 35.35 0.86 36.30 0.87 36.78 0.89 37.51 0.91 38.55 0.92 39.2 0.93 39.95

Selimiye 33.7 12.60 0.37 14.20 0.42 16.00 0.47 19.20 0.57 24.80 0.74 29.90 0.89 39.30 1.17

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.72 30.78 0.73 31.51 0.73 31.94 0.74 32.48 0.75 33.42 0.75 33.96 0.76 34.66
Avg 0.82 34.49 0.82 35.24 0.83 35.55 0.84 36.07 0.85 36.83 0.85 37.28 0.86 37.79

Max 0.88 39.17 0.88 39.85 0.89 39.91 0.90 40.31 0.91 40.86 0.92 41.14 0.93 41.40

Devrent 57.2 23.4 40.91 25.9 45.28 28.7 50.17 33.2 58.04 40.8 71.33 47.5 83.04 59.3 103.67

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.73 23.63 0.75 24.52 0.76 25.05 0.78 25.84 0.81 26.95 0.83 27.73 0.85 28.92
Avg 0.79 25.51 0.81 26.47 0.83 27.13 0.85 28.02 0.87 29.23 0.88 30.07 0.9 31.25

Max 0.86 27.67 0.88 28.51 0.89 28.97 0.91 30.01 0.93 31.47 0.94 32.35 0.95 33.43

Beach 55.7 24.20 43.45 26.90 48.29 29.80 53.50 34.60 62.12 42.70 76.66 50.00 89.77 62.90 112.93

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.68 22.61 0.71 23.12 0.73 23.66 0.75 24.41 0.76 25.27 0.76 25.91 0.77 26.88
Avg 0.73 27.41 0.76 28.41 0.77 28.86 0.79 29.54 0.81 30.31 0.83 30.84 0.84 31.59

Max 0.76 34.63 0.79 35.27 0.81 35.36 0.83 35.54 0.86 36.15 0.88 36.52 0.90 36.88

Urgup 41.5 14.70 35.42 16.30 39.28 18.10 43.61 21.20 51.08 26.60 64.10 31.60 76.14 40.50 97.59

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Min 0.77 27.74 0.77 25.51 0.77 25.99 0.77 26.59 0.78 27.51 0.78 28.23 0.78 29.24
Avg 0.81 30.92 0.82 31.54 0.83 31.89 0.84 32.41 0.85 33.11 0.85 33.60 0.86 34.23

Max 0.86 37.26 0.87 37.57 0.88 37.67 0.89 37.98 0.90 38.21 0.91 38.38 0.92 38.55

Table 2: Lossy compression results with respect to different JPEG qualities (40 – 90); each JPEG quality column
gives the size of the compressed sequence of images (CES Size), the relative size as a percentage of the original
total exposure size (%), and the quality metric results (SSIM & PSNR).
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