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DeepDuoHDR: A Low Complexity Two Exposure
Algorithm for HDR Deghosting on Mobile Devices

Kadir Cenk Alpay , Ahmet Oğuz Akyüz , Nicola Brandonisio , Joseph Meehan , and Alan Chalmers

Abstract— The increased interest in consumer-grade high
dynamic range (HDR) images and videos in recent years
has caused a proliferation of HDR deghosting algorithms.
Despite numerous proposals, a fast, memory-efficient, and robust
algorithm has been difficult to achieve. This paper addresses
this problem by leveraging the power of attention and U-Net-
based neural representations and using a conservative deghosting
strategy. Given two bracketed exposures of a scene, we produce
an HDR image that maximally resembles the high exposure
where it is well-exposed and fuses aligned information from
both exposures otherwise. We evaluate the performance of our
algorithm under several different challenging scenarios, using
both visual and quantitative results, and show that it matches the
state-of-the-art algorithms despite using only two exposures and
having significantly lower computational complexity. Further-
more, the parameters of our algorithm greatly simplify deploying
its different versions for devices with a variety of computational
constraints, including mobile devices.

Index Terms— HDR imaging, deghosting, deep networks,
mobile devices.

I. INTRODUCTION

HDR imaging aims to capture a broader dynamic range
of the luminance of a scene, enabling more detail to

be included in the final image by reducing the number of
over/under-saturated pixels. An HDR image/video of a scene
is typically produced by merging differently-exposed frames
of that scene taken by a low dynamic range (LDR) camera
in bracketing mode [1], [2]. However, ghosting artifacts may
occur in the merged result if there exists a global camera or
local object motion in the scene during the capture process [3].

Addressing the ghosting problem has received much atten-
tion in the HDR literature in recent years. On the one hand,
traditional algorithms have dealt with this problem by trying to
discover pixel correspondences ensued by a warping step [3],
[4]. More recent algorithms, on the other hand, heavily relied
on deep learning to directly reconstruct an HDR image from
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the input exposures [5], [6]. The most successful ones amongst
these algorithms are generally the most computationally inten-
sive ones, hindering their use for computationally limited
applications.

In this study, we approach the deghosting problem with
three important design decisions: (i) deghosting should be
done only when needed, (ii) a learning-based solution should
be employed only for the most difficult task, leaving room
for a more efficient and traditional approach for the simpler
steps, and (iii) two exposures should be used instead of
three or more to further reduce computational complexity
while still maintaining HDR quality. As shown in the rest
of this paper, these decisions lead to a more lightweight
network design and a significantly lower overall processing
cost, which we consider as the main novelty of our algorithm.
These design choices can become particularly beneficial in
hardware-constrained environments such as mobile devices,
where power consumption is also critically important for
thermal management.

A sample result of our algorithm, together with a description
of its overall workflow, is shown in Fig. 1. This video frame
taken from the Stuttgart Wide-Gamut HDR Video Dataset [7]
represents a very challenging scenario due to the presence
of fast-moving and blinking colorful lights and objects at
night. The insets show the amount of motion in the input
exposures and the reconstruction quality achieved in these
regions. We provide a tone-mapped video of this scene in the
supplementary materials. To summarize, our main contribu-
tions are:

• A hybrid deghosting and HDR image generation
algorithm that combines classical and deep learning-based
solutions for improved efficiency and modularity.

• A conservative approach which processes only the sat-
urated parts of the reference exposure for providing
additional computational benefits.

• A synthetic data method that enables the network to
generalize to a new sensor for which no training data
is available.

II. RELATED WORK

A. HDR Image Reconstruction

HDR images are typically created by merging multiple
exposures. Although there are several variations of this
algorithm, its basic principle involves linearizing the input
exposures and computing a weighted average of correspond-
ing pixels to obtain an irradiance estimate of the captured
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Fig. 1. Our algorithm takes a pair of low (a) and high (b) exposure frames and computes a patch mask from the high exposure (c). The patches corresponding
to over-saturated regions are reconstructed by a network, and the well-exposed regions are exposure-normalized (d). This produces a new low exposure that
matches a ground-truth low exposure taken at the high’s time instance (e). The reconstructed low can be merged with the high to obtain an HDR image (f),
which is tone-mapped for display purposes. If desired, the HDR image can be directly reconstructed without creating a new low exposure.

scene [1], [8], [9]. The application of this algorithm requires
precise alignment between the input exposures, which other-
wise leads to ghosting artifacts. A myriad of HDR deghosting
techniques have been proposed in the literature in the last
two decades [3], [4], [5]. They all face the same intrin-
sic physically difficult cases, namely saturation, occlusion,
parallax, and large global and local motions that can lead
to ghosting artifacts. In some studies, these difficult cases
are addressed directly with explicit and specialized methods,
including specialized neural network modules or dedicated
motion/occlusion/flow detection algorithms [10], [11]. On the
other hand, in other research, ghosting artifacts are minimized
implicitly within the proposed techniques: for example, during
an energy minimization calculation, which may take into
account both motion estimation and fusion phase [12].

B. Optimization-Based Algorithms

HDR deghosting studies that have been proposed up
to 2018 are well summarized in several surveys [3], [4],
[13]. The most successful algorithms of this era include
both multi-scale and iterative energy minimization-based
approaches [12], [14]. Optical-flow-based algorithms that can
deal with different exposure levels were also proposed [15].
While some of these earlier algorithms expect the input
images to be pre-aligned [16] by using multi-exposure image
registration algorithms [17], [18], in some research, this
limitation does not exist [12], [14]. Several studies were
also proposed for video deghosting. They typically combine
techniques commonly used in image deghosting such as
gradient-based optical flow [19], block-based motion esti-
mation [20], [21], patch-based processing [22] with jitter
suppression to avoid flickering artifacts across frames. The
primary bottleneck of these optimization-based algorithms is

their high computational cost, making them applicable only
for offline processing scenarios.

C. Learning-Based Algorithms

These algorithms can be classified into two broad groups,
namely the classical deep learning-based approaches and more
modern attention and transformer-based models. A compre-
hensive review of these methods can be found in a recent
survey paper by Wang and Yoon [5]. Furthermore, the NTIRE
2022 challenge on HDR imaging reports the performance of
these algorithms on benchmark datasets [6].

One of the pioneering works of this group of algorithms
is Kalantari et al.’s deep learning-based HDR deghosting
algorithm [10]. This study compares several deep learning-
based architectures, such as direct estimation, weight estima-
tion, and weight and image estimation approaches. The study
also shares a benchmark dataset with training/test separation
that is commonly used in follow-up research.

We provide a taxonomy of the most prominent recent
publications in Table I. As can be seen in this table, the most
recent works are based on deep convolutional neural networks
(DCNNs) and employ attention architectures [48]. The use
of attention architectures allows these networks to extract the
most crucial information from the input exposures [39]. Most
methods try to create an HDR image, but a few methods target
exposure fusion [44], [46], [49]. Another differentiating factor
between the algorithms is the number of input exposures.
Most methods work with 3 exposures (low, medium, high),
but some algorithms can process only two or a higher number
of exposures. Some methods also support HDR video content.

A recent benchmark study [6] compared the results of
these recent algorithms according to low-complexity and high-
fidelity constraints using Froelich et al.’s dataset [7]. The
best-performing method in both tasks used a teacher-student
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TABLE I
A CLASSIFICATION OF RECENT HDR DEGHOSTING ALGORITHMS

knowledge distillation strategy [50]. A common trait of
well-performing methods was to use residual feature distil-
lation blocks (RFDB) [51] and dilated residual dense blocks
(DRDB) [45]. It was also found that a large number of
the algorithms used a U-Net-style network architecture due
to its efficiency and performance benefits. It should be
noted that most of the benchmarked studies were proprietary
where only high-level descriptions of the algorithms were
available.

D. Single Image HDR

As an alternative to HDR image deghosting, single image
HDR reconstruction methods are also proposed. These meth-
ods aim to capture the luminance distribution of the scene
in a single time instance, thereby circumventing the ghosting
problem. Earlier designs involve hardware modifications such
as split aperture imaging where the input light beam is split
and redirected into different sensors [52], [53] as well as
per-pixel exposure variation using optical filters with varying
transmittance [54], [55], [56]. Dual-ISO [57], [58], [59], [60]
and dual-exposure [61], [62], [63], [64], [65], [66] methods
that use learning-based deinterlacing algorithms to construct
full resolution HDR images are also proposed.

Relatedly, inverse tone-mapping techniques take a single
LDR image and produce an HDR image where missing details
are hallucinated [67]. While earlier methods relied on inverting
tone mapping operators [68] and non-linear brightness adjust-
ments [69], recent studies focused on using neural networks
to predict the details in saturated regions [70], [71], [72], [73].

Finally, burst photography techniques generate HDR images
from a large number of LDR images taken in rapid succession.
These techniques rely on reducing the noise in dark regions
instead of recovering details in over-saturated ones [74], [75].

III. APPROACH

A. Rethinking Deghosting

In our analysis of existing algorithms, we found that
(i) most of the recent methods aim to perform deghosting
on the entire image, (ii) they aim to reconstruct the final
HDR image in an end-to-end manner, and (iii) that most
algorithms require at least three input exposures, and having
a well-exposed reference image (the medium exposure) is
important for them. While these features can be desirable
for some applications, they also bring about extra challenges.
As for (i), processing the entire image incurs a significant per-
formance cost while at the same time risking the appearance of
artifacts in regions that do not need deghosting. For (ii), learn-
ing to produce an HDR image poses a more difficult learning
task and necessitates a more complex network compared to
learning to produce an LDR image. The latter also allows using
any desired HDR reconstruction algorithm instead of the one
embedded in the network. Finally, for (iii), using more than
two images may be impractical for performance-critical appli-
cations such as real-time HDR image/video reconstruction in
mobile devices. As a result, our algorithm is designed around
the following design decisions to circumvent these problems:

• Only use two exposures, namely the low and the high
exposure. Any of these can be set as the reference,
although we use the high exposure in this paper.
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Fig. 2. Overview of the proposed deghosting framework. The inputs to our pipeline are two exposures produced by an initial ISP processing stage. The
high exposure is then analyzed to find its saturated patches, which are paired with the corresponding low exposure patches (patching block). These paired
high and low patches are then processed by our previously trained network to produce new low patches that are aligned with the content in high patches
(network block). Then a new low exposure is reconstructed keeping the high’s non-saturated patches and using the newly produced patches from the network
when saturated (reconstruction block). The original high exposure and the reconstructed low exposure are then merged to create the final HDR image (merge
block). The final HDR image can undergo subsequent ISP processing such as tone-mapping.

• Only process parts of the reference exposure that lack
details. For a high exposure reference, this corresponds
to over-saturated regions.

• As output, produce a new deghosted exposure instead
of the final HDR image. The HDR image can be
reconstructed using any off-the-shelf HDR merge [1] or
exposure fusion [49] algorithm, not only simplifying the
task of the learning algorithm but also making the results
suitable for further ISP processing. In other words, our
algorithm can run as an early step in the ISP pipeline, and
the rest of the pipeline, including HDR image generation,
can proceed as if the exposures are captured without any
ghosting problems.

All of these design decisions allow for a more effi-
cient deghosting algorithm compared to state-of-the-art deep
learning-based ones and, as shown in the results section,
without compromising image quality. The overall pipeline
of our framework that implements these design decisions is
depicted in Fig. 2. The following sections explain the details
of each stage.

B. Initial ISP Processing

We assume that the processing begins with the camera’s
internal image signal processor (ISP). This stage is responsible
for reading digital sensor values in Bayer domain and convert-
ing them to RGB low and high exposures. The ISP processing
includes demosaicking, white-balancing, color correction, and
in some cases denoising and sharpening of the sensor values.
Each ISP may perform different operations, and the specific
details are not critical to our algorithm as long as they output
two bracketed RGB images with known exposure values.

C. Patching Block

Our algorithm begins with the patching block in which
we identify the patches whose details need to be recovered.
Assuming that the high exposure is the reference, we first
identify its over-saturated regions that need to be reconstructed
from the low exposure. To this end, we apply a saturation test
to the high exposure to detect its over-exposed pixels. This test
compares each pixel’s RGB values with a saturation threshold
St such that the pixels with any color component greater than
this threshold are marked as saturated.

In the next step, both high and low exposures are patchified
using the value of the patch size parameter, Ps , in both
horizontal and vertical axes. As both exposures are of the
same resolution, each patch of each exposure corresponds to
the identically located patch in the other exposure. Then, the
patch selection step is conducted on the patches of the high
exposure. The patches that include more than saturated count
threshold, Cs , number of pixels are selected together with
their corresponding patches from the low exposure. A pair
of high and low patches selected in this manner constitute
the inputs to the following learning stage. In this paper,
we use the following values for the parameters defined above:
St = 0.97 for pixel values in [0, 1] range, Ps = 64 × 64, and
Cs = 1.

D. Network Block

The purpose of the network block (Fig. 3) is to reconstruct
details missing in a high exposure patch using information
from both high and low exposure patches. Specifically, given
two input patches as h and l, the network block predicts l̂
which resembles a low exposure captured at high’s time
instance.
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Fig. 3. Our network architecture is a combination of feature extraction and
attention blocks followed by a U-Net model with skip connections. Plus and
cross symbols represent channel-wise concatenation and Hadamard product,
respectively.

1) Exposure Normalization: After experimenting with sev-
eral alternatives, we found that the network learns better if
it is fed with a pair of exposures that are normalized to the
same exposure value (EV) range. Assuming that initially both
h and l are in linear [0, 1] domain, we compute an exposure
normalized low patch as follows:

ll→h = l2EVh−EVl . (1)

The network then receives h and ll→h as input and produces an
estimate of the low exposure normalized to the high’s exposure
level:

l̂ = g(h, ll→h), (2)

If desired, the final low patch may be obtained by bringing
the network output back to the original EV range of the low
exposure:

l̂low = l̂2EVl−EVh . (3)

Alternatively, the HDR result can be obtained by directly
merging h and l̂.

2) Patch Processing: Patching artifacts may occur at the
border between two predicted patches, or between a predicted
and a simply high-to-low normalized patch. To eliminate this
problem, we experimented with two approaches shown in
Fig. 4. In the first approach, shown in Fig. 4a, the underlying
image is logically divided into blocks of 48 × 48 pixels. The
64 × 64 patches processed by our algorithm are centered
around these blocks. As a result, each processed patch gets
reconstructed by being aware of the content of neighboring
patches. After processing, only the center 48 × 48 region
is cropped and placed into its corresponding location in the
final image. In our implementation, this process is executed in
parallel for multiple patches.

An alternative solution to eliminate tiling artifacts would
be to shift the patches by 1x and 1y units, creating multiple
estimates for a single pixel – one for each patch. For example,
the pixel indicated by the black dot in Fig. 4b, would receive

Fig. 4. Two methods to eliminate patch artifacts: (a) the image is divided
into 48 × 48 blocks, and processed patches are centered around these blocks.
(b) processed patches are shifted by 1x and 1y units yielding multiple
estimates for a pixel. We found the strategy in (a) to work better.

3 estimates. These are then averaged to find the final estimate.
Amongst these two alternatives, we found the first solution to
be more efficient and produced results without noticeable patch
artifacts. The second solution also eliminates patch artifacts,
but may introduce a slight blur due to the averaging process
and is computationally more complex.

3) Network Details: As shown in Fig. 3, our network
accepts a pair of low and high 3-channel (RGB) exposure
patches of size 64×64 as input. A feature extraction block with
shared weights is employed as the first step to produce features
for each patch. This block is composed of three convolutional
layers with a ReLU activation function at the end of each
layer. The aim of this block is to extract expressive feature
representations from the pixels of the input patch pair.

The attention block takes the channel-wise concatenated
features produced at the end of the feature extractor as input
and produces an attention map. The attention block is com-
posed of two convolutional layers. The first one is followed
by a ReLU activation function, and the second one is followed
by a Sigmoid activation function to bound the output values
of the attention map to [0, 1] range. The features of both high
and low exposures are then multiplied by the attention map
to suppress the unimportant details and keep the important
ones unchanged. The scaled features are then concatenated
channel-wise and fed to our U-Net block.

All convolutional layers of the feature extractor and the
attention block use 64 filters with kernel size 3×3. We employ
zero-padding to keep the spatial resolution of the features
unchanged so that the spatial resolution requirement of 64 ×

64 of the first layer of the U-Net block is ensured.
The U-Net block’s details are visualized in the bottom half

of Fig. 3. Each encoding level of the encoder part employs
a stack comprised of two convolutional layers with ReLU
activations and a max pooling layer that halves each spatial
dimension. The decoder part leverages transposed convolutions
to double the spatial dimensions. Each decoding level employs
two convolutional layers with ReLU activations right after
the transposed convolution layer except the top level where
three are employed. We employ skip connections between
the corresponding levels of the encoder and decoder parts
by channel-wise concatenating the encoded features with the
outputs of the transposed convolutions. This enables us to
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Fig. 5. Weighting functions used for blending the high and reconstructed
low patches. τ parameter defines the threshold above which low exposure
contributes. Note that there are two weighting functions, but the input to both
functions is the high exposure (see (4)).

prevent important details from being lost during the encoding
process.

The convolutional layers of the first encoding level have
16 filters. The number of filters is doubled as the spatial
dimensions are reduced and halved at each decoding level. The
last convolutional layer of the decoder part contains 3 filters
to produce the predicted 3-channel (RGB) patch at the spatial
resolution of 64 × 64.

E. Reconstruction and Merge Blocks

Our algorithm can produce a new low exposure that is
content-wise aligned to the high exposure and exposure-wise
aligned to the original low exposure. For this purpose, unsatu-
rated patches of the high exposure can simply be scaled down
to the low exposure’s EV and the saturated patches can be
replaced by the network output. This way, any desired HDR
reconstruction algorithm can be used providing modularity.
We considered the decoupling of the deghosting process from
HDR assembly as an important feature of our algorithm.

Alternatively, we can directly reconstruct an HDR image
from the high exposure and the network output in the following
manner. We use a reconstruction function that computes a
weighted blending of the high patch and the reconstructed
patch using a custom weighting function for patches that are
processed by our network. Otherwise, we directly use the high
exposure’s pixel value as it was found to be not saturated:

E(x, y)

=


w+(h(x, y))h(x, y) + w−(h(x, y))l̂(x, y)

w+(h(x, y)) + w−(h(x, y))
if (x, y) ∈ �,

h(x, y) otherwise,

(4)

where � represents the set of pixels that are processed by
our network. The w+ and w− weighting functions control
the degree of blending between pixels. They are defined as
Hermite-like blending functions (Fig. 5):

w+(x) =


1 if x < τ,

1 + 2
[

x − τ

1 − τ

]3

− 3
[

x − τ

1 − τ

]2

if x ≥ τ ,

(5)

w−(x) =


0 if x < τ,

−2
[

x − τ

1 − τ

]3

+ 3
[

x − τ

1 − τ

]2

if x ≥ τ .
(6)

τ represents the threshold value beyond which we allow the
contribution of pixels from the reconstructed low exposure
patch, and x is the luminance of the pixel instead of its
individual color channels to prevent color cast [76]. In our
implementation, we set τ = 0.5 for pixel values in [0, 1] range.

IV. DATASET GENERATION

A. Stuttgart Dataset

Stuttgart HDR video dataset contains ghost-free HDR
frames captured for 33 different scene video cuts using
a beam-splitter-based two-camera capture rig [7]. Due to
the size, diversity, and photographic quality of this dataset,
it serves as a convenient starting point to train and test our
network model. However, because each frame is a ghost-free
HDR image, the ghosting phenomenon needs to be simulated.
For this purpose, we select pairs of contiguous HDR frames
from each scene (e.g., frame Ei and Ei+1). The first image in
each pair is considered as the low exposure and the second one
the high exposure. The high exposure’s value, EVh , is selected
as both 0 and 2 EV to simulate a well and a highly exposed
high exposure. The corresponding high exposure is found by:

Hi+1 = 255
[

2EVh
0.217Ei+1

E i+1

]1/γ

clip(0,1)
, (7)

where E indicates the mean value and the factor 0.217 ensures
that when EVh is 0 the mean value of the gamma corrected
high exposure, H , will be 127.5. We assume γ = 2.2 and clip
the result to [0, 1] range prior to scaling it with 255.

The corresponding low exposures, L i , are created in the
same manner by taking EVl from {EVh − 1, EVh − 2, EVh −

3, EVh − 4} and using the previous HDR frame, Ei . Finally,
for each low exposure, we create a ground-truth low exposure,
L i+1, by using frame Ei+1 and EVl . The ground-truth lows
are perfectly aligned to the high exposure (due to being created
from the same HDR image), but their exposure values match
the low exposures generated from the previous frame. The
triplet (Hi+1, L i , L i+1) thus constitutes a training sample for
our network. In practice, we do not use all of the pixels from
these images but only take the patches that meet the saturation
criteria in the high exposure as explained in Section III-C.

B. HDR Photographic Survey Dataset

HDR photographic survey contains a rich collection of
106 high quality HDR images created from multi-bracketed
input exposures captured by a Nikon D2X camera [77]. This
dataset well complements the Stuttgart dataset as it contains
many outdoor landscape photographs, a characteristic missing
in the Stuttgart dataset. Thus, we use the survey dataset for
improving the generalization performance of our network to a
diverse set of scene conditions. However, because the survey
dataset is comprised of static images, we employ a warping
strategy to simulate motion.

For this purpose, we create single-octave Perlin noise fields
using the improved Perlin noise algorithm [78], because it can
lead to controllable and continuous random warped images.
Two noise fields are created, one for each of x- and y-axis.
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Fig. 6. Left: x and y warp fields. Right: Original and warped images.

Assuming that n represents the noise value in [−1, 1] range,
we use the following mapping to compute the final noise value:

n′
= s((2|n| − 1) + n). (8)

The parameter s controls the desired amount of warping.
We set s = 8, to achieve a total of ±16 pixels shifts in either
direction. Perlin noise maps are created in 256×256 resolution
and scaled to the resolution of the input image, which is
approximately full-HD in our case (we resize all survey images
to 1920 pixels wide by preserving the aspect ratio). Different
pairs of noise maps are created for each input image. A sample
result is shown in Fig. 6, where the warp fields for the
x- and y-axis are shown on the left. In this illustration, mid-
gray tones denote little to no warping, whereas black and white
tones denote negative and positive shifts, respectively. Using
these warp fields, the original image shown in the top-right is
remapped to the final image shown in the bottom-right. The
insets show that pixels are warped while the objects maintain
their overall integrity. Following the warping process, which
is performed in the HDR domain, we generate high, low, and
ground-truth low exposures using the same strategy explained
in the previous section.

C. Synthetic Dataset

In order to augment the learning ability of the network
to cope with fully saturated high patches while being able
to produce smoothly varying outputs, we generated synthetic
gradient images of various colors. To create these patterns,
we generated an HDR image based on the Cornsweet pro-
file [79]:

G(y) = 0.70
1 − ey

1 − e
,

H(x) = 0.176
1 − e−x2

1 − e−1 ,

K (y) = 0.5 + G(y),

R(x, y) =


H(4 (x − 0.25)) K (y) x ∈ [0.25, 0.50),

−H(4 (0.75 − x)) K (y) x ∈ [0.50, 0.75),

0 otherwise,

L(x, y) = [10−1
+ 106 (G(y) + R(x, y) + 0.414)]C, (9)

Fig. 7. Synthetically generated exposures.

where (x, y) are the normalized pixel coordinates and C
represents the desired base color of the profile. The output
of this profile is an HDR image, which can be scaled to
produce high and low exposures similar to real HDR images.
We choose the scaling factors such that the high exposure
is fully saturated while the low exposures contain varying
degrees of details. An example set of 4 low exposures is
shown in Fig. 7. We generate 1000 such patterns by varying
the proportion of R, G, and B components between 10% and
100%, independently for each color channel.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of our algorithm under several
test conditions corresponding to different application scenar-
ios. First, we show our results for the Stuttgart and the HDR
photographic survey datasets, for which we have ground-truth
frames and therefore can report PSNR results. We then present
the results for the smartphone dataset, in which the HDR
frames are captured using the DOL-HDR functionality of the
underlying sensor [80]. For the final scenario, we train and
test our network on the Kalantari dataset [10] as this dataset
is heavily used by the state-of-the-art studies. Here, we report
our PSNR, HDR-VDP [81], and unified deghosting quality
metric (UDQM) [82] results in addition to providing visual
comparisons with the literature works.

A. Training Details

The ground-truth patches, lgt, are kept as exposure-aligned
to the low patches. We apply (3) to the network’s predicted
RGB patch during training to bring its exposure to the
exposure of the low patch. This also enables the predicted
pixel values to be in [0, 1] range, allowing for the use of the
differentiable µ-law tone-mapping prior to computing the loss
function [10]:

T (E) =
log(1 + µE)

log(1 + µ)
, (10)

where E and T indicate the HDR and tone-mapped pixel
values, respectively, and µ is a parameter. Following common
practice, we set µ = 5000. This function, while not designed
to produce visually appealing tone-mapping results, prevents
the high irradiance pixels from dominating the network loss.
We apply (10) to both the network output and the ground-truth
patch and then calculate the element-wise l1 loss:

L = ||T (l̂low) − T (lgt)||1. (11)

We implemented our network in PyTorch using the Light-
ning library [83]. We use a batch size of 512 composed of
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Fig. 8. (a) The inference process of our network. Low and high input patches
are given as input and the reconstructed low patch is produced. (b) A simple
blend of the original high and low patches demonstrates noticeable ghosting
artifacts. (c) Blending the original high patch with the reconstructed low patch
of our network output eliminates visible ghosting.

mixed EV-difference exposure pairs along with the ground-
truths (low, high, lowgt) and train our network in parallel
on 8 NVIDIA A100 80GB GPUs for up to 1000 epochs.
We use ADAM optimizer with a learning rate of 5e-4 and
keep the lowest validation loss checkpoint during the training.
We employ random rotations of 90, 180, and 270 degrees, ran-
dom horizontal and vertical flips, color channel swapping, and
adding a small amount of Gaussian noise as data augmentation
strategies.

B. Single Patch Analysis

To illustrate what our network learns, we begin by focusing
on a single pair of low and high patches as input to our network
block (Fig. 8). In the top row of this figure (a), the input
pair of exposures (fingers of a person waving hand against a
light background) and the output of our network are shown,
demonstrating that our network learns to reconstruct a new low
exposure as if it is taken at the high exposure’s time instance.
In (b), we show a simple blending of the input exposures to
demonstrate the visibility of ghosting artifacts. In (c), we blend
the original high and the reconstructed low patches. It can be
seen that the ghosting artifacts are visually eliminated while
the blue tint of the background is preserved. Note that in this
example, we simply blend the exposures by assigning equal
weights to each (rather than a true HDR merge) in order to
solely illustrate the deghosting behavior of our network.

C. Scenario One: Stuttgart HDR Video Dataset

In our first scenario, we evaluate the performance of our
deghosting algorithm on a challenging and cinematographic
real-world HDR video dataset, known as the Stuttgart
dataset [7]. To evaluate our network on this dataset,
we selected 3 test and 27 training scenes. The training scenes
themselves were split into 24 training and 3 validation scenes.
Training data was prepared as explained in Section IV-A
and saved in HDF5 files [84]. We performed training for
1000 epochs and chose the epoch that led to the lowest valida-
tion loss. During evaluation, we used an exposure difference
of 2 EV (a factor of 4) between the high and low exposures.
These exposures were generated from pairs of subsequent

TABLE II
AVERAGE PSNR (d B) SCORES OF OUR NETWORK ON 3 TEST SCENES OF

STUTTGART HDR VIDEO DATASET. 30 FRAME PAIRS PER TEST SCENE
THAT EVENLY COVER THE SCENE’S FRAME SEQUENCE ARE USED.

PSNR SCORES ARE CALCULATED USING OUR PRODUCED LDR
IMAGE AND THE GROUND-TRUTH LDR IMAGE. NONE OF

THE TEST SCENES WERE SEEN BY THE NETWORK
DURING TRAINING

TABLE III
AVERAGE PSNR SCORES ON THE 10 TEST SCENES OF HDR PHOTO-

GRAPHIC SURVEY DATASET BEFORE AND AFTER FINE-TUNING THE
NETWORK ON SEPARATE TRAINING SCENES OF THAT DATASET

frames: low/high from (i − 1)th and i th frames, respectively.
We selected such 30 pairs of frames that are equally distributed
across each scene (e.g., frames (1, 2); frames (31, 32); etc.).
The PSNR results are summarized in Table II. Here it can be
seen that, on average, we achieve PSNR rates that are well
over 40d B.

We show representative visual results for this evaluation in
Fig. 9, where each row shows a different scene. In reading
order, the columns show the low-exposure frame, high-
exposure frame, the results of directly merging these frames
(no deghosting), our processed patches mask, and our HDR-
merge result. Closer inspection shows that our algorithm
almost completely eliminates ghosting artifacts despite the
challenging nature of these scenes. Especially the second
and third scenes which contain flashing lights on fast-moving
objects under low illumination pose among the most difficult
challenges for deghosting algorithms. The processed patches
masks indicate that we only process the regions of the high
exposure frame that are saturated, avoiding unnecessary com-
putation for well-exposed regions. The tone-mapped HDR
videos that we created for these three scenes can be found
in the electronic supplementary materials.

D. Scenario Two: HDR Photographic Survey Dataset

This dataset contains 106 static HDR images for which
we simulate motion using Perlin noise as explained in
Section IV-B. The characteristics of this dataset are markedly
different from the Stuttgart dataset, as it contains many bright
outdoor images compared to predominantly darker scenes of
the latter. As such, we hypothesized that some amount of
fine-tuning would be necessary to produce high quality results.
However, first we wanted to find out the results with direct
application of the best network from the Stuttgart dataset.
To this end, we used 10 images for testing purposes.

As can be seen in the left column of Fig. 10, direct
application of the Stuttgart network leads to some noticeable
artifacts. Closer inspection shows that although deghosting is
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Fig. 9. Stuttgart HDR video dataset results. Each row shows a different test scene.

Fig. 10. HDR photographic survey dataset images visualizing the pre-finetune
and post-finetune difference.

successful, patch artifacts are introduced. Some halo artifacts
around the tree branches can be seen in the second row of
this figure. These problems can be expected as the Stuttgart
dataset on which the network was trained does not contain
scenes with similar characteristics.

To improve our results, we performed fine-tuning by setting
the initial learning rate to 10−4 (compared to 5.10−4 of
the base network) and reduced it by half if there is no
significant drop in the validation loss for 20 epochs. For
this experiment, we split the training dataset into 86 training
images and 10 validation images. We then applied the best
network that yields the lowest validation loss on the previously
selected test images. The results improved significantly as can
be seen in the right column of Fig. 10. The mean PSNR
results for these test scenes also confirm this improvement
(Table III). A detailed visualization of the post-fine tuning
results together with the input images, processed patch masks,
and a comparison with the no deghosting scenario are depicted
in Fig. 11.

E. Scenario Three: Smartphone Dataset

This scenario is aimed to assess the suitability of our
algorithm to be used in a realistic real-world setting. The

modern trend in smartphone HDR image/video capture is to
use an advanced sensor design that can overlap short and long
exposures at every pixel position, known as the DOL-HDR
technology [80].

However, rapid object and camera motion can still lead
to ghosting artifacts and therefore deghosting remains an
important challenge. To this end, we used 6 RAW images that
represent the direct sensor output of the smartphone camera.
The top half of the images represents the high exposure and
bottom half the low exposure (the vertical resolution of the
image is twice the vertical resolution of the sensor). The
exposure variation is achieved by both exposure time and ISO
modulation. We then applied a color processing pipeline that
contains black-level subtraction and a simple demosaicking
algorithm to obtain two RGB exposures.

Similar to the HDR photographic survey dataset, we antic-
ipated that fine-tuning would be necessary to produce
artifact-free HDR images from these inputs which are col-
lected from an entirely different sensor. As this was not
possible due to the lack of ground-truth data for this
sensor, we decided to use the HDR photographic survey
fine-tuning dataset but also augment it with synthetic images
(Section IV-C).

We show the impact of fine-tuning in Fig. 12, where (a)
denotes the results of the original network trained on the
Stuttgart dataset, (b) the results of fine tuning using only the
HDR photographic survey training data, and (c) the results
with augmenting this with the synthetic data. It can be seen
that each step leads to an improvement in the visual quality
of the results. A visual summary of our results for the other
images of the smartphone dataset is presented in Fig. 13,
where we also show that our algorithm avoids ghosting for
the non-saturated regions of the high exposure as the pix-
els of those regions are not processed by the network, but
directly used after exposure scaling in the final image. This
optimization is particularly important for smartphones where
computational complexity and battery consumption are key
factors.
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Fig. 11. Four of the HDR photographic survey dataset images.

Fig. 12. The effect of fine-tuning in eliminating visual artifacts.

F. Scenario Four: Kalantari Dataset

This dataset is separated into 74 training and 15 testing
scenes by the original authors and therefore is commonly used
for comparison of deghosting algorithms [10]. For each scene,
it contains 3 exposures (low, medium, high) and a ground-truth
HDR image aligned to the medium exposure LDR image.
This characteristic poses a difficulty for our algorithm in that
we use two exposures and produce a result aligned to the
high exposure. We therefore decided to use only the low
and medium exposures for producing our results, whereas
we used all three exposures for the compared studies. Note
that this poses a disadvantage for our algorithm as we cannot
reconstruct details in the dark regions of the medium exposure,
which could be well-exposed in the high exposure.

Also, we split the dataset’s training scenes into 66 training
and 8 validation scenes to find the network with the minimum

validation loss. During training we employ the following
additional augmentation strategy in addition to those discussed
earlier: with 50% probability low, medium, and ground-truth
images are scaled with a random factor in [1.0, 4.0]. This is
done to generalize the network performance to a more diverse
range of luminance values. Similar to the Stuttgart dataset,
for training we only used the patches that meet the saturation
criteria in the high exposure as explained in Section III-C.

The HDR-VDP and the overall PSNR results that are
directly computed in the linear HDR domain (PSNR-L) and
after tone-mapping with the µ-law (PSNR-µ) show that our
results are comparable with the state-of-the-art algorithms in
the literature despite we use a fewer number of exposures
(Table IV).

The HDR-VDP scores are computed using the following
parameters: 24′′ display size, full-HD resolution, and a viewing
distance of 0.5 meters. Our method is among the top two
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Fig. 13. Smartphone image results. The first row demonstrates a hand-held camera setup with global motion, the second row local object motion with a
static camera, and the third row occlusion of a colored region by a moving screen. Red (top) insets show visuals from the dynamic but unprocessed regions
of the images due to being well-exposed. Green (bottom) insets show visuals from the processed regions demonstrating our reconstruction quality.

TABLE IV
PSNR-L, PSNR-µ AND HDR-VDP-3.0.6 [81] RESULTS ON THE KALANTARI DATASET ARE PRESENTED IN EACH METRIC SCORE CELL, RESPECTIVELY,

SEPARATED WITH A PIPE SYMBOL. THE BOTTOM ROW SHOWS THE MEAN RUNTIME IN SECONDS, AVERAGED OVER 3 RUNS AND THE SCENE
COUNT. DISK READ AND WRITE OPERATIONS ARE INCLUDED AS WE FOCUS ON THE TIMING OF THE COMPLETE ALGORITHM PIPELINE

(SEE SECTION V-G FOR A MORE DETAILED ANALYSIS). LITERATURE STUDIES ARE RUN ON CPU ONLY DUE TO THE LIMITED
GPU HARDWARE CAPACITY AND SOFTWARE CONFIGURATION OF THE TEST MACHINE. THE TIMINGS OF OUR STUDY ARE

REPORTED FOR BOTH GPU AND CPU RUNS

methods according to this metric as well. A spatial map of the
HDR-VDP results for the BarbequeDay scene is illustrated in
Fig. 14 where “hotter” colors indicate visually more notice-
able differences with respect to the ground-truth (the single
HDR-VDP scores reported in Table IV are computed by a
spatial pooling of these maps [81]).

In order to understand why the HDR-VDP maps indicate
visible differences in certain parts of this scene, we share our
results together with Yan et al.’s [45] and the ground-truth in
Fig. 15. The closeup views in this figure show that our and
Yan et al.’s results are almost indistinguishable from each other
and they are both free of ghosting artifacts. The ground-truth
image, on the other hand, has some ghosting artifacts due to
the motion of the leaves.1

1Note that in this dataset ground-truth images were created by asking people
to stay stationary, but the leaf motion was apparently unavoidable.

Finally, in Table V we share the UDQM results, which is a
perceptually validated unified deghosting quality metric [82].
This metric assesses the visibility of various ghosting artifacts
as well as the preservation of the dynamic range available in
input exposures. Note that this metric can be used in scenarios
where ground-truth images are not available – and is therefore
unaffected by ghosting in the ground-truths themselves. Our
method yields the highest mean value of this metric on
the Kalantari test dataset. For validation we include a no
deghosting scenario, which yields the lowest UDQM score.

As can be seen in the last row of Table IV, the run-time com-
plexity of our algorithm is significantly lower than the other
methods. This is shown in Fig. 16 where it can be seen that
our algorithm outperforms the other methods in computation
time while also having a favorable metric performance. The
detailed timing analysis of our algorithm is further discussed
in the following section.
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Fig. 14. HDR-VDP maps of the probability of detection of differences of the HDR outputs compared to the ground-truth on the BarbequeDay scene of the
Kalantari dataset. Full-resolution versions are shared in supplementary materials.

Fig. 15. Visual comparison of our output with Yan et al. [45] on BarbequeDay scene of the Kalantari dataset.

Fig. 16. Computation time and metric performance plot. Values separated
as rows represent the total computation time in seconds and PSNR-µ values,
respectively.

G. Computational Complexity

In this section, we provide a detailed timing analysis of the
different stages of our algorithm. We note that our current
implementation uses the Pytorch framework for the network
block. In other parts, such as patch processing of the input
images and HDR reconstruction, it uses the vector operations
of the Numpy library, which is implemented on the CPU. The
time taken by each step, whether it is implemented on the CPU
or GPU as well as its description are reported in Table VI.2

To summarize, the cold-start timing of our overall algorithm
in which the network execution happens in the GPU is
0.497 seconds. This includes loading of the model and the
input exposures from the disk and writing of the final HDR
result back to the disk. The timing for the fully CPU-based
version is 2.303 seconds with the primary difference due to
slower network inference on the CPU. The hot-start timing
of our GPU-based algorithm where the model is pre-loaded,
the input exposures are assumed to be picked from the live
video frame flow circulating in the device memory, and the

2The following configuration was used to produce the timings: (i) CPU:
AMD Ryzen 5 5600X, (ii) RAM: 32 GB, (iii) GPU: NVIDIA GeForce
RTX 3070 Ti, (iv) SSD: SAMSUNG 980 PRO 1TB NVMe, (v) OS: Ubuntu
22.04.

TABLE V
UNIFIED DEGHOSTING QUALITY METRIC (UDQM) SCORES FOR THE

KALANTARI DATASET. THE NO DEGHOSTING CONDITION IS INCLUDED
FOR VALIDATION PURPOSES. THE LAST ROW SHOWS THAT OUR MEAN

UDQM SCORE IS THE BEST AMONG THE COMPARED STUDIES

resulting HDR frame is written to the device memory for
further processing takes only 0.204 seconds.

H. Network Ablation

We conduct network ablation studies using the Kalantari
dataset and provide the results in Table VII. All ablation types
except increasing the filter counts of layers are shown to reduce
our metric performance. As increasing the filter count affects
the complexity and inference time of our network negatively,
we choose not to employ more number of filters in our network
even though it improves metric scores by a small margin.
Employment of feature extraction and attention modules in
the pipeline improves our algorithm’s performance, whereas
decreasing and increasing the depth of our U-Net architecture
by one level reduces it. We argue that the former might be due
to the excessive feature compression at the bottom U-Net level,
and the latter due to the insufficient capacity of the network
to learn the task with fewer levels. A similar performance
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TABLE VI
TIMING RESULTS FOR THE VARIOUS STAGES OF OUR ALGORITHM COM-

PUTED AS THE AVERAGE OF ALL TEST IMAGES IN THE KALANTARI
DATASET. DASHES INDICATE THAT THE CORRESPONDING STAGE

IS ONLY IMPLEMENTED ON THE CPU

TABLE VII
METRIC RESULTS OF THE ABLATION STUDIES

reduction is also seen when we reduce the number of filters,
which is arguably related to the decreased network capacity.
Considering all of those ablation experiments and computa-
tional costs, we finalized our network structure as explained
in Section III-D.3.

VI. DISCUSSION & CONCLUSION

In this paper, we proposed a low complexity two-exposure
HDR deghosting algorithm, specifically focused towards
adoption on mobile devices, that has high performance
under diverse and challenging scenarios. We evaluated our
algorithm’s performance independently with Stuttgart, HDR
Photographic Survey, and smartphone datasets. As re-training
existing methods on these datasets would be impractical and
possibly error-prone, we used the Kalantari dataset for litera-
ture comparisons using the authors’ publicly available codes.

We found that the run-time complexity of our algorithm
is significantly lower than that of existing methods without
compromising deghosting quality. According to the UDQM
results, our algorithm yielded the best deghosting performance.
In terms of HDR-VDP and PSNR metrics, our algorithm
is also among the top ones. These results were achieved
at a fraction of the computational cost of these algorithms.
This reduced complexity can be attributed to three factors:
(i) using two exposures instead of the commonly used three,

TABLE VIII
PROCESSED PIXELS PERCENTAGE OF KALANTARI DATASET

(ii) avoiding the processing of the pixels that can be recon-
structed from the high exposure only, and (iii) employing a
simpler network architecture that predicts an aligned low patch
instead of an HDR one.

In Table VIII, we show the percentage of pixels processed
by our algorithm for the Kalantari dataset. It can be seen from
this table that if a high exposure has only a few saturated
regions, we also perform proportionally less processing. The
degree of this processing can be controlled using the param-
eters of our algorithm that were described in Section III-C.
If our algorithm is implemented on a device with a smaller
processing power, one can use less aggressive values for the
saturation (St ) and saturated pixel count (Cs).

As for the complexity of our algorithm, we found it to have
630.739K parameters and a GMAC value of 1.354 for pro-
cessing a pair of 64×64 patches. If we assume that 30% of the
pixels will be processed for a full-HD exposure pair, our total
processing cost would amount to 205.6 GMACs/frame. This
compares very well against a state-of-the-art algorithm [45],
which has a GMAC value of 2916.62 for processing a full-HD
exposure triplet [6]. This reduced complexity of our algorithm
allows it to be used for rapidly creating HDR videos comprised
of more than 1000 frames as in the Stuttgart dataset.

It is worthwhile to emphasize that the use of attention
based structures for HDR image deghosting it not the chief
novelty of our study – many recent deghosting algorithms
use similar attention mechanisms (see Table I). However,
it should be noted that our overall deghosting framework is
distinctly different from the existing studies. In our work,
we show that significant computational advantages can be
gained by not processing well-saturated parts of the reference
image. We also show that seams between processed and non-
processed regions, as well as between two processed regions
can be avoided by making the receptive field of the network
larger than the final output patch size. We also show that an
HDR deghosting algorithm does not need to produce an HDR
image: by only producing the low exposure that is consistent
with the high exposure, we allow any HDR merge algorithm
(classical or learning-based) to be used, providing modularity.
Additionally, to further reduce the computational load, we use
only two exposures instead of the commonly used three and
show that similar results can be obtained with algorithms that
use three exposures. Finally, we devise a synthetic data method
which allows the network to perform well for a new sensor for
which no training data is available. All of these computational
improvements are introduced without compromising quality
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as can be seen in the experimental evaluation section of our
manuscript.

In this work, we focused on using the high exposure as
the reference and reconstructing its saturated details from the
low exposure. While this is desirable from a signal-to-noise
ratio perspective, the mirror scenario in which the low is the
reference may be preferred in some applications, for example
for mitigating the motion blur. We leave the exploration of this
alternative for future work. Another promising research direc-
tion can be to learn to reconstruct dense flow vectors instead
of reconstructing images. Perlin noise-based flow simulation
described in Section IV-B can be used to generate ground-truth
flow vectors for this purpose. Finally, performing deghosting
and HDR reconstruction directly in the Bayer domain may
allow for a greater reduction in computational complexity,
which we plan to address in future work.
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