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Abstract

In this paper, we investigate visual similarity for high dynamic range (HDR) images. We
collect crowdsourcing data through a web-based experimental interface, in which the par-
ticipants are asked to choose one of the two candidate images as being more similar to
the query image. Triplets forming the query-and-candidates sets are obtained by random
sampling from existing HDR data sets. Experimental control factors include choice of tone
mapping operator (TMO), choice of distance metric, and choice of image feature. The image
features that we experiment with are chosen from the features that are commonly used in
the usual low dynamic range setting including features learned via Convolutional Neural
Networks. The set of image features also includes combined features where the combina-
tion coefficients are estimated using logistic regression. We compute correlations between
human judgments and quantitative features to understand how much each feature contributes
to visual similarity. Combined features yield nearly 84% agreement with human judgments
when applied on tone mapped images. Though we observed that using common features
directly on raw or linearly scaled HDR images yield subpar correlation estimates compared
to using them on tone mapped HDR images, we did not observe significant effect due to
the choice of TMO on the estimates. As an application, we propose an improvement to
style-based tone mapping for more correctly imparting desired styles to HDR images with
different characteristics.
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1 Introduction

Assessing visual similarity of images is an important task for various applications includ-
ing image retrieval and indexing [36], classification and clustering [30], image editing and
style transfer [53]. Due to its importance, significant amount of research is dedicated to
measuring image similarity. Because visual similarity is a perceptual phenomenon without
ground truth, several human experiments are conducted as well. All these works, however,
assume that the image is given in standard low dynamic range format where the brightness
information is suitably quantized to match the dynamic range of traditional image display
devices. Yet, growing number of applications utilize High Dynamic Range (HDR) images
with unbounded brightness values. It may be argued that HDR images pose no extra chal-
lenges and approaches designed for LDR images may directly be used to assess visual
similarity of HDR images as well. There are several counter-arguments, however. First,
HDR images contain potentially uncalibrated floating point data and two images that have
vastly different pixel values may actually be very similar to each other. Second, the richness
of information in an HDR image, despite causing difficulties, may aid in similarity assess-
ment. For example, pixel values corresponding to a bright light source can be much higher
than that of a white reflecting surface in an HDR image, while the two objects are likely to
map to similar intensities in an LDR image. Third using a standard similarity measure for
an HDR image requires tone mapping, a problem for which a multitude of algorithms, each
with a number of parameters, exist [76].

Hence, there is a need for investigating visual similarity for HDR images. This need is
the motivation of the present work where we experimentally investigate assessing visual
similarity between two images. To this end, we collect subjective human judgments using
crowdsourcing and evaluate features by comparing them to human judgments. Our data
collection via crowdsourcing is performed in two stages. In the first stage, 100 HDR images
from several HDR image databases are used in a pairwise assessment task. Due to a large
number of combinations, this phase primarily serves as an unbiased exploration of a large
search space. In the second stage, we focus on the already tested images from the first phase
to collect multiple responses for each test case.

Our experimental control factors include choice of tone mapping operator, choice of dis-
tance metric, and choice of image feature. We use commonly used low-level image features
such as color, luminance, and texture histograms; advanced features such as GIST [50];
deeply learned features [66]; and combined features estimated using logistic regression. To
our knowledge our work serves as the first rigorous attempt to evaluate how visual similar-
ity can be assessed between HDR images. Using our findings, we propose a tone mapping
methodology where tone mapping parameters are automatically computed to impart a cer-
tain user-defined style to a given HDR image using the similarity between this image and
several calibration images that are used to create this style.

In the following, we first review the related work on image similarity and HDR imaging
(Section 2). We then introduce our experiments (Section 3) followed by a description of the
relevant features and metrics (Section 4). We then share our results (Section 5) and describe
an application that benefits from our findings (Section 6). Finally, we conclude our paper by
reiterating the key findings, drawing out its limitations, and outlining several future research
directions (Section 7).
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2 Related work
2.1 Image similarity

Traditionally, image similarity is measured by measuring the distance between hand crafted
features extracted from each image. These hand crafted features include simple descriptors
such as color/luminance histograms, or improved ideas, including histogram of oriented
gradients [8], GIST [50], SIFT [37], SURF [3]. These features are compared using several
types of distance metrics. Recently, deep convolutional neural networks (DCNNs) became
the state of art for image classification. Starting with AlexNet [32] and followed by deeper
networks such as VGG [66], GoogLeNet[68], and ResNet [27], DCNNs started to perform
near human level success for image classification. Their success lead to use feature vec-
tors that have been obtained from DCNNSs for image retrieval [21, 73]. Unlike previous
approaches that are based on hand-crafted features, DCNNSs learn the feature vector itself
directly from the image. One major drawback of using DCNNS is the need for using very
large labeled datasets for training, which is difficult to obtain or not available at all for most
problem domains. Transfer learning [77] aims to solve this problem by using pretrained net-
works on large scale datasets such as ImageNet [60]. The basic method is to give the images
to the pre-trained network and use the output of the last fully connected layers as feature
vectors [10, 73] — an approach that we also adopt in our work.

Visual similarity is a perceptual phenomenon without ground-truth data. This makes
collecting data using crowdsourcing experiments valuable. Indeed, there are several
crowdsourcing-based works [30, 38, 62] that address shape or style similarity problems and
conduct user experiments to either derive or validate models. Of most related to our work
are two similarity studies that also employ subjective experiments [48, 58].

In the first study, human participants are asked to judge image similarity using two dif-
ferent experiments: one involving printouts of images (called table scaling) and the other
using a computer based comparison (called computer scaling) [58]. These results are com-
pared with computational similarity approaches [18] and simple CIELAB histograms. It
was found that both table and computer scaling yield similar results and color is a major
factor influencing similarity for human observers. In the second study, user experiments
are conducted to evaluate the relationship between an image-indexing system and per-
ceived similarity in an LDR setting [48]. The tested image indexing system is based on
basic properties of early stages of human vision — chromaticity, luminance, and texture.
Two-alternative forced-choice (2AFC) method is used for all experiments. Three images
are shown to the observer, the query image and two test images. Of these two images one
image is called the target and the other the distractor. These images are selected based on
the rankings obtained from the image-indexing system. Then the correlation between the
users’ preference and index rank is investigated. First, each index, chromaticity, luminance,
and texture are calculated separately. From these indexes chromaticity is found to give the
best results. Then for the second experiment, combinations of the indexes are evaluated.
The combination of chromaticity and texture indices are found to give better results than
chromaticity alone and the combination of all indices are found to give the best result.

As reviewed in this section, although visual image similarity is an extensively studied
subject [36], to our knowledge there is no study that directly addresses this problem for
HDR images.
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2.2 HDRimaging

The need for HDR imaging was realized for the first time in computer graphics to deal
with the requirements of physically accurate lighting simulation systems [20]. Such sys-
tems produced numerically unbounded pixel values, necessitating their storage in HDR file
formats [35]. HDR images have typically been termed as “scene-referred” as opposed to
“display-referred” — a term used for LDR images [56]. However, as display devices have
traditionally been low dynamic range, displaying these images on LDR devices required an
operation known as tone mapping [71, 74]. Numerous tone mapping operators (TMOs) have
been developed in literature ranging from simple contrast adjustments to complex algo-
rithms modeling the human visual system [17] and the properties of display devices [41].
Many methods have also been produced to create photographic HDR images of real-world
scenes [9], including dynamic scenes [29, 64]. Besides computer graphics, HDR imag-
ing has many application areas including studying of fossils [69], cultural heritage and
archaeology [25], structural engineering [23], architecture [6], medical imaging [26, 57],
forensics [5], and automotive industry [75].

While HDR imaging has long been an active field of research, recent developments in
HDR imaging [2, 7, 56], in particular those pertaining to HDR image and video capture [19,
70], display systems [63], and HDR video streaming standards [61] are likely to make HDR
content more ubiquitous in the near future. However, despite the practical improvements
in the field, there is also a need for fundamental and experimental research that explores
various aspects related to HDR imaging and dynamic range. Hanhart et al. investigated the
performance of various objective metrics in quantifying visual distortions of HDR images
commensurate with subjective opinions [24]. The authors found HDR-VDP-2 [43] and
HDR-VQM [46] to be the best predictors of visual quality. In another study, Grimaldi et
al. investigated how image statistics change as a function of dynamic range and found that
there are indeed differences between HDR and LDR images [22]. The authors, also found,
however, that the majority of these differences are accounted for by the early visual pro-
cessing that takes place in the human visual system. However, these works do not consider
the HDR image similarity problem.

Given the lack of visual similarity studies on HDR images, understanding the nature
of image similarity for HDR images and developing an objective similarity measure is the
primary goal of this paper. Secondly, we show how such a metric could be leveraged to
solve an important tone mapping problem, which is how to tone map different HDR images
such that they consistently follow a user-defined style.

3 Experiments
3.1 Experimental design

To measure perceptual similarity between HDR images, we conducted a 2AFC experi-
ment. The experiment is publicly available!. As we needed a large number of responses,
we designed a web-based interface to collect crowdsourcing data. We used the HDRHTML
technique [42] for visualizing HDR images on web browsers. This technique uses a win-
dowing approach to select a desired exposure range from the HDR image, which is indicated

Thttps://user.ceng.metu.edu.tr/~merve/userstudy/
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by a slider set by the user. By dynamically adjusting the position of the slider, the user can
efficiently view the entire exposure range contained within the HDR image. These sliders
are normally overlaid with the image histogram. We removed this overlay to prevent the
image histogram from affecting the observers’ decisions. Figure 1 shows a sample trial from
the experiment. An HDR reference image was shown at the top and two HDR test images
were shown at the bottom. The sliders, which were mandatory to be adjusted, allowed all
images to be inspected at different exposure levels.

In each experimental session, 33 such image triplets were displayed to the observers.
Thus, an experimental session consisted of 33 trials. In each trial, the observers were asked
to choose which of the two test images was visually more similar to the reference image.
Here it is important to note that we did not ask users to decide for a specific type of similarity
such as object, color, etc. By intentionally leaving the definition of visual similarity vague,
we hoped to achieve a range of responses, which in overall, would converge to a common
sense understanding for similarity. All trials, except for the verification ones, were generated
randomly from the dataset during the runtime of the experiment. Three of these triplets
were used for verification. They contained an obviously similar reference and test image
pair to evaluate the reliability of an observer. If an observer failed to provide the correct
answer even for one of these trials, his or her data was discarded as being unreliable. These
trials were distributed evenly across the experiment to ensure that observers were attentive
throughout. Before the experiment began, observers were informed about their task and the
expected duration of the experiment, which was at most 20 minutes at a normal pace. During

Fig. 1 A sample trial from the experiment. The observers were asked to choose the most similar image to
the reference image (top) from the test images (bottom). All images could be examined at different exposure
levels by adjusting their sliders
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the experiment, observers were required to use the exposure sliders for each image before
they made a selection. Image selection was done by clicking on one of the test images. The
selection was indicated using a green border around the selected image. Observers could
change their selection until they pressed the “Next” button. The progress of an observer
was indicated using a small progress bar at the bottom center of the screen. At the end of
the experiment, observers were informed with a final page confirming the conclusion of the
experiment and were presented with unique session ids. They were required to enter this id
to the crowdsourcing platform to verify that they have finished the experiment.

3.2 Dataset

The set of images used in visual similarity experiments should be sufficiently diverse.
Although such datasets exists for LDR images, and several HDR image quality datasets
exist for HDR images [33, 34], there is no specific visual similarity dataset for HDR images.
We therefore decided to select 100 HDR images from various databases to present observers
with a diverse set of images®. The used datasets were: Fairchild’s HDR Photographic Sur-
vey [14], HDR-Eye [47], DEIMOS [31], Empa HDR Image Database [13], and pfstools
HDR Image Gallery [40]. Thumbnails for the used images are shown in Fig. 2.

3.3 Crowdsourcing

In order to reach as many people as possible, the experiment was published at Microwork-
ers crowdsourcing platform>. The number of paid users that participated in the experiment
through this platform was 801. For each completed experiment 0.3$ were paid. Among
these, 165 sessions were discarded due to incorrect responses given to the verification tri-
als. Age, gender, and familiarity with computer graphics/image processing distribution of
the participants are shown in Fig. 3.

After collecting the experimental results, it was found that 18747 unique image triplets
were judged by the observers. This amounts to approximately 11.6% of the total possi-
ble triplets that can be obtained from 100 images, C (100, 3). Experiment sessions were
independent and random for each participant, but it was guaranteed that a single session
consisted of only unique triplets.

This design resulted in a single response for the majority of the triplets. Some triplets
received two responses and only a few received three or more. As such we considered this
first phase of the experiment as a random exploration of all possible comparisons. However,
as judging similarity based on a single response could be too subjective, we extended the
experiment as discussed below to collect multiple responses for each triplet.

3.4 Extension to the experiment

The first phase of the experiment was extended to obtain three evaluations per triplet. Unlike
the first phase where triplets were generated randomly, the second phase solely used the
triplets that had been evaluated before. To achieve this, we sorted the triplets from the
first phase in descending order. If a triplet had more than three responses, we randomly

2We unfortunately discovered after the experiments were conducted that one image was duplicated under
different names. See the images in 2" row-4™ column and 9™ row-3™ column in Fig. 2. In our analysis, we
discarded the few trials in which this image was duplicated.

3www.microworkers.com
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Fig.2 HDR images used in the visual similarity experiments

selected three of them. Triplets with exactly three responses were used as is. These two cases
occurred very rarely. Next, triplets with two responses, and then a single response were
presented randomly to obtain a total of 4890 triplets that had been evaluated three times.
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Fig.3 Age, gender, and computer graphics/image processing familiarity distribution of the participants
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Table 1 HDR Image features and distances

Feature Representation Distance Metric

Color 2D chromaticity histogram Earth Mover’s Distance (EMD)
Luminance 1D (relative) luminance histogram EMD

Texture Histogram of gradients EMD

GIST Feature vector Cosine distance
VGG16/VGG19 - fc6 Fused fc6 layer Cosine distance
VGG16/VGGI9 - fc7 Fused fc7 layer Cosine distance

Among these thrice evaluated triplets, 2170 triplets were judged consistently by all three
observers. The remaining 2820 triplets generated two-to-one responses. Similar to the first
part of the experiment, the second part also contained the same validity checks to eliminate
the responses of inattentive observers.

4 Features & metrics
4.1 Features

In this study, five kinds of features are used to model HDR images: color, luminance,
texture, GIST, and DCNN features. Table 1 lists these features together with their repre-
sentations and the distance metric used for each feature. The following sections outline the
details of these features and the corresponding distance metrics.

4.1.1 Color

Since the early days of the image similarity research, color has been used as one of the most
discriminative cues [48]. In this study, we used the a and b channels of the CIELAB color
space [28] to represent chromaticity information. This is an opponent color space, where
the a channel represents red/green opponent colors and the b channel yellow/blue opponent
colors. We used a 2D chromaticity histogram to represent the distribution of colors in a
given image. Each dimension contained 15 bins for a total of 225 bins. Figure 4 shows this
histogram for the Mason Lake image from the dataset [14].

Fig.4 Sample image (left) and the corresponding 2D ab histogram (right)

@ Springer



Multimedia Tools and Applications

4.1.2 Texture

Texture is the second most used feature for content based image retrieval systems after chro-
matic features. This feature is especially helpful for discriminating images that have similar
color but different spatial characteristics such as blue sky and sea or sand and buildings. To
represent the texture information we used histogram of gradient magnitudes [65].

4.1.3 Luminance

The main difference between an HDR and an LDR image is the much wider range of lumi-
nance distribution for the former. A single HDR image may contain very low luminances
corresponding to highly shadowed regions as well as very high luminances corresponding
to bright highlights. Therefore, we hypothesized that the luminance distribution of an HDR
image may be an important cue for visual similarity. The luminance distribution is modeled
using a 1D (relative) luminance histogram with 50 bins.

4.1.4 GIST descriptor

The GIST descriptor [50] aims to represent the dominant spatial structure of a scene by
using low level multi-scale representations. This descriptor defines the scene as a whole
rather than focusing on individual objects or regions. Discriminative properties of a scene
are listed as naturalness, openness, roughness, expansion, and ruggedness. The class of a
scene, e.g., man-made, natural, indoor, outdoor, etc., is determined by these properties.
The procedure for extracting GIST descriptors consists of applying Gabor filters that
are scaled and oriented differently to the input image, dividing the filter response map into
a grid in order to have spatial information, averaging the filter response in each grid, and
concatenating the results to obtain the final feature vector, i.e. the GIST descriptor.

4.1.5 Deep learning features

Recently, DCNNs have started to dominate object recognition and image classification
tasks, achieving near human success rates [32, 66, 79]. These models are trained with large
prelabeled datasets and develop a hierarchical model that becomes more aware of the con-
tent of the image rather than the underlying pixel values. To our knowledge currently there
is no DCNN model that is trained on HDR images for the purpose of image indexing, scene
classification, or visual similarity tasks. Furthermore, there is no prelabeled large HDR
image dataset to use for training a DCNN model from scratch. Therefore in this study, we
used transfer learning method to employ pretrained DCNNs for our perceptual similarity
problem.

For feature extraction, pretrained AlexNet [32] and two variants of VGG networks,
VGG16 and VGG19, are used [66]. All networks are trained on the ImageNet [60] dataset,
but we also evaluated their performance when trained using different datasets. For transfer
learning, the last fully connected layer, which contains classification outputs, is removed
and the remaining 4096 dimensional two fully connected layers, fc6 and fc7, are used as
feature vectors. As suggested by Simonyan and Zisserman [67], the results obtained from
VGG16 and VGG19 are fused (by taking an average) and it is observed that the fused
version performs better than both VGG16 and VGG19. The distance between the feature
vectors are calculated using cosine distance, which is a commonly used distance metric for
deep learning features.
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4.1.6 Computational analysis

As attentive readers may inquire about the computational complexity of these features, a
brief analysis is provided in this section. The color and luminance features are merely his-
tograms and they can be computed in O (N) time, where N represents the number of image
pixels. The GIST descriptor is based on computing the convolution of 32 Gabor filters at 4
scales and 8 orientations to compute feature maps and then averaging the features to obtain
a 16 element vector per feature map. These vectors are then concatenated to find the final
feature vector. Therefore, the GIST feature also has a linear time computational complexity.
The texture feature represented by HOG is similar to GIST in terms of its operation, albeit
being somewhat simpler, and also has a linear complexity. Finally, the deeply learned fea-
tures are computed by a single forward application of the VGG network, which also involves
several convolutions at multiple scales as well as application of activation functions. As
the convolutional kernel sizes are negligible compared to the image size, the computation
of VGG features also has a linear time computational complexity. In summary, all of the
features can be computed at real-time rates in modern hardware, especially if GPUs are
utilized.

4.2 Dissimilarity measures

The use of a proper distance metric is as important as the features themselves. Each feature
representation may require a different distance metric. In this section, we briefly describe
the definitions and properties of the dissimilarity measures that we used for different types
of features.

4.2.1 Euclidean distance

The Euclidean distance between two histograms p and ¢ is calculated as:

deuc(p, @) = [ Y (pi — )%, e))

where i is the bin index. In general, dissimilarity obtained by Euclidean distance for
histograms is not satisfactory as it does not take bin proximity into account.

4.2.2 Bhattacharyya distance

Bhattacharyya distance [4] measures the overlap between two distributions. If p and ¢ are
two histograms, it can be calculated as:

dphar (P, q) = —In (Z «/Pi-%‘) - 2

For our HDR similarity problem Bhattacharyya distance gives slightly better results than
Euclidean distance. However, it also suffers from the same problem that the proximity of
the bins is not taken into account.
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4.2.3 Earth mover’s distance

Earth Mover’s Distance (EMD) is a dissimilarity metric commonly used for image the
retrieval problems [59]. EMD aims to capture the perceptual similarity between two distri-
butions by calculating the minimal cost of transforming one distribution to the other. Unlike
the other dissimilarity metrics, EMD can be calculated for varying-size partitions of the
data, called signatures. Signatures consist of dominant clusters of the data, represented as
s; = (m;, w;) pairs where m; is the cluster center and wj is the size of the cluster. EMD does
not require the signatures to have the same number of clusters — ground distances between
cluster centers are sufficient. Histograms are signatures with bin centers corresponding to
cluster centers, m;, and normalized bin values to weights, w;.
The total amount of work to transform distribution p to ¢ with flow f is:

m n
WORK(P, Q, F) =Y di fij, 3)
i
where d;; is the ground distance between cluster centers i and j. The optimal flow f that
results with the minimum work, can be found by any linear optimization algorithm. When
f is calculated, the EMD between p and ¢ is defined as:

2> dijfij

2.2 fij
In our problem, bin centers correspond to color values (ab values in the CIELAB space)
and ground distances are calculated as Euclidean because of the perceptual uniformity of
the CIELAB color space.

Figure 5 compares the effect of these three distance metrics for a sample image from the
dataset. The image on the first column is the query image, and in each row, the most similar
five images from the dataset are shown. The distance metric used in first row is Euclidean,
the second row is Bhattacharyya, and the last row is the EMD. It can be argued that more
similar images are found using the EMD metric.

demp(p, q) = 4

Fig. 5 A comparison of dissimilarity metrics for histogram-based features. The leftmost image is the query
image, the most similar five images from the dataset are shown in each row: Euclidean distance (first row),
Bhattacharyya distance (second row), Earth Mover’s distance (third row)
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4.2.4 Cosine distance

Cosine distance between two feature vectors p and g is calculated as:
n
_ Zi:1 Pidqi
n 2 n 2
\/Zi:l D; \/Zi:] q;

Cosine distance is a widely used distance metric for deep representations. In this study, we
used cosine distance for calculating the distances between DCNN feature vectors and GIST
features.

deos(p,q) =1 ©)

5 Analysis & results

Having discussed the details of our crowdsourcing study along with experimented image
features, we now explain how we relate features to human judgments. We first present our
analysis method for assessing the correlation between each feature type and the experiment
results. We then discuss two possible ways to combine the features for developing a more
effective similarity model. In our evaluations, we used HDR images directly, as well as by
linear scaling, and applying several tone mapping operators. For this purpose, we used the
pfstmo software library [40], which provides a reliable implementation of several commonly
used TMOs.

5.1 Raw feature correlations

Assume that ; = R; — A; — B; represents the jth triplet (i.e. trial) with R; being the
reference image, A; the left test image, and B; the right test image. This triplet could have
been evaluated one or more times by different observers. Let n(A;) and n(B;) represent the
number of times that each image was found more similar to R; than the other. From this
information, we created a binary vector to encode the participants’ responses:

P=(x1,...,xN), (6)

where each element is defined as:

1, ifn(A;) > n(B;)
Xp = ) (N
0, otherwise.
For each feature type f, we also computed the feature representations of each image as
f(R)), f(A}), f(B;) and computed their similarity to each other to obtain the following
binary vector:

F=01,.--,IN), (8)

where

&)

0, otherwise.

yi = ll, ifd(f(Ri), f(A)) <d(f(Ri), f(Bi))

In this equation d represents the distance metric that was chosen to be used for feature f.
This encoding gave rise to two binary vectors, P and F', with the former computed from

user responses and the latter from feature similarities. There are many approaches to com-

pute the correlation between two such vectors. We used the Sokal-Michener correlation,
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which is a simple, intuitive, and effective way to correlate two binary vectors [78]. This
correlation is defined as

. Su(P, F) + Soo(P, F)

) 10

N (10)

with S11 and Spo representing the total count of matching ones and zeros respectively:
Su(P,F) =P-F, an
Soo(P, F) =—P - —F, 12)

Note that the correlation coefficient s can take a value in range [0, 1]. In the following, we
multiply this coefficient by 100 to represent the correlations as percentages.

The raw feature correlations with the first (Section 3.3) and the extended experiment
(Section 3.4) are reported in Tables 2 and 3, respectively. In these tables, the leftmost col-
umn indicates the processing type applied to the images before the computation of features.
“HDR-original” represents the unaltered HDR image whereas “HDR-linear” represents its
linearly scaled version. The other processing types all include the application of a cer-
tain tone mapping operator. For all processing types, except the original, the images were
gamma-corrected and scaled to [0, 255] range. However, it should be noted that the compu-
tation of features were performed in spaces that are suitable for feature types. For example,
the luminance feature was computed in a linear color space (we applied degamma operation
to the images). The color feature was computed in the CIELAB space, which is assumed to
be perceptually uniform. VGG features were computed on gamma corrected images, which
is typical as these models are trained on non-linear inputs.

We also conducted ANOVA to determine which features are statistically different from
each other across different tone mapping operators (HDR-original and HDR-linear were
excluded as they generally yielded lower correlations). The results, computed for the

Table 2 Individual feature correlations with the first part of the experiment

Processing Type VGGI16 VGG19 Color Luminance Texture GIST
HDR-original 56.79 58.09 55.10 53.14 52.39 56.82
HDR-linear 63.54 63.31 55.69 54.07 54.36 58.18
Dragoetal. [11] 65.88 65.74 56.73 57.45 51.17 58.23
Mai et al. [39] 65.28 65.13 56.01 56.77 51.90 57.57
Reinhard et al. (local) [55] 65.82 65.63 56.58 54.77 51.43 57.89
Reinhard et al. (global) [55] 65.75 65.52 56.59 54.68 51.39 57.92
Durand & Dorsey [12] 66.17 65.43 55.77 55.12 51.79 57.85
Mantiuk et al. [44] 65.42 65.33 56.29 55.38 52.08 58.03
Reinhard & Devlin [54] 65.28 65.20 57.15 55.89 54.85 58.33
Fattal et al. [15] 65.90 65.72 56.39 57.46 51.92 58.19
Mantiuk et al. [41] 65.71 65.74 55.98 56.99 51.84 57.86
Ferradans et al. [16] 66.02 65.90 55.18 56.51 51.99 58.33
Pattanaik et al. [52] 64.46 64.38 53.04 54.61 53.06 57.84

The numbers indicate the Sokal-Michener correlation scaled by 100 to represent percentages
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Table 3 Individual feature correlations with the second part of the experiment

Processing Type VGG16 VGGI19 Color Luminance Texture GIST
HDR-original 64.88 67.14 60.23 58.39 54.42 63.50
HDR-linear 75.58 76.13 60.78 57.79 57.97 65.71
Drago etal. [11] 80.88 81.80 62.58 62.72 53.87 65.39
Mai et al. [39] 80.00 79.95 61.11 61.66 53.46 64.06
Reinhard et al. (local) [55] 80.92 81.61 62.21 58.16 53.87 64.88
Reinhard et al. (global) [55] 80.92 81.57 62.21 57.97 54.75 64.75
Durand & Dorsey [12] 81.75 81.34 62.07 59.22 53.00 64.19
Mantiuk et al. [44] 80.41 80.65 61.15 59.59 52.49 64.47
Reinhard & Devlin [54] 80.37 80.41 64.15 61.43 60.55 65.44
Fattal et al. [15] 80.51 80.92 62.30 64.24 52.90 65.02
Mantiuk et al. [41] 80.00 80.78 62.12 61.71 54.56 64.19
Ferradans et al. [16] 81.38 82.21 58.39 61.61 55.02 65.25
Pattanaik et al. [52] 78.66 78.11 57.33 58.66 55.71 64.52
Mean 80.53 80.85 61.42 60.63 54.56 64.74

The numbers indicate the Sokal-Michener correlation scaled by 100 to represent percentages. The means are
computed only for the tone mapping operators.

extended experiment, indicated significant differences between the features: F (5, 60) =
533.1, p < 0.001. As a post-hoc test, we conducted Tukey’s honestly significant differ-
ences analysis that includes corrections for multiple comparisons. According to this test, we
found VGG16 and VGG19 in the same significance group. Similarly color and luminance
features were found in the same group as well.

Finally, we conducted Fisher’s exact test [72] to determine which features have signifi-
cantly different correlations with user choices. This test computes a statistical significance
probability from a 2 x 2 contingency matrix which encodes how many responses match and
mismatch with two selected feature types. p values larger than 0.05 are assumed to indi-
cate that the two features are statistically similar. According to this analysis, only the VGG
features were found to correlate similarly with user responses. The p value for the color
and luminance features were 0.03 indicating a statistically significant difference. All other
feature pairs were found to be statistically different with much lower p values. We used
Ferradans et al.’s TMO [16] for this analysis.

5.2 Feature combination

Given the individual correlations reported in the previous tables, a natural question that
follows is if we can combine them to develop a single objective metric that better correlates
with human’s assessment of similarity for HDR images. To this end, we performed two
types of linear regression analysis yielding two related but different models.

5.2.1 Model one

In our first analysis, we aimed to develop a model that predicts which of the two test
images is more similar to the reference image using the pairwise distances between the test
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and reference images. Assuming that j is a feature index, one can compute these pairwise
differences as follows:

a;j = d;(f;(R). f;(A). (13)
bj =d;(f;(R). f;(B)). (14)

Here d; represents the distance metric chosen for the j th feature. The model takes as input
these differences for all features (i.e. j € {l1,2,3,4,5,6}) and computes their weighted
average as its response:

r =co+ ci(a; — by) + c2(az — b2) + c3(az — b3)+
c4(ag — by) + cs(as — bs) + ce(as — be)

To compute the unknown coefficients we used logistic regression as our dependent data (i.e.
user responses) were binary: given one reference and two test images, the user selects either
the left image or the right one, encoded as 1 and 0.

The regression was performed between the two vectors, namely the P vector from (6),
and the model response R comprised of the following elements:

5)

R=(r1,...,rN), (16)
where
ri = lair — bi1 ... aic — bisl. a7
The logistic regression models the logarithm of the odds as the response of the model:
Pr(x=1)
n|l——— ) =r. (18)
1—Prix=1)

From this equation, it can be derived that the probability of a user responding 1 (i.e. selecting
the left image) is equal to

1
I+e "’
If we find Pr(x = 1) > 0.5, we assume that the model has selected the left image.
Otherwise, the model’s response was taken as the right image.

To measure the effectiveness of this model we used 10-fold cross validation. In each fold,
90% of the trials were selected for training and the remaining 10% for testing. This process
was repeated 10 times while ensuring that each test fold is mutually exclusive from each
other. Similar to the analysis of individual features, we assessed the success of this model
against both the original (V1) and the extended experiment (V2). The results are shown in
Table 4. It can be seen that the feature combination, on average, improves the success of
each presentation type by about 3% to 4%. The best three results are obtained by Ferradans
et al.’s [16], Drago et al.’s [11], and Reinhard et al.’s [55] TMO algorithms. The reported
coefficients are computed by using the entire dataset from the second part of the experiment
(V2) due to its higher correlation with the combined features.

Prix=1)=

19)

5.2.2 Model two

Despite the first regression model yielding high correlations exceeding 80% for most algo-
rithms, it has an important drawback. It requires a triplet of images, one reference and two
test, as input to the model. While this matches the presentation type in our experiment, a
more desirable model should be able to take only two images (e.g., a query image and a test
image) and produce a relative similarity score between them. This may allow, for instance,
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Table 4 The correlations of the first regression model with the user responses

Processing Type VI V2 0 cl c2 c3 c4 c5 c6

HDR-original 60.67 70.76 0.0573 0.0768 -3.3241 -0.0028 -0.0124 -0.2921 -10.7505
HDR-linear 64.81 78.83 0.0005 -5.4801 -5.9902 -0.0074 -0.0635 -0.3289 -10.1782
Drago etal. [11] 67.36 83.49 -0.0423 -7.8751 -7.6339 -0.0506 -0.0958 0.0043 -7.3615
Mai et al. [39] 66.70 81.78 0.0085 -5.2932 -7.9526 -0.0601 -0.1078 -0.0358 -4.9275

Reinhard et al. (local) [55] 67.19 83.21 -0.0154 -7.3838 -8.7207 -0.0688 -0.0853 0.0145 -7.8380
Reinhard et al. (global) [55] 67.34 83.16 -0.0230 -7.0932 -8.8856 -0.0687 -0.0783 0.0101 -7.4470

Durand & Dorsey [12] 66.92 83.03 -0.0604 -8.1694 -7.3044 -0.0977 -0.0147 0.0082 -6.8549
Mantiuk et al. [44] 66.64 81.74 0.0220 -6.1999 -8.0462 -0.1081 -0.0286 -0.0102 -10.0494
Reinhard & Devlin [54] 66.72 82.75 -0.0332 -5.6555 -8.8871 -0.1284 -0.0144 -0.0254 -7.9970
Fattal et al. [15] 67.25 82.56 -0.0025 -6.2320 -8.3176 -0.1120 -0.0272 -0.0143 -7.9175
Mantiuk et al. [41] 66.91 82.15 -0.0005 -5.7555 -8.4433 -0.0777 -0.0548 -0.0041 -6.8189
Ferradans et al. [16] 67.21 83.53 0.0226 -5.7782 -9.8899 -0.0801 -0.0432 -0.0060 -7.4090
Pattanaik et al. [52] 65.02 79.89 -0.0365 -7.5194 -5.6052 0.0132 -0.0565 0.0211 -6.1389

V1 and V2 represent the first and extended experiments respectively. The coefficients are reported for the
extended experiment only due to its higher correlation with the user data

ranking the similarity of multiple images with a query image as in image-based search
applications.

In order to allow for this possibility, our second regression model was designed in the
following manner. For each trial, ;, = R; — A; — B;,i € {l,..., N}, we inserted two
elements to our user response vector:

Yy g = 1, ifn(A;) > n(B;) 20)
- 0, otherwise,

X2 = —x2i—1, (2D
yielding a vector of size 2N:
P =(x1,x2, ..., x2n). (22)

As for the model’s inputs each element of the feature vector was computed as

v2i-1 =lay ... agl, (23)
v2i =1Ib1 ... bgl, (24)

yielding
F=(y1,y2,..., Y2N)- (25)

In summary, the elements of the feature vector always followed the A, B order, whereas the
corresponding elements in the user vector were 1 for the selected image and O for the other
image. This second regression model learns to produce the following response given the
feature differences between a reference and test image:

rq = co + cray + coax + czaz + cqaq + csas + cgag (26)
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By converting this response to probability values as in (19), one can compute a relative
degree of similarity between the two images. To validate this model, we computed the
model response twice by using R; — A; and R; — B; image pairs:

Pr(x = left) = 1+¢+—m 27
Pr(x = right) = ; +el,,b (28)

Given a triplet, if we found Pr(x = left) > Pr(x = right) we assumed the model to have
selected the left image. Otherwise, it was assumed that the model selects the right one. The
correlation of this model with the user responses was calculated as in the previous model
yielding the results in Table 5. The best result of the second model was found for Drago
et al’s [11] TMO in the extended experiment. The model achieved a correlation of 83.81%
with the user responses.

6 Application: style-based tone mapping

The existence of numerous tone mapping operators that are available paved the way for
many studies that are conducted for selecting the best one [51]. However, tone mapping
can be conducted for different purposes, and rendering the resulting images to follow a
consistent style can be one of them. For example, in a movie production process, making all
frames consistently tone mapped, regardless of the content of the frames, can be a desired
operation to impart a certain look and feel to the viewers. In this section, we show how an
earlier work by Akyiiz et al. [49] that pursues this goal can be improved with the findings
of the current study.

In Akyiiz et al., a small set of calibration images are first tone mapped by an artist. The
artist uses a modified version of the generic TMO [45], which allows the artist to control the
overall brightness, contrast, saturation, and detail present in the final image. When a new

Table 5 The correlations of the second regression model with the user responses

Processing Type V1 V2 0 cl c2 c3 c4 c5 c6

HDR-original 60.75 70.80 2.9323 -0.1531 -2.8191 -0.0024 -0.0063 -0.2494 -7.1569
HDR-linear 64.65 78.50 5.5623 -3.9224 -3.7111 -0.0149 -0.0048 -0.2164 -5.5490
Drago etal. [11] 67.52 83.81 8.3967 -5.5248 -4.0845 -0.0280 -0.0587 -0.0054 -3.3575
Mai et al. [39] 66.72 81.73 7.4594 -4.0822 -5.0859 -0.0196 -0.0532 -0.0326 -0.9064

Reinhard et al. (local) [55] 67.35 83.53 8.2123 -5.6104 -4.3743 -0.0249 -0.0290 0.0063 -3.6705
Reinhard et al. (global) [55] 67.20 83.16 8.2162 -5.3915 -4.5828 -0.0259 -0.0264 0.0049 -3.6673

Durand & Dorsey [12] 66.81 82.61 8.2396 -5.9298 -4.0539 -0.0560 -0.0081 0.0077 -3.1001
Mantiuk et al. [44] 66.50 82.10 7.6833 -4.3626 -4.8232 -0.0658 -0.0212 -0.0082 -3.4889
Reinhard & Devlin [54] 66.56 82.61 8.5676 -4.6656 -4.9324 -0.0936 -0.0075 -0.0262 -2.8843
Fattal et al. [15] 67.07 82.79 8.0671 -4.4119 -4.8215 -0.0716 -0.0191 -0.0141 -2.8938
Mantiuk et al. [41] 66.57 82.01 7.7805 -3.9872 -5.3899 -0.0228 -0.0319 -0.0084 -2.6625
Ferradans et al. [16] 67.33 83.16 8.5911 -5.0432 -4.9965 -0.0541 -0.0258 -0.0089 -2.3825
Pattanaik et al. [52] 64.94 79.84 6.6735 -5.6657 -3.4601 0.0109 -0.0295 0.0241 -1.8922

V1 and V2 represent the first and extended experiments respectively. The coefficients are reported for the
extended experiment only due to its higher correlation with the user data
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image needs to be tone mapped using a style created in the calibration phase, its similarity
to the calibration images are found and the tone mapping parameters are interpolated:
N 1
2i=1 ganti
_ =ldifp ™
t= 5 ~ ; (29)
i=1 4.8

Here, t; are the tone mapping parameters and fj the feature vector for the calibration image
i. fis the feature vector of the current input image and t its computed tone mapping param-
eters. Finally d is a distance function that measures the similarity between the two features
vectors. In the original work of Akyiiz et al. [49], the feature vector is represented by a 60
dimensional HSV and gradient histogram. The distance metric is the Euclidean distance.
Here we show two modifications of this method that are made possible by the experimental
findings of the current study.

6.1 Versionl|

In the first version, features given in Table 1 are extracted from the selected HDR image
and calibration images. Then, distances between these features are calculated using the cor-
responding distance metrics given in the same table. The weighted average of these feature
distances are calculated using the coefficients obtained from the logistic regression model
(26), with the idea that less important features should also contribute less to the distance.
This operation can be summarized with the following equation:

6
di =" c;d; (. f). (30)
j=1

where ¢; is the coefficient of the j’ h feature, fj is the j th feature of the input image, fij is the
same for the i"" calibration image, and finally d ; is the distance metric for the j’ h feature.
The result d; represents the combined distance between the input image and the correspond-
ing calibration image. These combined distances are calculated between the selected HDR
image and all calibration images. The tone mapping parameters for the selected HDR image
are then interpolated using inverse distance transform as in (29).

6.2 Versionll

While the previous approach calculates a single distance value between images and use this
value to interpolate all tone mapping parameters, Version Il relates model features with tone
mapping parameters and interpolates individual tone mapping parameters with different
weights. To achieve this, we use the relationships defined in Table 6.

For example, the brightness parameter #; is computed by interpolating the #,, parameters
of the calibration images by using the similarity of the luminance features:

ZN 1 t
i=1 diym(Qum, lumy;) ‘i

=" : 31)

i=1 dyym(um,lum;)
Other parameters are interpolated analogously. Because GIST and deep learning features
are not directly linked to a specific appearance phenomenon but are measures of overall
similarity, we did not directly link them to specific tone mapping parameters. Instead we

experimented with merging them using the individually interpolated parameters as follows:

t = wotyp + wity + woty, (32)
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Table 6 Model features used for ]
interpolation of tone mapping Tone mapping parameter Model feature
parameters used in Version II

Brightness (#) Luminance
Contrast (z.) Luminance
Black point (zpp) Luminance
White point (t,,) Luminance
Color saturation (f;) Chromaticity
Small detail strength (t;,) Texture
Medium detail strength (¢, ) Texture
Large detail strength (#3,) Texture

where ty represents individually interpolated TMO parameters, t; TMO parameters inter-
polated as a whole using GIST similarity only, and t; TMO parameters interpolated as a
whole using solely deep learning feature similarity. The weights control the influence of
TMO parameters that are computed by using these different approaches.

6.3 Results

In Figure 6, we compare several results obtained by using the original style based tone
mapping method as well as with the modifications proposed above. In the first row, we show
the results of the “Paul Bunyan” scene from the HDR Photographic Survey [14]. This scene
depicts a bright outdoors environment with colorful foreground objects. It may be noted that
all results are similar but the individual parameter interpolation with equally weighted GIST
and deep learning features (d) has slightly higher contrast (please refer to supplementary
full resolution images for better comparison). The overall colorful style is preserved in all
images. In the second row, we show the “Peppermill” night scene from the same dataset. For
this scene the difference of Version II is more clear as images in (c) and (d) exhibit a darker
rendering, which is more suitable for a night scene. The reason for this darkening effect is
that the #;, parameter for tone mapping becomes more similar to the 7, parameter of the night
image in the calibration set due to the similarity of the luminance features between these

(h)wo=w1=w2=l

(f) Version I 3

(e) Original (g) wo=1, w1 =wz2 =0
Fig. 6 Application of our findings for the style-based tone mapping problem. Original results are shown in
the first column, followed by Version I in the second column and two variants of Version II in the last two

columns
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images. The addition of GIST and deep learning features in (d) yields a slightly brighter
image compared to (c). We encourage the readers to refer to the electronic supplementary
materials for more clear observation of the differences.

7 Summary and discussion

We performed two user experiments followed by statistical analyses to get an in-depth
understanding of image similarity for HDR images. We first collected a large number of
human similarity responses via crowdsourcing, and then evaluated several image features
with respect to the collected data. Evaluation is performed both on individual features and
on their combination. When combining features, two models both of which using logis-
tic regression are considered. Although both models are found to perform comparably, the
second one permits direct one-to-one comparison, making it more suitable for practical
applications. We show one such application, namely style-based tone mapping that benefits
from the experimental findings. Key observations obtained in our work are the following:

1. When properly tone mapped images are used as compared to using either original or
linearly scaled HDR images, higher correlations with human responses are obtained.

2. Most tone mapping operators (TMOs) yield comparable performance.

3. Deeply learned features, in comparison to hand-crafted features, correlate better with
the human responses.

4. Among hand-crafted features, GIST yields the highest correlation, followed by color,
Iuminance, and texture.

5. All of the estimated correlations for the second experiment are higher in comparison to
those for the first experiment.

The first observation highlights the importance of using tone mapped data for HDR
image similarity. While tone mapping is a lossy process, it brings the data to a more
meaningful range for the computation of most features. However, some features are less
dependent on tone mapping. For instance the texture feature represented by the histogram
of oriented gradients is found to produce about the same correlation regardless of whether
HDR or tone mapped data is used. This is followed by the color feature represented by 2D
chromaticity histogram. Among the hand-crafted features the largest difference is observed
for luminance when tone mapped data is used. This can be expected as non-linear lumi-
nance compression often eliminates large gaps in luminance histogram where little useful
information is present.

Perhaps unexpectedly, the second observation suggests that TMOs perform comparably.
Although there exists a large number of TMO evaluation studies, we are not aware of any
work that compares TMOs for the task of HDR image similarity. The lowest performing
operator is found to be Pattanaik et al.’s [52] algorithm. It is, however, known that this algo-
rithm highly depends on calibrated input data and viewing conditions as it tries to accurately
model the human visual system.

As for the third observation, it is not surprising to find that features obtained from a
DCNN [66] trained over a large image dataset [60] outperform simple hand-crafted fea-
tures. Similar findings are reported by image retrieval studies conducted for low dynamic
images [21, 73]. For HDR images, our findings indicate that deep features are mostly use-
ful if the images are tone mapped to the 8-bit per color channel domain first. This is also
expected as the training data of DCNNSs are comprised of such images.
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The fourth observation indicates that the GIST descriptor surpasses the texture, lumi-
nance, and color features for HDR image similarity. In addition to outperforming them, in
fact, it performs surprisingly consistently across different processing types. Despite having
a smaller correlation with the user data than the deep features, it exhibits less variability
overall. This may be a desirable property as it appears to be minimally affected by how an
HDR image is processed.

Pertaining to our last observation, it can be argued that seeking multiple consistent
responses by the participants are important; not only for developing a more reliable model
but also for assessing the correlation of different features with user responses. For instance,
inspection of Tables 2 and 3 reveals that while deep features correlate better with the user
responses, this difference is clearly magnified for the second experiment. In other words,
as the experimental findings become more reliable the merits and drawbacks of different
features become more noticeable.

Our work also has certain limitations and drawbacks. Firstly, we relied on crowdsourc-
ing, which was necessary to reach a wider audience but made it impossible to control the
viewing conditions of the participants. Different results could have been obtained if the
experiments were done in a laboratory environment with controlled display and lighting
conditions. Secondly, the participants compared the HDR images on standard monitors and
used sliders to visualize different image regions. Again, different results could have been
obtained if participants viewed the images on an HDR display. Finally, we intentionally did
not define the meaning of similarity and left this to the interpretation of the participants. To
reduce this uncertainty, future studies may explicitly define what is meant by similarity such
as object similarity, color similarity, indoor-outdoor similarity, time-of-day similarity, etc.

We believe that our work simply scratches the surface of the HDR image similarity
problem. The proposed models can be extended with different types of features. Further
experiments which consider ranking and rating tasks as well as pairwise comparisons can
be conducted. Evaluations may include DCNNs that are either fine-tuned or trained with
HDR data from the ground up. Given the large number of image quality datasets and sub-
jective evaluations in the form of mean opinions scores (MOS), whether image quality and
similarity correlate with each other in the context of HDR imaging can be investigated.
Image saliency can also be taken into account for similarity judgments as it was found to
improve performance in some other domains [1]. Perhaps most importantly, the effect of
calibrated HDR images for image similarity and retrieval tasks can be studied. As objects
are represented with their true luminances in calibrated data, this may simplify similarity
assessment between the images. Finally, with emerging standards for HDR video streaming
such as HDR10+ and Dolby Vision, we envision the HDR video similarity problem to gain
importance in near future.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/s11042-021-11182-7.
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