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Abstract

A common method to create high dynamic range (HDR) images is to combine several different exposures of the same scene. In this
approach, the use of higher ISO settings will reduce exposure times, and thereby the total capture time. This is advantageous in certain
environments where it may help minimize ghosting artifacts. However, exposures taken at high sensitivity settings tend to be noisy, which
is further amplified by the HDR creation algorithm. We present a robust and efficient technique to significantly reduce noise in an HDR
image even when its constituent exposures are taken at very high ISO settings. The method does not introduce blur or other artifacts, and
leverages the wealth of information available in a sequence of aligned exposures.
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1. Introduction

High dynamic range imaging allows the capture of faith-
ful representations of real world scenes. Therefore it is rap-
idly becoming more widely used in film, photography, and
computer graphics. A common technique to create HDR
images is to merge multiple low dynamic range (LDR)
frames, each taken with a different exposure time [1-3]. Dig-
ital cameras that allow the user to change the exposure time
per frame are suitable for this purpose. However, a weakness
of current digital cameras is that they tend to be noisy under
low light conditions or high sensitivity settings. The process
of HDR creation will amplify noise present in the shorter
exposures, which may render the result unusable.

In this paper, we present a method to effectively reduce
the noise in an HDR image by processing its constituent
frames. The resultant HDR image will have a significantly
higher signal-to-noise ratio as shown in Fig. 1. The ability
to remove noise allows photographers to capture at higher
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speeds (i.e. higher ISO settings) thus mitigating the inher-
ent limitations of the multiple exposure technique such as
the occurrence of ghosting.! It would also allow HDR vid-
eos to be captured at higher frame rates [4].

We first briefly review noise and its characteristics in
Section 2, and explain the HDR assembly process in Sec-
tion 3. We present our novel HDR noise reduction algo-
rithm in Section 4. Results are given in Section 5,
followed by a comparison with the current state-of-the-
art in Section 6. Conclusions are drawn in Section 7.

2. Sources of noise

Noise can be defined as undesired random degradations
in images which may occur during capture, transmission,
and processing. There are three primary sources of noise
in digital cameras, namely photon shot noise, dark current
noise, and read noise. Photons arrive at random intervals

! Doubling the ISO value requires halving the exposure time to record
the same image. Thus, a camera can capture the same scene 128 times
faster at ISO 6400 than at ISO 50. This gain could be crucial in eliminating
ghosting artifacts.
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Fig. 1. A standard multiple exposure technique was applied to create the left image, whereas the right image shows a result obtained with techniques

described in this paper.

at any detector, and impose a hard limit on the noise per-
formance of digital cameras. The time between arrival of
photons may be modeled with Poisson statistics. Thus,
the uncertainty of the number of photons collected over a
given period of time is linear in the square root of the signal
amplitude. This type of noise is called photon shot noise,
and cannot be reduced via better camera design.

Dark current noise, which is also governed by a Poisson
distribution, is caused by the statistical variation of the
number of thermally generated electrons due to the heating
of the camera sensors. It may be reduced by cooling the
sensors. Other types of noise that may occur during the
amplification and quantization of signals are collectively
referred to as read noise, which may be minimized by care-
ful design of camera circuitry.

Noise removal methods are usually classified as linear
and non-linear methods. Linear methods, such as Gaussian
or (weighted) mean filters, are based on blurring the image
and thus trade noise for visible artifacts [5].

Non-linear methods preserve the details of the image
better although artifacts may still occur. These methods
include order statistic filters, such as the median filter [6],
morphological filters [7], the bilateral filter [8], anisotropic
diffusion based techniques [9], and wavelet based noise
reduction techniques [10].

If multiple images of the same scene are available, then
these may be “frame averaged” [5]. Frame averaging is a
blur free method if the frames are registered and there is
no object movement in the captured scene. These require-
ments may make frame averaging difficult to apply in stan-
dard image processing, so linear or non-linear methods
that require only one photograph of the captured scene
may be preferred. However these requirements should
already be met to create an HDR image, thus making
frame averaging a sensible choice to be used in HDR
imagery. In this paper, we show how to adapt frame aver-
aging to remove noise before it amplifies during HDR
creation.

As standard frame averaging techniques are not applica-
ble when the exposure is varied between frames, the key
contribution of our paper is to show how frame averaging
can be extended for use with multiple exposure techniques.

3. High dynamic range image creation

Dependent on the scene, a digital photograph may have
image areas that are over- and under-exposed, as well as
properly exposed areas. If we make the exposure time
longer, previously under-exposed regions may become
properly exposed. Similarly, by making the exposure time
shorter, previously over-exposed regions may become well
exposed. Thus, with a sequence of differently exposed
images of the same scene, all image areas are properly
exposed in at least one image. We can create a high
dynamic range image by combining these exposures,
thereby exploiting the fact that each image area is well
exposed in one exposure or the other.

To create an HDR image one would ideally bring the
low dynamic range images into the same domain by divid-
ing each image with its exposure time (i.e. normalization)
and then summing the corresponding pixels of normalized
images. These steps, however, cannot be directly performed
because most cameras apply non-linear processing to the
incident light as it passes through camera circuitry. The
net effect of this non-linear processing is called the camera
response and it should be inverted before creating an HDR
image.

The non-linearity of a camera can be inverted if its
response function is known. Response functions are usu-
ally proprietary and not disclosed by camera manufactur-
ers. However, in recent years algorithms were developed
to recover the response function of a camera by using only
a set of images of the same scene taken with different expo-
sure times. [1-3,11]. Once the response function is recov-
ered from an image sequence, it can be used to linearize
other images taken with the same camera.

After linearization, corresponding pixels from the image
sequence are summed up to compute final irradiances.
However in each exposure some pixels will be under or
over-exposed, which contain no useful information. There-
fore these pixels should be excluded from the summation.
Also not all the pixels are equally reliable due to the non-
linear processing of cameras. These issues can be addressed
by applying a weight function to the pixels in each individ-
val frame during the summation.



368 A.O. Akyiiz, E. Reinhard | J. Vis. Commun. Image R. 18 (2007) 366-376

Fig. 2. The left image is created by using pixel values as input to the broad hat function. For the right image, the luminance of each pixel is used instead,
which prevents the green color cast and reduces noise. Both of these images have relatively low noise compared to the left image in Fig. 1 since they are
created from exposures captured at the lowest ISO setting of the camera whereas the image in Fig. 1 was created from exposures captured at the highest
ISO setting (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Several methods have been proposed to select a proper
weight function. Mann and Picard [1] and Robertson
et al. [11] propose to use the derivative of the camera
response function as their weighting function by arguing
that the reliability of pixel values is correlated with the
camera’s sensitivity to light changes.

Debevec and Malik [2] use a simple hat shaped function
by assuming that the pixels that are in the middle of the
range are more reliable. Mitsunaga and Nayar [3] multiply
Mann and Picard’s weighting function by the linearized
camera output since signal-to-noise ratio (SNR) increases
with signal intensity. Ward suggests to multiply Mitsunaga
and Nayar’s weighting function with a broad hat filter to
exclude dubious pixels near extremes [12].

Although the weighting function proposed by Ward
eliminates unreliable pixels near extremes it is vulnerable
to fluctuations in pixel values. For instance it is not
uncommon to have a pixel attain a value of 255 in a
shorter exposure and drop to 254 or 253 in a longer expo-
sure. Moreover this fluctuation may happen in each color
channel independently causing a color cast in the final
HDR image. For this reason we suggest to use the lumi-
nance of the pixel as the input to the broad hat function.
In Fig. 2 we compare the results in case of using these two
weighting functions. The weighting functions discussed
above are given in Table 1 and plotted in Fig. 3.

All the methods described above alter the weighting func-
tion to find a good compromise between the noisy, under-/
over-exposed, and usable pixels. A different approach is sug-
gested by Grossberg and Nayar based on computing the
optimum exposures before starting the capture process
[13]. To this end, the authors minimize an objective function
which includes a separate term to account for camera noise.
Therefore, in a sense, the authors suggest a recipe to exclude
noisy exposures upfront, albeit at the cost of solving a
potentially lengthy optimization problem.?

2 The broad hat function used in this book is given by 1 — (s — 2.

3 To minimize this cost, the authors derive exposure tables which could
be embedded into the camera firmware.

Table 1
Several weighting functions used in HDR image generation
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Fig. 3. Several weighting functions used in HDR creation. Debevec and
Malik’s (DM) function is independent of the camera response whereas
Mitsunaga and Nayar’s (MN), and (MN) times broad hat function are
derived from the camera response. These weighting functions are derived
from the red channel response of a Nikon D2H camera.

Having computed the camera response f and the weight
function w, the final (scaled) irradiance value® I, of pixel p

4 We call this quantity scaled irradiance because for absolute irradiances
the camera should be calibrated in SI units.
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Fig. 4. The top row shows a selection of exposures used to create the left image in Fig. 1. The bottom row shows the corrected versions of these images

with our technique, which yielded the right image in Fig. 1.

is then computed as a weighted average of the correspond-
ing pixel values in its N constituent frames

[P:Z:vlf (P W(P /Zal (Pa) (1)

where f~! is the inverse camera response, p, is the value of
pixel p in image a and ¢, is the exposure time of image a.
For color images the red, the green, and the blue compo-
nents of a pixel should be linearized by using their respec-
tive response curves.

This HDR assembly process may produce noisy images
if the exposures used to create an HDR image are noisy
(see Fig. 4). Although a weighted average is applied to
the pixels during HDR assembly, in many cases this is
not sufficient and the output images are rendered unusable
(Figs. 1, 13, and 14).

At low light conditions (including standard room light-
ing) and high sensitivity settings, short exposures are more
vulnerable to fluctuations in the number of photons that
impinge on the camera sensors than long exposures. Thus,
their signal-to-noise ratio is lower. During HDR assembly
when a short exposure is divided by its exposure time its
noise gets amplified. For instance, if the darkest frame is
captured in 1/8000th of a second, division by the exposure
time amplifies its noise 8000 times.

Combining such a noisy frame with longer (less noisy)
exposures will result in noise in the final HDR. This is
not sufficiently mitigated by the noise averaging that natu-
rally occurs by combining exposures.

On the other hand, removing such exposures from con-
sideration would result in a less noisy HDR image. How-
ever, such short exposures tend to carry useful
information in a small number of pixels, usually depicting
highlights or light sources. Ignoring these exposures will
therefore reduce the overall dynamic range, and result in
a loss of detail in highlights and light sources. To reduce

noise while maintaining a high dynamic range, we outline
our noise removal algorithm in the following section.

4. Algorithm

We preprocess the constituent frames of an HDR image
prior to HDR assembly to reduce noise and prevent it from
being further amplified.

To correct a noisy frame, we first order the frames by
exposure time and linearize all the frames using the inverse
response function /~'. We then bring each frame into the
same domain by dividing by its exposure time ¢;. Each
frame is then corrected by applying a weighted average
to it and several successive longer exposures in the same
sequence. Finally each frame is converted back to its origi-
nal domain by multiplying it with its exposure time and un-
linearizing using the response function f'so that the output
of our algorithm can be used in the subsequent HDR cre-
ation algorithm without any modifications. This yields the
following equations:

Y j=a
g(pjva) - {’L’(pv)Vj, j?éa (2)
= Y 5 o)
P, = f(taca) (4)

where g is a weighting function explained below and s is
the number of subsequent exposures used during averag-
ing; which we call the cluster size. For instance, if s is 4,
the first frame is averaged with the second, the third, and
the fourth frames. The second frame is averaged with the
third, the fourth, and the fifth frames and so on. This
process is depicted in Fig. 5 and a formal analysis is gi-
ven in Appendix A.
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Cluster 1

Cluster 2

Fig. 5. Cluster separation in the case of using 4 frames per cluster. The
first frame is updated with the average of the first cluster, the second frame
is updated with the average of the second cluster and so on.

The function g, shown in Fig. 6, is the product of the
weights v given to each exposure and another function t
used to exclude over-exposed and unreliable pixels from
averaging. We first explain how 7 is designed and then pro-
ceed with setting the weights v and the cluster size s.

In digital images fluctuations may occur for pixels close
to the extremes due to noise and compression artifacts.
Such fluctuations may have a negative effect on our algo-
rithm mainly because they will be emphasized by the
weights v used during averaging. In addition, averaging
with over-exposed pixels may cause a loss in the dynamic
range giving a ‘“‘washed out” appearance to the final
HDR image. To avoid such scenarios we design t such
that pixels larger than 249 are excluded from the averag-
ing. The averaging amount is smoothly increased for pix-
els between 249 and 200 using Hermite interpolation. All
the pixels smaller that 200 are fully averaged. In principle
these constants can be made user parameters. They serve
as a gauge between the amount of noise reduction desired
and how acceptable it is to use over-exposed and uncer-
tain pixels in averaging. Hence, 7 is defined by the follow-
ing equation and its influence on the final weight is shown
in Fig. 6.
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Fig. 6. Our weighting function g for noise reduction. Note that g depends
on both exposure time and pixel value: we give more weight to pixels
captured with longer exposure times, but at the same time prevent
averaging with over-exposed (i.e. unreliable) pixels. The pixel values and
exposure times are normalized.

250 — x

hx) =1 - (5)
1 0 < x <200

1(x) = 1= 3h(x)* +2h(x)> 200 < x < 250 (6)
0 250 < x < 255

When averaging within a cluster, it is possible that some
pixels will be larger than 249 in all the images in the cluster.
If 7 is applied to all the images in that cluster, those pixels
will be black in the final rendering. To address this problem
7 is applied to all the images other than the image being
corrected. For example, if we are correcting the 1st image
using the 2nd and the 3rd images (i.e. the cluster size is
3), = prevents leaking of over-exposed and unreliable pixels
from the 2nd and the 3rd images to the 1st image. This con-
dition is encoded in Eq. (2).

4.1. Weights and the cluster size

v; is the weight given to exposure j during the averaging.
To set v appropriately, we should consider the effect of the
exposure time on noise, which is the only varying factor
across exposures.

Theoretically, a change in the exposure time may have
both negative and positive effects on the amount of noise
in a photograph. For instance, dark current noise which
is due to heating of camera sensors is expected to occur
more in longer exposures than for shorter ones. In contrast,
photon shot noise which is due to randomness in the
behavior of photons tends to occur more in shorter expo-
sures than longer ones.

We analyzed numerous exposure sequences and
observed that short exposures have smaller signal-to-noise
ratio than long exposures; which indicates that in our
image sequences photon shot noise is more dominant than
dark current noise. This may be due to using the cameras at
high ISO values. At high ISO values fluctuations in pixel
values are further emphasized while shorter capture times
mitigate heating problems. The image sequence in Fig. 4
is in accord with this observation; the shorter exposures
have a smaller SNR than longer ones.

Photon shot noise is modeled by the Poisson distribu-
tion for which the mean is equal to the variance. Assume
that an area of the image receives N photons per unit time.
Then a frame with a unit exposure will catch N photons on
average with a variance of also N. The second frame
exposed for 7 units of time (where ¢ > 1) will catch ¢N pho-
tons on the average with a variance of zN. Dividing by the
exposure time, the expected value of photons in the second
image will be tN/t = N. However, its variance will be tN/
> = N/t [5]. Thus the frame exposed ¢ times longer will
have ¢ times less variance. We exploit this fact by setting
the weighting coefficients equal to the exposure times,
Vj = tj.

Instead of using all of the lighter exposures to correct a
noise frame, we separate the frames into clusters of size s
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and average each cluster separately. Using bigger cluster
sizes provides better noise reduction. However, after a cer-
tain cluster size using more images does not give better
noise reduction due to thresholding with t, and may unnec-
essarily increase the duration of averaging. For the same
reason bigger clusters do not cause any artifacts (such as
decreasing the dynamic range, banding or haloing). For
example, the noise of the image in Fig. 1 is reduced by
using a cluster size of 6 (out of 16 frames). Using a bigger
cluster size for this image produces the same result. Smaller
cluster sizes produce noisier images as shown in the follow-
ing section.

Eq. (2) is repeated for all the pixels in each exposure and
all the exposures that will be used in HDR creation. The
only exceptions to this rule are the exposures at the light
end of the sequence. The cluster size is automatically
decreased to fit to the number of remaining frames. For
instance, if we are correcting for the 14th image of a 16
image sequence, only the last 3 images are used for averag-
ing even if the cluster size is bigger. Averaging with fewer
images at the end of the sequence theoretically affects noise
reduction for those images. However, in practice it does
not compromise noise reduction since noise is mostly due
to short exposures.

Once all the frames are corrected, the resulting frames
can be used to create an HDR image. However some of
the operations in HDR generation, such as linearization
and division by exposure time, can be eliminated since
these are already performed during noise reduction. Conse-
quently the following equations may be used for noise
removal and HDR creation, respectively.

) = ;H—:f ([7 g(p,, /Za+s (p], (7)
lﬁzza tca Ca/z

Note that the weighting function w used during HDR
generation is the one defined in Table 1. Its two param-
eters are the pixel value and the luminance of the pixel,
respectively.

f(taca)s Le,) (8)

5. Results

We conducted our experiments using two different cam-
eras. The first camera, a Minolta DIMAGE Al, is a pro-
sumer camera which allows to change the shutter speed,
aperture size, and ISO settings separately. The second is
a professional Nikon D2H which allows its ISO value to
be increased up to 6400, which is eight times more than
the maximum sensitivity of the Minolta DIMAGE Al.
We used a tripod to minimize camera movement during
image capture. The response functions of both cameras
(Figs. 7 and 8) are created from the image sequence shown
in Fig. 10 by using Mitsunaga and Nayar’s algorithm [3].
Note that these response functions are recovered only once
for each camera and are used for the other images taken
with the same camera.
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Fig. 7. Response curves of the Minolta DIMAGE Al camera created by
Mitsunaga and Nayar’s algorithm from the image sequence shown in
Fig. 10.
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Fig. 8. Response curves of the Nikon D2H camera created by Mitsunaga
and Nayar’s algorithm from the image sequence shown in Fig. 10.

We compare the response curves of our cameras with a
linear response and the sSRGB gamma curve in Fig. 9. As
seen from the figure, response curves of both cameras devi-
ate from the standard sSRGB curve. However, the response
curve of the professional Nikon camera is closer to the
sRGB curve.

The image in Fig. 1 is created from 16 exposures using the
Minolta camera with an ISO setting of 800. As expected the
resultant HDR image on the left is more noisy than any of its
constituent frames. The right image in the same figure is cor-
rected with our algorithm with a cluster size of s = 6 frames.
To display the HDR images we reduced the dynamic range
of both with the photographic tone reproduction operator
using identical parameters [14]. Note that the right image
is essentially noise free and it also has a significantly higher
dynamic range than the left image.
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Fig. 9. Green channel response curves of the Minolta and the Nikon
cameras in comparison with a linear and the sRGB response curve (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).

Since noise mainly occurs in the darker exposures, one
might consider excluding some of the frames from the dark
end of the image sequence. However, as Figs. 11 and 12
demonstrate, excluding frames from the dark end of the
sequence causes a severe loss of dynamic range and the
noise reduction achieved is substantially less than the
reduction achieved by our method. For instance as the
close-up views shown in Fig. 11, excluding frames does
not reduce noise as effectively as our algorithm does and
it causes loss of details in the highlights.

In addition to being visually distracting, noise may also
cause tone reproduction operators to yield unexpected
results. For instance, the average luminance of HDR
images might be affected, and this may result in an over
or under compression of the irradiance values. Fig. 13
shows this effect on three different tone reproduction oper-
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ators. The top left image is tone mapped with the Tumblin
and Rushmeier operator [15] without noise reduction. The
bottom left image is tone mapped with the same operator
and the same parameters after reducing the noise with
our algorithm. The reduction of the noise prevents over
compression of the radiance values. The images in the mid-
dle are tone mapped using a Bilateral filter [16] which pro-
duces a brighter scene for the noisy image than for the
corrected image. The right most images are tone mapped
with the photographic tone reproduction operator [14],
which produces a similar overall appearance for both the
noisy image in the top right corner and the corrected image
below it.

The images at the top row in Fig. 14 are created from 20
frames captured by the Minolta camera at an ISO value of
800. The top right image is corrected with our algorithm by
using a cluster size of 6 images. At the bottom row of the
same figure images of a bull statue are created from 9
frames captured by the Nikon camera at an ISO value of
6400. Due to the quality of the camera and better lighting
conditions this image is considerably less noisy than the
previous one. However, as the close-up shows it still con-
tains a fair amount of noise, which is successfully reduced
by averaging with a cluster size of 5 frames.

Our algorithm does not degrade an HDR image if we
run it on an initially noise free sequence (a formal reason-
ing is given in Appendix A). Fig. 15 demonstrates two
images created from a noise free sequence of 9 images cap-
tured by the Nikon camera at ISO value 200. The left
image is created without application of our algorithm
and the right image is created after applying our algorithm
with a cluster size of 5. Both images are tone mapped with
the photographic tone mapping operator.

6. Comparison

Robertson et al. [11] proposed an algorithm for both
recovering the response curve of a camera and creating

Fig. 10. Image sequence used to create the response curve of the Minolta camera. The same scene is captured also with the Nikon camera to recover its
response. The sequence is captured by using a tripod to minimize alignment problems. The exposure times from darkest to lightest exposure vary from

6o to 3 s, with doubling at each exposure.
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Fig. 11. Comparison of our algorithm with excluding frames from the dark end of an image sequence. Our results are shown in the first two rows. The
cluster size from left to right and top to bottom is 2, 3, 4, 5, and 6. The last image of the second row shows a close-up view of the marked regions. For the
last two rows, results in case of excluding 2, 3, 4, 5, and 6 images from the dark end of the sequence are shown. The dynamic ranges of all the images are
reduced with the photographic tone reproduction operator [14]. The graph in Fig. 12 depicts the change in the dynamic range for each approach.

HDR images with reduced noise. To our knowledge Rob-
ertson et al.’s algorithm is the current state-of-the-art for
noise reduction in HDR imagery. In this section, we briefly
explain this algorithm, and discuss its differences from our
algorithm.

For HDR creation, Robertson et al. propose to weigh
pixels coming from longer exposures more than pixels from
shorter ones since longer exposures have a higher signal-to-
noise ratio. The authors define HDR assembly as follows:

=Y e 50 win )
=3 T e )Y wip)E (10)

Thus each pixel is weighted with the squared exposure time
of its image.

Robertson et al. also propose a new method to recover
the camera response for use in the previous equation. To
recover the camera response they minimize the following
objective function O:

0= Zi,jw(pii)(f_l(sz) —ul;)? (11)
o (x — 127.5)
w(x) = exp <_4W> (12)

where 7 and j are indices over images and pixels, respec-
tively, and w is a Gaussian shaped weight function which
is used only during the recovery of the camera response.
Once the camera response is recovered a cubic spline is fit-
ted to it and the derivative of the spline is used as the
weight function for HDR recovery (in Eq. (10)).

The cubic spline is generated such that its derivative is 0
at both ends of the pixel range. This feature is important in
Robertson’s algorithm, because the derivative, which is
later used as a weight function, then tends to zero at either
end of the scale. Giving zero weight to under- and over-
exposed pixels is necessary to obtain correct results.

However with this approach the camera response is
forced to have an S-shape even though the actual shape
of the camera response may be different. In fact most
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Fig. 11 in the case of applying our algorithm and excluding frames from
the dark end of the sequence.

cameras do not have an S-shaped response function [17].
The mean response of a collection of 201 different film, dig-
ital, and video cameras is shown in Fig. 16, together with
the sSRGB gamma curve and the response curves of the
Minolta camera created by Robertson et al.’s and Mitsuna-
ga and Nayar’s algorithms. We see that Mitsunaga and
Nayar’s response curve is qualitatively similar to the aver-
age response curve. However, Robertson’s algorithm yields
a response curve that is fundamentally different from the
actual response of the camera.

In Fig. 17, we present a side-by-side comparison of our
best result with the best result we obtained with Robertson
et al.’s algorithm. Note that our algorithm preserves the
highlight on the mug correctly and does not cause banding
artifacts.

7. Conclusions

In this paper, we outline an efficient, effective, and sim-
ple noise reduction technique for high dynamic range

Fig. 13. Effect of noise on different tone mapping operators. The images on the top row are tone mapped without application of our algorithm. The images
on the bottom row are corrected with our algorithm prior to the tone mapping. For both rows, the operators used for tone mapping from left to right are
Tumblin and Rushmeier operator [15], the bilateral filter [16], and the photographic tone mapping operator [14], respectively. The constituent frames of

this HDR image are captured with Nikon D2H with an ISO setting of 6400.
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Fig. 14. The images on the first and the second rows are created from the
exposures taken by Minolta DIMAGE Al, and Nikon D2H, respectively.
The images on the right are corrected with our algorithm. The close-ups
show the amount of noise reduction achieved in both of the HDR images.
The HDR images are tone mapped with the photographic tone
reproduction operator [14].

images. Our algorithm requires only the response curve of
the camera to be known or recovered from an image
sequence. Response curves may be recovered with any
existing recovery algorithm.

Using our technique photographers can increase the
camera sensitivity without introducing noise problems,
thus capturing the same dynamic range in a shorter amount
of time. This especially holds true if auto-bracketing is
used. Modern high-end digital cameras are able to take
seven (Canon) or nine (Nikon) auto-bracketed exposures,
each spaced 1 EV apart. Data acquisition is therefore

09f Mean response curve - - -
sRGB gamma curve -
0.8 Robertson’s response curve ——
o7t Mitsunaga’s response curve - -=-

Normalized brightness

0 1 1
0.001 0.01 0.1 1
Normalized irradiance

Fig. 16. The mean response of the 201 cameras created by Grossberg et al.
[17], the SRGB gamma curve, and the response curve of the Minolta
camera created by Robertson et al.’s algorithm.

directly related to the choice of exposure time. Shorter
exposure times can be achieved by increasing the ISO set-
ting on the camera. This normally yields noisier images,
which may be corrected with our algorithm. The advantage
of this approach is that important problems such as ghost-
ing and motion blur occur to a significantly lesser extent.

We believe that high dynamic range video applications
may also benefit from this work. By increasing the sensitiv-
ity of the video camera higher frame rates may be achieved.
The noise can then be removed by using our algorithm as a
post process on the recorded frames.

Appendix A

Here, we provide a more formal analysis of our noise
reduction algorithm. Assume that an image region has irra-
diance 1. In each image capture j, the camera records the
irradiance together with an additive noise term 7, associ-
ated with the capture process. If the photon shot noise is
dominant, its variance decreases with increasing capture
time, thus n; ~ 0;/t; where o; denotes the variance for unit

Fig. 15. Application of our algorithm to an originally noise free sequence. The left image is created without applying our algorithm and the right image is
created after applying our algorithm. Note that the application of our algorithm to a noise free sequence does not cause any side effects.
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Fig. 17. Both HDR images are created from the sequence shown in Fig. 4; whereas the left image is created by using the algorithm described in Robertson
et al. [11]. The right image is created by using our algorithm. We used photographic tone reproduction to display both images [14].

time. Therefore, the irradiance recorded in exposure j is
equal to:

Iy = (I+0;/t))t; (13)

In our algorithm, we first normalize these terms by the
exposure time and then calculate their weighted average,

]/_:Z(I_Fo—j/tj)w (14)
J S w

where the weight term is shown by w for brevity. We can
rearrange the above equation as

) > (o;/t))w
I =14+ 15
Setting w = ¢; as we do in our algorithm we obtain
AL 16
(AT (16)

which approaches to I as ¢; goes to infinity. Although in
practice we cannot use infinite exposure times, this analysis
shows that the processed irradiance approximates the true
irradiance as the number of averaged images grows. Fur-
thermore it also demonstrates that, if applied on an origi-
nally noise free sequence (i.e. o;=0), the process does
not introduce any side effects.
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