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a b s t r a c t

The radiometric response of a camera governs the relationship between the incident light on the camera
sensor and the output pixel values that are produced. This relationship, which is typically unknown and
nonlinear, needs to be estimated for applications that require accurate measurement of scene radiance.
Until now, various camera response recovery algorithms have been proposed each with different merits
and drawbacks. However, an evaluation study that compares these algorithms has not been presented. In
this work, we aim to fill this gap by conducting a rigorous experiment that evaluates the selected
algorithms with respect to three metrics: consistency, accuracy, and robustness. In particular, we seek the
answer of the following four questions: (1) Which camera response recovery algorithm gives the most
accurate results? (2) Which algorithm produces the camera response most consistently for different
scenes? (3) Which algorithm performs better under varying degrees of noise? (4) Does the sRGB
assumption hold in practice? Our findings indicate that Grossberg and Nayar's (GN) algorithm (2004 [1])
is the most accurate; Mitsunaga and Nayar's (MN) algorithm (1999 [2]) is the most consistent; and
Debevec and Malik's (DM) algorithm (1997 [3]) is the most resistant to noise together with MN. We also
find that the studied algorithms are not statistically better than each other in terms of accuracy although
all of them statistically outperform the sRGB assumption. By answering these questions, we aim to help
the researchers and practitioners in the high dynamic range (HDR) imaging community to make better
choices when choosing an algorithm for camera response recovery.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Photographic images captured by most cameras are typically
stored in a nonlinear color space. In film cameras, this nonlinearity
is a result of the nonlinear response of the chemicals used in the
film to light. In digital cameras, on the other hand, the nonlinearity
is intentionally introduced by the electronics and the firmware
during the analog-to-digital conversion and remapping, as optical
elements and sensors are inherently linear (see Fig. 1).

Using a nonlinear color space not only serves the purpose of
gamma-correction, but also mimics the light response of the
human visual system. The human visual system is highly non-
linear, and it is theorized that this nonlinearity allows better
utilization of the limited bandwidth of the retinal pathways [4].
Similar to the human eye, digital cameras can encode a large range
of incoming light values to a limited number of bits by using a
nonlinear color space. Nonlinear encoding also serves to reduce
the quantization artifacts and noise as it uses more bits in darker
regions for which the human eye is more sensitive to intensity
transitions [5]. Finally, nonlinearity is utilized for aesthetic

purposes which can be a distinguishing factor between the images
produced by different camera manufacturers.

Ideally, digital cameras are expected to adhere to the sRGB
standard which has well-defined color primaries and nonlinearity [6].
However, in practice, most digital and film cameras have response
curves that are widely different from the sRGB standard [7] (see Fig. 2).
Therefore, in applications that require high radiometric precision, such
as creating radiance maps from multiple exposures [8,3,2,9], shape
from shading algorithms [10,11], and computational photography [12],
it is vital to recover the response curve of the camera used rather than
relying on the sRGB assumption.

Until now, several methods have been proposed that attempt to
recover the unknown response of a digital camera from a set of
bracketed exposures [1–3,13–15]. Each method approaches the
problem from a different standpoint and makes assumptions
about the shape of response curves. However, a formal evaluation
of these algorithms in terms of how accurately they estimate an
unknown camera response is not available. Our goal in this study
is to fill this gap by comparing the performance of the algorithms
with respect to three important metrics. Our contributions can be
summarized as:

� Developing three metrics that can be used to compare the
performance of radiometric response recovery algorithms.
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� Using these metrics to conduct a rigorous evaluation of four
commonly used response recovery algorithms.

2. Background

Many methods exist to recover the unknown radiometric
response of a photographic camera. These methods can generally
be classified as multi-image or single-image methods. In multi-
image methods, multiple exposures of the same scene are used to
determine the change in pixel values with respect to a change in
exposure enabling one to determine the camera response. These
methods rely on the reciprocity principle which states that the
total exposure X is equal to the product of the image irradiance E
and the exposure duration Δt:

X ¼ EΔt: ð1Þ
However, pixel values, Z, are not linearly related to X but rather to
a function of it:

Z ¼ f ðXÞ ¼ f ðEΔtÞ ð2Þ
Thus, by varying Δt for a pixel with constant irradiance, one can
detect the change in Z, and from there infer the shape of the
camera response function, f.

Single-image methods, on the other hand, cannot make use of
the reciprocity principle but rely on other cues. Farid observed that
nonlinear processing causes specific higher-order distortions in
the frequency domain [16]. By detecting and minimizing these
distortions one can recover the radiometric response of a camera.
Lin et al. [17] argued that edge colors should change linearly
between regions of different uniform intensities. Thus, they
proposed a function that maps the nonlinear distribution of edge
colors to a linear distribution. Later, their method is extended to
work on edge histograms for grayscale images [18].

In this work, we focus on multi-image response recovery
algorithms that are commonly used to create high dynamic range
(HDR) images [9]. The specific algorithms that we evaluated are
Debevec and Malik's method [3] (abbreviated as DM), Mitsunaga
and Nayar's radiometric self calibration [2] (MN), Robertson et al.'s
estimation theoretic approach [15] (RBS), and Grossberg and
Nayar's [1] principle component analysis based algorithm (GN).
Each algorithm is briefly reviewed in the following subsections.
The terms used in the following equations are given in Table 1.

2.1. Debevec and Malik's method (DM)

Debevec and Malik present the response recovery problem as
the minimization of the following quadratic objective function [3]:

O¼ ∑
Q

q ¼ 1
∑
P

p ¼ 1
fwðZqpÞ½ ~gðZqpÞ�ln Iptq�g2 þ λ ∑

254

z ¼ 1
½wðzÞ ~g″ðzÞ�2; ð3Þ

where ~g ¼ ln f�1 and w is a tent shaped weighting function
defined as

wðzÞ ¼
z=127:5 for z≤127:5; ðaÞ
ð255�zÞ=127:5 for z4127:5: ðbÞ

(
ð4Þ

The first term in Eq. (3) is the data fitting term and the second
term is used to force smoothness. Increasing the value of λ brings
the recovered response closer to a more idealized logarithmic
shape at the cost of deviating it from the actual observations.
As this formulation yields an overdetermined system of equations,
the unknowns ~g and Ip can be found in the least squared sense
using singular value decomposition.

2.2. Mitsunaga and Nayar's method

Mitsunaga and Nayar, on the other hand, argue that (the
inverse of) any response function can be modeled using a higher
order polynomial:

f�1ðxÞ ¼ ∑
N

n ¼ 0
cnxn: ð5Þ

This reduces the problem of response recovery to determining the
coefficients, cn, and the degree, N, of the polynomial that

Fig. 1. An abstraction of the photographic pipeline. Typically, the optical and sensor elements are linear, but nonlinearity is introduced during analog to digital conversion
and remapping.

Fig. 2. Response curves of various digital and film cameras. The data source is
obtained from the DoRF database (http://www.cs.columbia.edu/CAVE/databases).

Table 1
Definition of terms used in the equations.

Ip Irradiance of pixel p
Zqp Intensity of pixel p in image q
Mqp Normalized intensity in the range ½0;1�
tq Exposure time of image q
Rq;q′ Exposure ratio between images q and q′
w(x) Weighting function
f(x) Camera response function
g(x) Inverse camera response function, f�1ðxÞ
Q Number of exposures to combine
P Number of pixels in each image
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minimizes the following objective function [2]:

O¼ ∑
Q�1

q ¼ 1
∑
P

p ¼ 1
∑
N

n ¼ 0
cnM

n
qp�Rq;qþ1 ∑

N

n ¼ 0
cnM

n
qþ1p

� �2
: ð6Þ

The coefficients, c0 to cN�1, are found by solving the linear system
of equations that result from setting δO=δci ¼ 0 for i¼ 0;1…N�1.
To fix the curve's scale and determine the last coefficient, cN, the
authors set f ð1Þ ¼ Imax, which gives the additional constraint:

cN ¼ Imax� ∑
N�1

n ¼ 0
cn: ð7Þ

2.3. Robertson et al.'s method

Robertson et al. assume that the values of f�1ðxÞ are indepen-
dent Gaussian random variables, which leads to the following
objective function to be minimized [15]:

O¼ ∑
Q

q ¼ 1
∑
P

p ¼ 1
wðZqpÞðf�1ðZqpÞ�tqIpÞ2: ð8Þ

Note that, this objective function is similar to that of Debevec and
Malik's except that it is formulated in the linear domain and it
does not have a smoothing term. Also it uses a different weighting
function which is defined as

wðzÞ ¼ e�4ðz�127:5Þ2=127:52
: ð9Þ

This weighting function together with Debevec and Malik's
weighting function are plotted in Fig. 3. Both functions are
characteristically similar in that they give higher weights to pixels
closer to the middle of the exposure range. The authors solve for
the values of the response curve by using a form of Gauss–Seidel
relaxation.

2.4. Grossberg and Nayar's method

Grossberg and Nayar approach the problem from an empirical
standpoint. They argue that instead of making assumptions about
the shape of a response curve (e.g., polynomial as in [2] or
logarithmic as in [3]), the real world responses of a multitude of
films and digital cameras can be subjected to principal component
analysis (PCA) to find the best basis. From this assumption, they

model any response curve (and its inverse) using the following
formulae:

f ðxÞ ¼ f 0ðxÞ þ ∑
N

n ¼ 1
cnhnðxÞ; ð10Þ

f�1ðxÞ ¼ f inv0 ðxÞ þ ∑
N

n ¼ 1
cnh

inv
n ðxÞ; ð11Þ

where f 0ðxÞ and f inv0 ðxÞ are the means of all response and inverse
response curves respectively and fh1;hinv1 ;h2;h

inv
2 ;…;hN ;h

inv
N g are

the basis functions as determined by PCA. The authors performed
this analysis on 201 real world response curves (as well as their
inverses) to compute the mean curves and the basis functions, and
made this data available in a public database.

To recover the response of a camera using this data, one can use an
objective function similar to the one used by Mitsunaga and Nayar,

O¼ ∑
Q�1

q ¼ 1
∑
P

p ¼ 1
f inv0 ðMqpÞ þ ∑

N

n ¼ 1
cnh

inv
n ðMqpÞ

�

�Rq;qþ1 f inv0 ðMqþ1pÞ þ ∑
N

n ¼ 1
cnh

inv
n ðMqþ1pÞ

� ��2
; ð12Þ

and find the coefficients, cn, using least squares techniques.

2.5. Implementation details

We implemented all four algorithms in C++ using the exact
procedures outlined in the original papers. Each of these methods
requires a carefully selected set of image samples. Using all pixels
from all exposures not only increases the computational cost, but
also negatively affects the performance of the algorithms due to
possible misalignment and noise in the data. We followed the
sample selection procedure suggested in Reinhard et al. [9], and
chose 300 distinct sample positions from the uniform regions of
the middle three exposures for each sequence using randomized
rejection sampling. This gave rise to a total of 300� Q samples for
an image sequence with Q images. We ensured that the samples
were not selected from under- and over-exposed regions, and that
they were not clumped together. A representative set of samples
found using our algorithm is shown in Fig. 4.

In Debevec and Malik's algorithm, we set the value of the
smoothing term λ equal to 10. In the original paper, there is no
suggested value for this parameter. We decided on this value after
experimenting with several other values. We found that smaller
values tend to result in jagged curves and larger values make the
curves too smooth. In Mitsunaga and Nayar's algorithm, we tested
polynomials from degree 2 to 6 to find the best matching
polynomial. We set the upper limit to 6 as in our experiments

Fig. 3. The weighting functions used by Debevec and Malik, and Robertson et al.
during camera response recovery.

Fig. 4. The red squares indicate a representative set of selected samples for one of
the test images. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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using higher degree polynomials always resulted in over-fitting
resulting in implausible response curves. In Grossberg and Nayar's
algorithm, we modeled the inverse response function using 4 basis
functions as these capture more than 99.5 of the total energy [1].

We observed that the recovered responses occasionally had
problems around very low and high pixel values, and for values
that are not represented by enough samples. For instance, Mitsu-
naga and Nayar's algorithm occasionally produced negative values
for pixel values close to zero. When this occurred, we clamped
these implausible values to zero. Also, if some parts of the
response curve violated the monotonicity assumption such that
lower pixel values mapped to higher irradiances than higher pixel
values, we fixed these regions by linear interpolation using the
surrounding good regions. These types of artifacts were rare and
only affected small portions of the response curve when they
occurred. Finally, we scaled all response curves to the range of
½0;1� to bring them to the same domain.

3. Evaluation

We evaluated the performance of the selected algorithms using
three different metrics, namely consistency, accuracy, and robust-
ness. Below, we motivate and explain the importance of each of
these metrics and how we derived them.

3.1. Metric 1: consistency

We define consistency as the repeatability of an algorithm's
result with changing data. More specifically, we consider an
algorithm as consistent if it produces the same camera response
using different image sets. Consistency relies on the idea that the
camera response should stay the same if one only changes the
exposure while keeping other camera settings intact. Thus, a
consistent algorithm allows a user to generate a response curve
once from an image set, and use it to linearize other images taken
with the same camera. Our metric for consistency is defined as

s ¼ 1
N

∑
N

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

256
∑
255

z ¼ 0
ðgðzÞ�giðzÞÞ2

s
ð13Þ

where gi denotes the inverse camera response recovered from
image set i, g is the mean inverse camera response obtained from
all calculated curves, and N is the number of image sets. This
metric computes the mean standard deviation of individual
camera responses.

3.2. Metric 2: accuracy

Accuracy measures the closeness of a recovered camera response
to the ground truth. The ground truth can be determined by imaging
a color chart with known reflectances, such as the Macbeth color
chart, to determine the pixel values to which these regions map [20].
However, as there are limited number of color patches with known
reflectance, the full camera response can only be found by inter-
polation. Therefore, whether the interpolated values correspond to
the actual response of the camera cannot be guaranteed [1].

In our evaluation, we devised an alternative accuracy metric
which is based on the reciprocity principle. The reciprocity
principle states that the measured pixel values are proportional
to the product of the sensor irradiance by the image exposure. On
a real camera, this product is modified by the camera response
function to yield the observed pixel values [3]:

Zqp ¼ f ðEptqÞ; ð14Þ
where Ep is the sensor irradiance of pixel p. Thus, if one undoes the
effect of the camera response, the resulting value should be

linearly proportional to the product of the sensor irradiance by
the image exposure. Therefore, if the camera response is recovered
perfectly, the following relationship should hold between two
corresponding pixels in two images:

g Zqp
� ��g Zq′p

� � tq
tq′

¼ 0 ð15Þ

Our metric is simply the generalization of this relationship to
include all pixels from all exposures:

E ¼ 1
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Q�1

q ¼ 1
∑
Q

q′ ¼ qþ1
∑
P

p ¼ 1
K2

s
ð16Þ

where K is the weighted sum of reciprocity errors:

K ¼wðZqp; Zq′pÞ½gðZqpÞ�Rq;q′gðZq′pÞ�; ð17Þ

and W is the sum of all weights:

W ¼ ∑
Q�1

q ¼ 1
∑
Q

q′ ¼ qþ1
∑
P

p ¼ 1
wðZqp; Zq′pÞ: ð18Þ

The purpose of the weighting function w is to minimize the effect
of saturated pixels as the relationship in Eq. (15) will not hold if
any of the pixels in question is saturated. We defined w as

wðx; yÞ ¼
0 if x or y not in ½5;250�
ðxþ yÞ=255 if ðxþ yÞ=2≤127:5
ð255�ðxþ yÞ=2Þ=127:5 ifðxþ yÞ=24127:5;

8><
>: ð19Þ

to give the highest weight to the middle of the exposure range and
underplay the influence of the over- and under-exposed pixels.

At this point, one may question why we did not directly
compare the recovered camera responses with the actual
responses of the camera. Our answer is two-fold. First, recovering
the actual response of a camera is an immensely challenging task
due to the effects of optical glare [21,22]. Second, we observed that
one does not strictly need the ground truth curve to measure
accuracy. It is because, if the camera response is the aggregate
effect of nonlinearities in an imaging system, determining and
reversing its effects should give rise to linear images. The linear
images should satisfy the reciprocity principle in that the mea-
sured pixel values are proportional to the product of the sensor
irradiance by the image exposure. If this proportionality does not
hold, one can attribute this to the imperfections in the recovered
camera response. In other words, accuracy can also be measured
indirectly by comparing the observations rather than directly
comparing the camera response curves.

3.3. Metric 3: robustness

Robustness can be defined as how well an algorithm continues
to produce acceptable results as the imaging conditions depart
from the ideal. To measure robustness, we used a ray-traced HDR
image as an artificial scene. We created multiple exposures from
this scene as if by taking photographs with a virtual camera (see
Fig. 5). The virtual camera was designed to have a perfect sRGB
response. During the imaging process, we introduced varying
degrees of Gaussian noise to simulate various sources of noise
that may infect a real imaging system (Fig. 6). Finally, we used
these noise added sequences to recover the response curves of the
imaginary camera, and compared them against the ground truth.
Here it is important to note that we used the same sample
positions selected from the noise-free sequence to recover the
responses using all sequences. This was done to avoid changing
both source images and sample positions, and to perform a
controlled experiment by isolating the effect of noise.

A.O. Akyüz, A. Gençtav / Computers & Graphics 37 (2013) 935–943938
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To quantify the performance of the algorithms under varying
degrees of noise, we used a standard deviation metric:

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

256
∑
255

z ¼ 0
ðgsRGBðzÞ�gsðzÞÞ2

s
ð20Þ

where gsRGB is the response of the sRGB specification and gs is the
response recovered by an algorithm from the image sequence that was
created by adding a Gaussian noise with a standard deviation of s.

4. Results

To measure the performance of the algorithms with respect to
the metrics defined above we used a large set of images captured
using three different digital cameras. The cameras we used were
Canon EOS 550D, Nikon D2H, and Nikon Coolpix E5400. With each
camera, we captured bracketed sequences by mounting the
camera on a tripod to avoid camera movement during the capture
process. We installed the Magic Lantern firmware patch on Canon
EOS 550D to allow auto-bracketing (AEB) up to 9 exposures with
each exposure 1 f-stop apart (by default the camera allows up to
three exposures). The other two cameras, Nikon D2H and Nikon
Coolpix E5400, by default allow 9 and 5 exposure AEB respectively
and therefore we used the default camera firmware. When
5 exposures were not enough to capture the luminance variation
in a given scene for Coolpix E5400, we took another 5 exposures
by shifting the value of the center exposure. The resolutions of the
images were 5184�3456 for EOS 550D, 1840�1224 for D2H, and
1600�1200 for E5400. Our entire data set is illustrated in Fig. 9.

Our experiments gave rise to a large number of plots and tables,
and for lack of space and brevity we will only present representa-
tive results. Most notably we only show the results of the green
channel as they are representative of all channels. Our full set of
results will be shared on the project website.

4.1. Consistency

The consistency plots for the green channel of Canon EOS 550D
for each algorithm is shown in Fig. 8(a). Here, we can see that
Debevec and Malik's and Robertson et al.'s methods produce more
jagged response curves while Mitsunaga and Nayar's and Grossberg
and Nayar's methods produce smoother ones. This is expected due
to smooth fitting functions used by the latter two (i.e., polynomials
and basis functions). Debevec and Malik's method has a smoothing
parameter, λ, which we set to 10 in our experiments. We observed
that increasing the value of this parameter makes the resulting
curves smoother, albeit at the cost of deviating it from the actual
observations. Robertson et al.'s method has no built-in smoothing
mechanism and therefore the jagged curves were expected. However,
despite variations between the response curves, each algorithm
produced relatively similar results for different scenes. On average,
we found that Mitsunaga and Nayar's method was the most con-
sistent followed by Grossberg and Nayar's algorithm as shown in
Table 2. They were followed by Debevec and Malik's, and Robertson
et al.'s algorithms.

Here, one may wonder why the recovered camera response
changes at all with respect to changing capture conditions. An
important reason for this is the optical glare which represents the

Fig. 5. Virtual exposures created by taking a virtual photograph from a ray-traced HDR image. The HDR image is rendered by the Radiance software [19] (courtesy of Greg
Ward). The virtual camera was designed to have a perfect sRGB response.

Fig. 6. From left to right the images show the effect of adding Gaussian noise with s¼ 0 (no noise), s¼ 0:25, s¼ 0:50, s¼ 1, and s¼ 1:5.

A.O. Akyüz, A. Gençtav / Computers & Graphics 37 (2013) 935–943 939
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scattered light falling on the sensor. As demonstrated by earlier
studies [21], glare is scene-, exposure-, lens-, aperture-, and
camera-dependent. While methods exist to eliminate glare, they
either make assumptions on the shape and extent of the point
spread function of the glare [9] or require extra equipment to be
placed between the camera and the captured scene [23]. In this
study, we did not use any method to account for the glare as our
goal was to evaluate the performance of the camera response
recovery algorithms under normal imaging conditions.

4.2. Accuracy

To evaluate accuracy, we computed the average response curves
generated by each method for all scenes captured by a given camera.
The average response curves for the green channel of Canon EOS
550D are shown in Fig. 8(b) together with the sRGB curve for
reference. Note that these curves deviate from the sRGB specification
at various degrees although each camera was set to output in the
sRGB color space. We also note that, as the camera shifts from
professional to consumer, the resulting response curves deviate more
significantly from the sRGB standard. This is particularly notable for
the response curves generated by Debevec andMalik's and Robertson
et al.'s methods, where the response of the most professional camera,
the D2H, is closest to sRGB, while the response of Coolpix E5400 is
the furthest. This may be an expected result as the increased quality
generally results in a better matching of the standards.

The accuracy error of each algorithm computed according to
Eq. (16) from the green channel of Canon EOS 550D is tabulated in
Table 3. This table shows that, on average, the highest accuracy is
achieved by Grossberg and Nayar's method followed by Robertson
et al.'s algorithm. Debevec and Malik's algorithm is also close to
Robertson et al.'s results. We found Mitsunaga and Nayar's method
to be the least accurate. However, as can be seen from the
rightmost column, the error associated with the sRGB assumption
is the highest. This suggests that the sRGB assumption does not
hold in practice and that, for applications requiring radiometric
precision, it is crucial to recover the actual response of the camera.

It is interesting to note that the accuracy values vary almost
uniformly across the algorithms for different images. We attribute
this to the scene content. The scenes with static backgrounds
appear to have higher accuracy (lower error) such as the apples,
miki, and workshop. The scenes with more dynamic backgrounds
(those that include trees, leaves, etc.), such as window2, statue, and
hill, give rise to higher errors. This is expected because for dynamic
scenes the errors due to small object movements contribute to the
errors due to imperfect recovery of the camera response.

We further analyzed these results to determine if the differences
between the algorithms are statistically significant. The box plots for
the reported accuracy error values are shown in Fig. 7. In this figure,
one can better see the distribution of accuracy errors yielded by each
algorithm. The sRGB curve results in the highest error with other
algorithms clumped close together. A one way ANOVA test confirms
that the differences are significant, Fð4;50Þ ¼ 35:341, po0:001.
Perhaps surprisingly, a multiple comparisons t-test with Bonferroni
correction indicates that the differences between the algorithms are

not significant with all high p values. However, each algorithm is
found to be significantly better than the sRGB approximation.

4.3. Robustness

The response curves recovered by each algorithm under varying
degrees of noise are depicted in Fig. 8(c). Here, we see both expected
and surprising results. For instance, the response curves recovered by
Mitsunaga and Nayar's algorithm deviate more from sRGB with
increasing noise. This pattern can also be seen in Grossberg and
Nayar's algorithm. The other two algorithms also produce good results
when there is no noise. However, with the addition of noise their
behavior changes unexpectedly in that the least amount of noise
(s¼ 0:25) causes the largest deviation from the ground truth. While
we do not have a full explanation for this phenomenon, we hypothe-
size that this could be due to the possibility that even the smallest
amount of noise that we added was too high for these algorithms.
If we added smaller amounts of noise (e.g., s¼ 0:05, s¼ 0:10, etc.), we
could see a more expected pattern. However, we did not test this
hypothesis.

Our average results for robustness are shown in Table 4. Here,
we observe that Debevec and Malik's and Mitsunaga and Nayar's
algorithms are the most robust under increasing noise. The other

Table 3
Accuracy error of the algorithms computed according to Eq. (16) from the green
channel of Canon EOS 550D. The smaller figures indicate higher accuracy.

Scene DM RBS MN GN sRGB

apples 0.500 0.489 0.530 0.453 1.715
corridor 0.323 0.324 0.398 0.328 1.827
kenya 0.439 0.427 0.506 0.411 1.598
window1 0.524 0.513 0.562 0.467 1.759
window2 1.325 1.287 1.349 1.123 2.497
workshop 0.464 0.463 0.487 0.426 1.756
hill 1.022 1.008 ?1.036 0.870 2.194
stadium 0.454 0.453 0.476 0.436 1.615
statue 1.105 1.070 1.137 0.937 2.478
miki 0.487 0.493 0.577 0.451 2.080
boat 0.995 0.962 1.028 0.841 2.160

Average 0.694 0.681 0.735 0.613 1.971

Fig. 7. The box plots showing the accuracy error of all algorithms for all test scenes.
As can be seen from the plot, the sRGB curve yields the highest error with other
algorithms clumped close together.

Table 2
Consistency error of the algorithms as computed according to Eq. (13) using the
green channel of all cameras. The smaller figures indicate higher consistency.

Camera DM RBS MN GN

Canon EOS 550D 0.011 0.011 0.016 0.011
Nikon D2H 0.018 0.020 0.004 0.028
Nikon Coolpix E5400 0.059 0.091 0.016 0.018
Average 0.029 0.041 0.012 0.019
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two methods are impacted more significantly as the observations
depart from the ideal.

4.4. Time performance

Finally, we report the running time of each algorithm in Table 5
to give an insight into the algorithms’ efficiencies. As the table
shows, Grossberg and Nayar's and Mitsunaga and Nayar's methods
perform orders of magnitude faster than the other methods.
Debevec and Malik's method performs the slowest as it involves
solving a bigger matrix than other methods (approximately
3000�500 for 300 samples and 9 exposures). These results
suggest that the former two algorithms may be the preferred
choice if they were to be used in an interactive environment.

5. Discussion and conclusion

In this study, we compared the performance of four commonly
used radiometric response recovery algorithms using three different
metrics. In our experiments we used a large set of images captured
using three different digital cameras. Based on these experiments,

Fig. 8. (a) Response curve of Canon EOS 550D recovered for various image sequences. (b) Mean response curves for each camera. (c) Effect of increasing noise on the
recovered response curves. In all plots, only the green channel responses are shown.

Table 4
Robustness error of each algorithm under varying degrees of noise. The smaller
figures indicate higher robustness.

Std. dev. DM RBS MN GN

s¼ 0:00 0.028 0.124 0.002 0.058
s¼ 0:25 0.179 0.306 0.024 0.280
s¼ 0:50 0.106 0.168 0.059 0.304
s¼ 1:00 0.101 0.195 0.089 0.297
s¼ 1:50 0.071 0.103 0.111 0.315

Table 5
Comparison of the response recovery methods in terms of running time. Perfor-
mance testing was made on an Intel Core i7 CPU at 3.20 GHz to recover the
response curve from a sequence captured by Canon EOS 550D.

Method Running time (s)

DM 74.68
MN 0.29
RBS 8.39
GN 0.06
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we found that (1) Grossberg and Nayar's algorithm, on average, is the
most accurate in terms of how well the images processed by it
preserve the reciprocity principle, (2) Mitsunaga and Nayar's algo-
rithm is the most consistent across different image sequences,
(3) Debevec and Malik's and Mitsunaga and Nayar's algorithms are
the most robust under increasing noise, and (4) the sRGB assumption
fails to hold in practice especially for lower-end cameras. We also
found that the accuracy of all four algorithms are not statistically
better than each other when their variances are considered for
different scenes. However, all four algorithms outperform the sRGB
assumption in the statistical sense.

While these results may not give a single answer to which
algorithm to choose when recovering the response of a camera, they,
nevertheless, shed light on the behavior of radiometric response
recovery algorithms. For instance, we argue that the response of a
camera should not be recovered only once from a single image
sequence, but instead should be allowed to evolve over time with
new image sequences. This approach can be put into use in software
programs, for instance, to create more accurate HDR images.

We also find that not every scene is equally appropriate to
recover a camera response. The scenes that are too dark and too
light can particularly be problematic. Also if the dynamic range of
a scene is not high enough, it may be difficult to find enough
samples to represent all parts of the camera response. In our
experience, we observed that relatively lighter scenes with large
white regions of different luminance levels were more suitable.

The metrics that we proposed in our study can be used to
evaluate the performance of future response recovery algorithms.
As future work, we are planning to validate the accuracy of these
metrics by using ground truth observations obtained by light
measurement devices and surfaces with known reflectances.

Finally, we would like to compare single-image methods with
multi-image methods.
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