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A B S T R A C T

Environment lighting plays a crucial role in enhancing the realism of rendered images.
As environment light sources are distributed over a sphere or hemisphere, the render-
ing process involves tracing multiple rays per pixel. This process is computationally
expensive and therefore achieving real-time results is challenging. Many studies fo-
cus on visibility functions to reduce the number of traced rays, often achieved through
precomputation methods. This study improves upon a recent CPU-based visibility pre-
computation method designed for rendering solely static scenes, enabling its use for
dynamic scenes. Our key contribution is the parallelization of this algorithm across
multiple compute shader invocations which well integrates into the modern real-time
rendering pipeline. By analyzing the performance-quality impact of various parame-
ters, we aim to discover the best configuration for a given scene. With our technique the
entire preprocessing stage can be executed for a scene with more than 200K triangles
in 4 ms, allowing for more than a 50 FPS performance including precomputation and
rendering.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction1

It has long been noted that representing the light distribution2

of a rendered scene using an environment map greatly enhances3

realism [1]. By simply changing the environment map, the en-4

tire “look-and-feel” of the scene can be altered, creating the5

feeling that objects belong to their new environment [2]. How-6

ever, rendering with environmental lighting is computationally7

expensive due to the requirement of tracing multiple rays per8

pixel. This is particularly necessary for diffuse objects, as they9

collect and reflect light from and to a large set of directions.10

Consequently, achieving real-time results becomes challenging.11

To overcome this challenge, various precomputation methods12

were explored to represent and use environment lighting dur-13

ing rendering. These methods involve calculating and storing14

specific information offline, allowing for quick integration and15
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computation during runtime. Scattered points [3], irradiance 16

volumes [4], light field probes [5], local light grids [6], radiance 17

transfer [7], shadow fields [8], clustered principle components 18

[9], light transport paths [10], and light maps [11] are among 19

the notable precomputation techniques. Other methods involve 20

precomputing visibility [12, 13, 14], as the visibility function 21

holds significant importance as it helps to decrease the number 22

of traced rays due to occlusion [15, 16, 17]. 23

Among this latter group of techniques, a notable work was 24

recently presented by Yang et al. [18] that involves storing the 25

visibility information around each point in a uniform grid called 26

discrete visibility fields (DVF). This information, which is cre- 27

ated offline, is later used during rendering. When combined 28

with hardware-accelerated ray tracing [19, 20], this approach 29

can achieve real-time rendering performance with realistic en- 30

vironment lighting. 31

The primary drawback of DVF is that precomputation is done 32

prior to runtime, limiting its application to static scenes [18]. 33

Any animation or change in the scene geometry requires recre- 34

ating the DVF, which is a costly operation. In this work, we 35
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propose a GPU-based precomputation algorithm to enable the1

usage of DVF for dynamic scenes. We achieve this by distribut-2

ing the precomputation between different compute shaders. As3

shown in the following sections, parallelizing the DVF algo-4

rithm is not trivial and requires careful application of paral-5

lelization techniques to achieve real-time performance.6

2. Previous Work7

Using environment maps for realistic lighting is a long-8

studied problem in computer graphics [1, 21, 22]. While9

older work relied on using traditional images to represent10

the environment, the use of high dynamic range (HDR) im-11

agery paved the way to represent environments as actual light12

fields [23, 24]. Depending on whether forward or backward13

rendering pipelines are used, environment maps can be repre-14

sented in various formats such as cubemaps [21], equilateral15

projections, and light probes [25].16

In devices with lower computational budgets, it is customary17

to represent environments using light maps [26]. Light maps18

not only contain the infinitely far away environment light, but19

also the effect of objects on each other such as shadows and20

color bleeding. The lighting information at each point in the21

scene is precomputed into a texture using a realistic light simu-22

lation algorithm [27, 28] and is efficiently accessed during run-23

time. Static light maps prohibit dynamic changes in the scene24

geometry, although some recent algorithms can alleviate this25

restriction [29, 30].26

Several other precomputation techniques also exist. Irradi-27

ance maps store light distribution of the environment as a small28

number of spherical harmonic coefficients discarding its high-29

frequency components [31, 32]. This is particularly useful for30

diffuse objects as the effect of high-frequency lighting on them31

is negligible.32

Capitalizing on this idea, Sloan et al. also represent the33

light transfer over object surfaces as spherical harmonic co-34

efficients [7]. This precomputed information is accessed dur-35

ing runtime for self-shadowing and self-interreflections allow-36

ing for real-time rendering of such advanced effects. Several37

improvements of this technique address its limitations such as38

large memory footprint [9] and low-frequency and distant light-39

ing requirements [33, 34].40

Visibility of a surface point from a light source or from an-41

other surface point is an important factor for computing di-42

rect and indirect lighting. Shadow mapping related techniques43

precompute this information from the light’s point of view44

into a texture and use it in subsequent rendering passes [35].45

While shadow mapping is not practical for environment light-46

ing due to the wide distribution of incoming light, several tech-47

niques can be used to discretize it to a smaller number of sam-48

ples [24, 36, 37].49

Many other visibility-based methods exist to improve perfor-50

mance and reduce variance during ray tracing [12, 15, 38]. A51

recent algorithm designed for GPU-based ray tracing was pro-52

posed by Yang et al. [18]. In their work, the authors address53

the challenges of achieving real-time results with environmen-54

tal lighting due to the necessity of tracing numerous rays. They55

Fig. 2: Overview of algorithms in [18]. The figure is reproduced as-is from its
original source.

argue that the evaluation of the visibility function is the key 56

to rendering with environmental lighting. As a solution, they 57

present precomputed Discrete Visibility Fields (DVF) that store 58

the visibility information of static scenes in a uniform grid. 59

Because our work is designed to extend this algorithm to dy- 60

namic scenes, we review the fundamental principles behind this 61

algorithm in the following sections. 62

2.1. Discrete Visibility Fields 63

Fig. 1: The fundamental concept of
DVF. The red bar is an occluder.

The fundamental concept of 64

DVF is illustrated in Fig- 65

ure 1. If a surface point is 66

mostly occluded such as the 67

point P1, non-occluded (i.e. 68

visible) directions are traced 69

to calculate the irradiance. 70

If a surface point is mostly 71

visible by the environment 72

such as P2, occluded rays are 73

traced to calculate the oc- 74

cluded irradiance, which is 75

then subtracted from the total irradiance to obtain the actual ir- 76

radiance. Visible and occluded directions in the vicinity of the 77

point, as well as whether the points in that vicinity are mostly 78

occluded or not, are calculated in the precomputation stage. 79

In the runtime phase, the information stored in DVF is uti- 80

lized to reduce the number of traced rays. With this method, 81

real-time rendering is achieved. However, because the precom- 82

putation phase is done on the CPU, no changes to the scene 83

geometry are possible during runtime. 84

2.1.1. Precomputation algorithm 85

In the precomputation phase, a DVF is created that stores an 86

approximation of the visibility of geometry contained within 87

each grid cell that represents a voxelization of the scene. The 88

precomputation algorithm used in [18] is provided in Algorithm 89

2 (see Appendix). The input of the algorithm is the mesh to be 90

rendered and the output is the DVF. 91

During precomputation, first, the surface of the mesh is uni- 92

formly sampled and Np points are generated. For each of these 93

points, Nr rays are generated around the normal vector using the 94
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Hammersley sequence with cosine-weighted hemisphere sam-1

pling [39, 28]. Each of these rays is rotated randomly around2

the normal, and they are traced. The octahedral map index of3

the ray is found by octahedral mapping [40]. If a ray inter-4

sects with the scene, 1 is written to OO
s (s) in the corresponding5

index. Otherwise, 1 is written to OV
s (s) in the corresponding in-6

dex. These maps represent the occluded and visible directions7

for each point sample.8

After OV
s (s) and OO

s (s) for all points are created, the scene9

is voxelized and the visibility of each cell (i.e., voxel) is ap-10

proximated by OR operation of the point samples that fall into11

the same cell. The cell visibility maps are termed as OV
c (c) and12

OO
c (c). In the last step, the occlusion label locc(c) of each grid13

cell is found by comparing the total number of occluded and14

visible directions stored in OV
c (c) and OO

c (c).15

In our work, we replace this precomputation algorithm with16

a GPU-based implementation using compute shaders, which17

makes it possible to alter or animate the scene geometry dur-18

ing runtime.19

2.1.2. Runtime Algorithm20

In the runtime phase, the precomputed DVF is used as input21

to optimize the rendering process. The details of the algorithm22

are explained below and its pseudocode is provided in Algo-23

rithm 3 for completeness.24

To calculate the incoming irradiance E(x) of fragment x, first25

the grid cell c containing x is found and locc(c) is obtained. Nr26

rays are generated around the normal vector using the Ham-27

mersley sequence with cosine weights [39, 28]. Each of these28

rays is rotated randomly around the normal using a blue noise29

texture [41], and the octahedral map index of the ray is found.30

Visibility Vc(c,ω) and occlusion Oc(c,ω) masks are extracted31

from the precomputed DVF.32

If the number of occluded directions in the cell c is larger than33

the number of visible directions (locc(c) = 1), the ray is traced34

only if its direction, ω, is visible in cell c. Conversely, if the35

number of visible directions in cell c is larger than the number36

of occluded directions (locc(c) = 0), the ray is traced only if37

its direction is occluded in cell c. As a result, either E(x) or38

Eocc(x) is obtained respectively. If locc(c) = 1, E(x) is found by39

subtracting occluded irradiance Eocc(x) from the unshadowed40

irradiance Eunshad(n).41

The radiance Li(ω) and unshadowed irradiance Eunshad(n)42

terms are calculated with precomputed constant values. These43

precomputed values are obtained with irradiance map approx-44

imation method using spherical harmonics [31, 32]. This run-45

time algorithm is implemented by using Vulkan ray tracing ex-46

tension VK KHR ray query to perform ray tracing within the47

fragment shader for real-time performance [42].48

3. Proposed Method49

The method summarized in the previous section uses an of-50

fline approach for computing the DVF limiting its usage to51

static scenes. In this section, we explain how the DVF idea52

can be realized on the GPU so that dynamic scenes can be sup-53

ported in real time. The precomputation method can be divided54

into 4 main steps:55

Table 1: Compute shaders used for the precomputation of DVF.

# Task Dispatch method
1 Calculate triangle areas and normals per triangle
2 Calculate partial sum of areas (Up Sweep) based on SSBO size
3 Calculate cumulative sum of areas (Down Sweep) based on SSBO size
4 Create DVF per triangle
5 Compute occlusion labels locc (Parallel sum reduction) per grid cell

• Generating uniform random points on the mesh surfaces, 56

• Creating visibility rays for each point and tracing them, 57

• Creating octahedral maps using ray intersection results, 58

• Converting the octahedral maps into occlusion labels. 59

Generating random points uniformly on a mesh surface re- 60

quires a sampling strategy based on triangle area weights. This 61

requires prior knowledge of the area of each triangle, the sum of 62

the total mesh surface area, and the total number of points to be 63

sampled. After the number of point samples for each triangle 64

is calculated, coordinates for point samples must be generated 65

randomly. For each of these points, rays must be generated with 66

Hammersley sequence and they must be traced. Occlusion and 67

visibility results must be written to an image array in the GPU. 68

Lastly, occlusion labels must be determined. 69

We introduce a compute shader based solution to manage 70

all of the mentioned tasks and perform precomputation on 71

the GPU. Since Vulkan ray tracing extensions are used for 72

implementing the runtime algorithm in [18], we utilize GPU 73

semaphores and pipeline barriers to synchronize data between 74

compute and graphics pipelines. 75

We present an overview of our methodology in Figure 3. 76

First, initialization tasks are carried out by the CPU. Then, the 77

rendering loop takes effect. Compute commands for DVF pre- 78

computation are executed by the GPU. Once DVF is ready, 79

graphics commands are executed by the GPU, and the frame 80

is rendered. Animation can be achieved by updating the trans- 81

formation matrices on the CPU (e.g. based on user input) and 82

recomputing the bounding box information again using Vulkan 83

ray tracing extensions [42]. 84

3.1. Compute Pipelines 85

The compute pipeline is carried out by 5 shader stages as 86

shown in Table 1. The actual precomputation algorithm is im- 87

plemented in Compute Shaders 4 & 5. Preceding shaders are 88

used to extract the necessary data from the scene such as the 89

triangle normals, areas, and sum of the areas. 90

In Figure 4, the compute shaders and resource accesses are 91

provided. The compute shaders are represented with blue 92

boxes. These shaders are dispatched sequentially and they alter 93

the state of the resources when they are invoked. The column 94

to the left side of the purple arrow shows the state of the re- 95

sources before that shader’s invocation. In the same column, 96

the read/write access type of the shader is also presented using 97
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Fig. 3: The high-level overview of our method.

colors. For example, Compute Shader 1 reads data from Ver-1

tices SSBO1 and Indices SSBO and writes data to Areas SSBO2

and Normals SSBO. The resources that are modified by a cer-3

tain shader are marked with red arrows. The initial values of4

Vertices SSBO and Indices SSBO are determined by the CPU.5

There are pipeline barriers placed between compute shaders6

that share resources. This way synchronization among compute7

shaders is established. For example, Compute Shader 2 is not8

executed until Areas SSBO and Normals SSBO are written by9

Compute Shader 1.10

3.1.1. Compute Shader 1: Area and Normal Calculation11

This shader is dispatched per triangle. Triangle area and nor-12

mal are calculated and written to their respective locations in13

Areas SSBO and Normals SSBO.14

3.1.2. Compute Shaders 2 & 3: Adaptive Prefix Sum15

These shaders calculate the cumulative sum of triangle areas16

as illustrated in Figure 5. The prefix sum algorithm is employed17

for parallel sum operation.18

Parallel prefix sum. Parallel prefix sum is an algorithm that19

leverages parallel processing capabilities to calculate the cumu-20

lative sum of an array [44, 45]. It is comprised of 2 parts: Up-21

sweep and down-sweep. In the up-sweep (reduce) phase partial22

sums are calculated and in the down-sweep (distribute) phase23

these partial sums are used to update values in the array. Figure24

1SSBO: shader storage buffer object [43].

Fig. 4: Resource usage of compute shaders.

Fig. 5: Cumulative sum of triangle areas.

6 is provided for clarity. AM ..N symbolizes the sum of elements 25

from AM to AN . 26

Both parts of the prefix sum can be executed within a single 27

compute shader. However, the local size of a compute shader is 28

limited by maxComputeWorkGroupInvocations and this num- 29

ber depends on the hardware [46]. In our implementation max- 30

ComputeWorkGroupInvocations is 1024, meaning that a single 31

compute shader can calculate the cumulative sum of a maxi- 32

mum 2048 triangles. This number is too small for the scenes 33

used in our implementation. To overcome this constraint, pre- 34

fix sum is divided into 2 compute shaders. Depending on the 35

triangle number of the scene, the up-sweep and down-sweep 36

shaders are dispatched multiple times. 37

Compute Shaders 2& 3: Up- and Down-Sweep shaders. These 38

shaders collectively compute the cumulative sum of triangle ar- 39

eas. Shader 2 first updates Areas SSBO with multiple partial 40

sum values. Shader 3 writes the total sum into Areas Sum SSBO, 41

then processes Areas SSBO to compute the cumulative sums. 42

The operations of these shaders are exemplified in Figures 7 43

and 8 where the workgroup size is defined as 2 and Areas SSBO 44

size is 16. Each color represents the elements on which a spe- 45
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Fig. 6: Parallel prefix sum demonstration.

Fig. 7: Up Sweep shader dispatch example (shader 2).

cific invocation operates.1

The number of dispatches and workgroups for each dis-2

patch is determined as shown in Algorithm 1 before compute3

pipelines are constructed. In the example above, this algorithm4

computes 2 passes with 4 workgroups in the first pass and 1 in5

the second (these values are used in inverse order for shader 3).6

Each workgroup operates on the region of Areas SSBO based7

on their workgroup ID. After the first pass, shaders only oper-8

ate on the indices of Areas SSBO that contain the results of the9

previous pass.10

3.1.3. Compute Shader 4: DVF Generation11

Preceding shaders act as a prerequisite for the actual DVF12

precomputation work carried out in compute shaders 4 and 5.13

In this shader, occlusion and visibility masks are created and14

written to an image array. For this purpose, first, the number15

of points to be sampled on the triangle is calculated. If this16

number is larger than a certain limit (meaning that the area of17

the triangle is significantly large), the workload is distributed18

among local invocations. Then, points are generated on the tri-19

angle with the Hammersley sequence or a hash function. For20

each point, Nr rays are generated using the Hammersley se-21

quence. Again, the workload of tracing Nr rays is distributed22

among local invocations to speed up the process. If there is a23

Algorithm 1: Prefix sum parameter calculation
Input : N: # of triangles in the scene,

wgSize: workgroup (wg) size (# of threads per wg)
Output: passCnt: # of dispatches,

wgCntPerPass: buffer for the # of wgs per pass
1 wgBufSize = 2 × wgSize � two elements processed per thread
2 passCnt =

⌈
(logwgBufSize(N))

⌉
3 bufferSize =

⌈
N

wgBufSize

⌉
× wgBufSize � pad to wgBufSize

4 for passCnt times do
5 append (bufferSize/wgBufSize) into wgCntPerPass buffer
6 bufferSize = bufferSize/wgBufSize
7 end for

Fig. 8: Down Sweep shader dispatch example (shader 3).

ray intersection, imageAtomicOr() function is used to modify 24

the value in the corresponding location in the DVF. The details 25

of these operations are provided below. 26

Uniform point sampling on mesh surface. A triangular mesh is 27

comprised of multiple triangles. To sample points on a mesh 28

surface uniformly, triangle areas must be taken into considera- 29

tion. The number of points to sample per triangle can be found 30

as: 31

N(Tk) =
NP ×

A(Tk)∑K
i=1 A(Ti)

 , (1)

where N(Tk) is the number of points that must be sampled on 32

triangle Tk, A(Tk) is the area of triangle Tk, NP is the number of 33

total point samples, and K is the triangle count. N(Tk) is calcu- 34

lated by dividing A(Tk) by the total surface area and rounding 35

the number up. By rounding the number up, at least 1 point 36

sample is generated on each triangle. This leads to better cov- 37

erage of the mesh surface than simply rounding the number, 38

which may cause tiny triangles to be missed. After N(Tk) is 39

calculated, the coordinates of the sample points must be deter- 40

mined. 41

Random point generation on a triangle. A random point on the 42

surface of a triangle with vertices (A, B,C) can be created by 43

generating uniformly random values r1 & r2 in range [0, 1) and 44

applying Eqn. (2) [47]. 45

P = (1 −
√

r1)A +
√

r1(1 − r2)B +
√

r1r2C (2)
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Fig. 9: Problem with large triangles. The workgroup operating on point samples
PS1-PS11 of T4 will spend the longest time.

Hash functions for generating random values. To implement1

the method in the previous section, random numbers must be2

generated in the compute shader. One of the methods for gen-3

erating random numbers in GPU is using hash functions [48].4

Hash functions are favored for several reasons. They generate5

sufficiently different results for adjacent seed values, they are6

capable of handling multidimensional inputs and outputs, and7

they are efficient to compute. In our work, we used the hash-8

withoutsine33 function provided by [48].9

Hammersley sequence for generating quasirandom values. Al-10

ternative to hash functions, a low discrepancy sequence such as11

the Hammersley sequence can be used to generate quasirandom12

points on the surface of the triangle ensuring uniform cover-13

age [49]. The performance of hash functions vs. Hammersley14

sequence is compared in the results section.15

Distributing the workload for point samples. Since the num-16

ber of points to be sampled depends on the triangle area, a17

considerable variation among triangle sizes in the mesh would18

cause significantly different workloads for different shader in-19

vocations. This leads to an imbalance in the execution times of20

different workgroups: the workgroups operating on the triangle21

with the large area will continue executing while other work-22

groups have completed their tasks and are idle. This problem23

can be observed in Figure 9 in which the size of triangle T4 is24

significantly larger than T1, T2, and T3.25

To circumvent this problem, local invocations are utilized as26

illustrated in Figure 10. Local invocations work on the same27

triangle and the maximum allowed number of point samples28

per invocation is set as 3 for illustration purposes. When hash29

functions are used to generate random numbers, each invocation30

uses different index values as seed values. When the Hammer-31

sley sequence is used to generate quasirandom numbers, each32

invocation starts from its assigned place in the sequence. Thus,33

each invocation produces different point samples.34

As shown in Figure 10, the total number of point samples for35

large triangles may slightly increase. However, this does not36

Fig. 10: Local invocations for large triangles.

Fig. 11: Local invocations for ray tracing.

affect the outcome negatively since more point samples only in- 37

crease the accuracy of the DVF without causing a performance 38

difference. 39

Distributing the workload for ray samples. Each point sam- 40

ple requires Nr ray samples generated with the Hammersley se- 41

quence. If one invocation works on all Nr rays, the computa- 42

tion would be highly serialized. Therefore, iterating over Nr 43

rays must be avoided in compute shaders. This issue is solved 44

by distributing the Nr rays among local invocations as shown in 45

Figure 11. 46

Atomic operations for constructing DVF masks. The DVF 47

Masks Image Array is created by the CPU according to the oc- 48

tahedral map size and grid dimensions. This array is cleared 49

before Compute Shader 4 is dispatched. When invocations of 50

Compute Shader 4 produce ray intersection results, they need 51

to write them to the corresponding locations in this array. How- 52

ever, when multiple invocations attempt to access the same lo- 53

cation race conditions may occur. To avoid this problem im- 54

ageAtomicOr() function is utilized [46]. DVF Masks Image Ar- 55

ray is created in VK FORMAT R32 UINT format to be able to 56

use this function. In fact, we only need two bits from this data 57

type: bit 6 is used to represent the occlusion map and bit 7 is 58
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Fig. 12: Occlusion label SSBO construction.

used for the visibility map as shown in Figure 12.1

3.1.4. Compute Shader 5: Calculation of Occlusion Labels2

Occlusion labels are grid cell attributes and they can only3

be calculated once all occlusion and visibility masks are con-4

structed. This shader is dispatched per grid cell and it performs5

parallel sum reduction to calculate the sum of occlusion masks6

and the sum of visibility masks of the cell. These values are7

then compared to calculate occlusion label locc. Specifically, if8

the number of occluded directions is larger than the number of9

visible directions 1 is written for the corresponding grid cell lo-10

cation in the Occlusion label SSBO. The process for one grid11

cell is illustrated in Figure 12.12

3.2. Graphics Pipeline13

Our graphics pipeline includes vertex and fragment shaders.14

Similar to Yang et al. [18], we use Vulkan ray tracing extension15

VK KHR ray query to perform ray tracing within the fragment16

shader. The only difference from the method in [18] is the way17

the DVF is accessed in the fragment shader: In [18] the DVF is18

accessed through a texture whereas in our method it is accessed19

from an image array (DVF Masks Image Array) and occlusion20

labels are accessed from an SSBO (Occlusion label SSBO).21

We use two types of synchronization mechanisms namely22

semaphores and pipeline barriers. Semaphores are used for syn-23

chronization between compute and graphics command buffer24

submissions to queues. Pipeline barriers are used for synchro-25

nization between different compute shaders and also to ensure26

that the fragment shader accesses DVF Masks Image Array and27

Occlusion label SSBO after their constructions are finalized.28

4. Results & Validation29

In this section, the results of our implementation are provided30

for both static and dynamic scenes. Similar to Yang et al. [18],31

we assumed all object materials are diffuse. The results are32

evaluated with respect to several metrics such as the FLIP [50],33

the root mean square error (RMSE), and the frame per second34

(FPS). The provided FPS values reflect the sum of precompu-35

tation and rendering durations. For error visualizations, viridis36

color map is used where the error is represented in purple - yel-37

low scale. We performed all tests on a laptop system with an38

NVIDIA GeForce RTX 4060 GPU, Intel i9-13900H CPU, and 39

16GB RAM. 40

4.1. Static Scene Results 41

In this section, we use the Sponza [51] and Amazon Lum- 42

beryard Bistro [52] scenes for presenting the results of our al- 43

gorithm. Sponza is a relatively complex scene with 211,410 44

vertices and 262,267 triangles. The ground-truth version of 45

the Sponza scene is generated using 128 ray samples per frag- 46

ment without generating and using the DVF structure. Under 47

this configuration, it can be rendered in our test system with 48

9 FPS. Amazon Bistro has significantly more geometric com- 49

plexity with 2,892,045 vertices and 2,829,226 triangles, which 50

are more than 10 times the corresponding values of the Sponza 51

scene. The ground-truth version of the Amazon Bistro scene 52

is generated using 64 ray samples per fragment without gener- 53

ating and using the DVF structure. Under this configuration, 54

it can be rendered in our test system with 12 FPS. In the fol- 55

lowing, we first analyze the performance of our algorithm un- 56

der different parameter configurations using the Sponza scene. 57

We then compare our results with Yang et al. [18] in terms of 58

computational performance. Finally, we provide a detailed tim- 59

ing analysis of our approach for both the Sponza and Amazon 60

Bistro scenes. 61

4.1.1. Number of Point Samples 62

In this section, the rendering results are presented for scenes 63

that are sampled with different numbers of point samples. As 64

presented in Section 3.1.3, we propose to use the ceiling func- 65

tion to determine the number of point samples to generate per 66

triangle. This ensures that each triangle is represented with at 67

least one point sample. As a side-effect, it also increases the to- 68

tal number of samples. The method in [18] is more accurately 69

replicated with the round function, which may cause small tri- 70

angles to be skipped. We therefore show the rendering results 71

using both approaches. As can be seen from Figure 13, the 72

use of ceiling function improves image quality without impos- 73

ing a significant performance cost. The difference is more no- 74

ticeable for small sample counts such as 80K as this leads to 75

a higher number of extra samples. It is also shown in this fig- 76

ure that the use of the hash function produces better results than 77

the Hammersley sequence at approximately the same computa- 78

tional cost. 79

4.1.2. DVF Grid Resolution 80

The resolution of the DVF grid is one of the key parameters 81

that affect the quality of the visibility approximation around sur- 82

face points. Our evaluation of this parameter is shown in Fig- 83

ure 14. As can seen from this figure, the performance in terms 84

of FPS is lower for higher resolution grids – but it also drop for 85

lower resolution ones. Also, the quality improves with reduced 86

grid resolutions. These results may appear somewhat counter- 87

intuitive, but they can be explained as below. 88

A higher grid resolution better approximates the visibility 89

around each point – however, it also leads to a higher com- 90

putational cost. Also, somewhat counter-intuitively, a higher 91

resolution grid does not necessarily improve rendering quality. 92
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Our Result Absolute Error FLIP
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K

73 FPS RMSE: 0.330940 Mean: 0.499832

40
0K
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59 FPS RMSE: 0.060940 Mean: 0.043503

10
M

54 FPS RMSE: 0.003100 Mean: 0.002501
Round with hash

Our Result Absolute Error FLIP

58 FPS RMSE: 0.113394 Mean: 0.090513

56 FPS RMSE: 0.013245 Mean: 0.022700

55 FPS RMSE: 0.005040 Mean: 0.006104

54 FPS RMSE: 0.002604 Mean: 0.001792
Ceiling with hash

Our Result Absolute Error FLIP

61 FPS RMSE: 0.109425 Mean: 0.145041

58 FPS RMSE: 0.028231 Mean: 0.054061

56 FPS RMSE: 0.012378 Mean: 0.017519

54 FPS RMSE: 0.003515 Mean: 0.003755
Ceiling with Ham.

Fig. 13: Left: Rounding approach used with the hash function. Middle: Ceiling approach with the hash function. Right: Ceiling with the Hammersley sequence.
The left-most column shows the number of point samples.
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Fig. 14: The effect of different grid dimensions. Triangle point sampling is
performed using the hash function. 10M point samples are used.

This can be understood if we consider a 1×1×1 grid, whose sole1

voxel encompasses the entire scene. In such a case, the number2

of occluded and visible directions will be very large and most3

likely equal as they are computed from all point samples scat-4

tered throughout the scene. The fragment shader uses the DVF5

to reduce the number of rays it needs to trace. It traces rays6

in occluded directions when the surface point is mostly visible,7

and it traces rays in visible directions when the surface point8

is mostly occluded (see Figure 1). In the extreme case, the oc-9

clusion label is determined to be 0, which means the fragment10

shader will trace rays in occluded directions. Since all direc-11

tions are also occluded, all 128 rays will have to be traced. This 12

means the DVF loses its ability to reduce the number of rays 13

that must be traced for each point, causing both a drop in per- 14

formance and a rise in quality. 15

Furthermore, for high resolution grids, memory management 16

will be more complex due to the limited cache size of compute 17

units. Even though the number of compute shaders that try to 18

access the same pixel will be lower, each compute shader will 19

try to access different parts of the image array that are far from 20

each other in terms of their memory location. When grid dimen- 21

sions are smaller, cache hits will be more probable but as each 22

compute shader will try to access the similar parts of the image 23

array atomic operations may cause serialization as explained in 24

Section 3.1.3. 25

This means that for each scene there could be a different ideal 26

grid resolution and this resolution should be neither too low 27

nor too high. For the Sponza scene shown in Figure 14, the 28

40 × 25 × 18 resolution appears to yield the best trade-off. 29

4.1.3. Number of Ray Samples 30

As expected and can be seen from Figure 15, the rendering 31

accuracy increases in lockstep with the number of ray samples. 32

The performance drop is not linear, however, and with 128 ray 33

samples high fidelity renderings can be obtained. 34

4.1.4. Number of Invocations per Point Sample 35

In this section rendering results are presented for cases where 36

different numbers of invocations per point sample are invoked. 37

If Nr ray samples have to be traced for a point sample, Ninv local 38

invocations work on the different rays of the same point sample 39

so that Ninv rays can be traced simultaneously. As shown in 40

Figure 16, the rendering speed increases with the number of 41

parallel invocations per point sample. The accuracy of the result 42

is similar in all cases – only a minor variation is observed due 43

to the pseudo-random number generation process. 44

4.2. Comparison with Yang et al. [18] 45

In [18], the authors perform precomputation on the CPU, 46

which precludes the possibility of animation or geometry 47



Preprint Submitted for review /Computers & Graphics (2025) 9

Our Result Absolute Error FLIP

16

118 FPS RMSE: 0.125798 Mean: 0.165401

32

100 FPS RMSE: 0.075751 Mean: 0.099053

64

77 FPS RMSE: 0.047239 Mean: 0.059712

12
8

54 FPS RMSE: 0.002604 Mean: 0.001792

Fig. 15: Different number of ray samples. Triangle point sampling is performed
using the hash function. Results are reported for 10M point samples.

Our Result Absolute Error FLIP

1

20 FPS RMSE: 0.002481 Mean: 0.001616

8

24 FPS RMSE: 0.002298 Mean: 0.001529

32

29 FPS RMSE: 0.002474 Mean: 0.001619

12
8

54 FPS RMSE: 0.002604 Mean: 0.001792

Fig. 16: The number of parallel execution of ray samples for each point sample.
The total amount of ray samples is the same for each case. Triangle point
sampling is performed using the hash function. Results are reported for 10M
point samples.

changes during the rendering process. By comparing our tim-1

ing results with this work, we aim to shed light on (i) how much2

CPU work is avoided and (ii) how much run-time cost is in-3

curred as a result of doing the precomputation for each frame.4

These results are summarized in Table 2 for different numbers5

of point samples. The precomputation timings for the reference6

work are taken from [18], who used Intel Core i9-10980XE7

CPU to implement their algorithm on the CPU. The run-time8

algorithm of [18] is implemented using the graphics pipeline9

on NVIDIA GeForce RTX 3080. The only difference between10

this implementation from our run-time approach is the way the11

Table 2: Frame durations (ms) with different number of point samples, includ-
ing both precomputation and rendering for the Sponza scene.

Point sample count 80K 400K 2M 10M
Yang et al. - Precomputation [18] 1.651 3.279 11.187 50.558

Yang et al. - Rendering [18] 11.41 13.07 14.69 15.74
Ours - Precomputation 3.89 3.87 3.82 3.79

Ours - Rendering 13.35 13.97 14.42 14.72
Ours - Total 17.24 17.84 18.24 18.51

Textured with DVFs Absolute error

Sp
on

za

GPU Precomputation: 3.79 ms RMSE: 0.004056
Rendering: 14.73 ms

Total: 18.51 ms

A
m

az
on

B
is

tr
o

GPU Precomputation: 30.90 ms RMSE: 0.011574
Rendering: 31.60 ms

Total: 62.50 ms

Fig. 17: Left: textured versions of the Sponza and Amazon Bistro scenes ren-
dered using our per-frame computation of DVFs. Right: corresponding RMSE
maps. 10M point samples are used.

DVF is accessed. In [18], the DVF and occlusion labels are 12

accessed through textures, which are computed offline and up- 13

loaded to the GPU memory. In our case, the DVF is created for 14

each frame in real-time and its visibility and occlusion masks 15

are accessed through the DVF masks image array. The occlu- 16

sion labels are read from the occlusion label SSBO. 17

It can be seen from these results that the CPU implementa- 18

tion of the DVF algorithm is time consuming. It takes about 19

1.5 seconds for 80K samples and it goes up to 50.5 seconds for 20

10M samples. We note that this high number of samples is re- 21

quired for producing accurate rendering results (see Figure 13). 22

As for the run-time performance, Yang et al.’s algorithm takes 23

approximately 15 ms for this high sample count, whereas our 24

algorithm takes about 18 ms including precomputation. 25

4.2.1. Detailed Timing Analysis 26

In this section, we further analyze the computational com- 27

plexity of our algorithm by showing the time taken by each 28

compute shader stage. For accurate time measurement, the 29

compute pipelines are flushed and synchronized. This causes 30

the total time to be more than what it would be without these 31

additional synchronization points. The time taken by each com- 32

pute shader stage for Sponza and Amazon Bistro scenes with 33

10M point samples are shown in Table 3. For Sponza, it can be 34

seen that CS5 takes the majority of the time. The fact that CS5 35

takes more time than CS4 can be explained by the fact that CS5 36

is executed per grid cell and is therefore parallelized to a lesser 37
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Table 3: Time taken by each shader stage (in ms) for Sponza and Amazon Bistro
scenes using 10M samples.

Shader Stage Sponza (ms) Amazon Bistro (ms)
CS1: Area and Normal Calculation 0.084 0.862
CS2: Adaptive Prefix Sum (Upsweep) 0.583 6.486
CS3: Adaptive Prefix Sum (Downsweep) 0.582 6.253
CS4: DVF Generation 0.683 10.765
CS5: Calculation of Occlusion Labels 1.858 6.533
Total 3.793 30.899

(b) Occlusion label (c) Close-up of the artifact region

(a) Frames from the animation

Fig. 18: Several frames from the dynamic Cornell box scene. The bottom-
left frame from the animation is shown together with its occlusion label. Note
the small discontinuity artifact on the object’s surface due to the change of the
occlusion label. See text for details.

degree than CS4, which is executed per triangle. However, for1

the Amazon Bisto scene which has 2.8M triangles compared to2

262K in Sponza, CS4 takes the majority of the time. Although3

the grid resolution is also increased to 111 × 118 × 34 from4

77 × 48 × 34 of Sponza, the higher increase in triangle count5

appears to dominate the computation times. The computation6

times of other shaders such as CS1, CS2, and CS3 that also7

depend on the triangle count appear to increase linearly with8

the triangle count as well. This evaluation indicates that for9

a very complex scene such as Amazon Bistro, we can perform10

the entire precomputation process with more than 30 frames per11

second.12

The textured versions of these scenes rendered using our per-13

frame computation of DVFs together with their error maps are14

shown in Figure 17 for 10M point samples.15

4.3. Dynamic scene performance16

As our algorithm is designed to enable real-time environment17

lighting for dynamic scenes, we show the applicability of our18

algorithm for such a setup using a Cornell box-like scene in19

which a rectangular prism orbits around the center of the scene.20

The reference rendering for this scene is obtained without us-21

ing the DVF structure with 128 environment lighting rays per22

Our Result FLIP

10
0

245 FPS 0.423682

10
00

153 FPS 0.194046

10
00

0

112 FPS 0.010510

10
00

00
106 FPS 0.001150

Fig. 19: The effect of different number of point samples. Hammersley sequence
is used for generating the point samples.

fragment. This baseline implementation yields 44 FPS, which 23

can be considered high enough for real-time rendering. How- 24

ever, we show that much higher frame rates can be obtained 25

using our approach. For the results presented in this section, we 26

use the Hammersley low discrepancy sequence for generating 27

random numbers. This is because we experimentally observed 28

that the hash function produces inferior results when used with 29

meshes with low triangle count (see Discussion). Our rendering 30

results for different positions of the orbiting prism are shown in 31

Figure 18. Several recorded animations can be seen in supple- 32

mentary materials. 33

The effect of different numbers of point samples is illustrated 34

in Figure 19. Here, artifacts can be clearly observed for low 35

sample counts as this leaves many surface regions to be under- 36

represented. High quality results can be obtained with a mean 37

FLIP value of 0.001150 using 1M point samples, in which case 38

the corresponding FPS becomes 106. This can be considered 39

a noticeable improvement over the ground-truth frame rate of 40

44 with negligible effect on image quality. These results are 41

obtained with a DVF grid resolution of 16 × 16 × 16, with 128 42

ray samples per point sample, and 128 parallel ray invocations 43

per point sample. As the results of evaluation with respect to 44

these parameters follow a similar trend to the static case, they 45

are left out for brevity in this paper. A detailed timing analysis 46

of the shader stages is provided in Table 4. 47

4.4. Animation Artifacts 48

One problem that we observed during animation was occa- 49

sional artifacts that occurred when a part of an animated ob- 50

ject moved between two grid cells that have different occlusion 51

labels. This changes the irradiance computation from visible 52
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Table 4: Time taken by each shader stage (in ms) for Cornell box scene using
100K samples.

Shader Stage Cornell Box (ms)
CS1: Area and Normal Calculation 0.006
CS2: Adaptive Prefix Sum (Upsweep) 0.005
CS3: Adaptive Prefix Sum (Downsweep) 0.005
CS4: DVF Generation 0.909
CS5: Calculation of Occlusion Labels 0.056
Total 0.9306

irradiance (if the grid cell is mostly occluded) to subtracted ir-1

radiance (if the grid cell is mostly visible). Because smooth2

continuity between two such irradiance values cannot be en-3

sured, this can lead to discontinuity and flickering artifacts (see4

Figure 18 (c)). These artifacts can be mitigated by increasing5

the number of point samples as shown by example videos in6

supplementary materials. We also note that when textures and7

more complex models and animations are used, as opposed to8

purely diffuse objects with low polygon count, the visibility of9

such artifacts is likely to be visually masked [53].10

5. Discussion11

After examining the effect of various parameters, the follow-12

ing overall conclusions can be drawn.13

Hammersley Sequence vs. Hash Function. For the Sponza14

scene, which consists of many small triangles, the difference15

between the hash function and the Hammersley sequence was16

negligible with a slight advantage for the hash function. This17

could be attributed to the fact that the Hammersley sequence is18

not random: it is a well-distributed low discrepancy sequence,19

but when only a few samples are selected on each triangle they20

tend to be selected from the same relative positions – which is21

not a problem if more samples are selected per triangle as in the22

Cornell box scene. In fact, the Cornell box scene confirms this23

observation for which the hashing based randomization is infe-24

rior to the low-discrepancy one. This is because the hash func-25

tion requires seed values to generate random numbers. In this26

study, these seed values are harvested from the vertex indices27

of the triangles. Since simple scenes, such as the Cornell box,28

have relatively few vertices with repeated indices, generating29

random points using the hash function does not produce well-30

distributed point samples. It can therefore be concluded that the31

Hammersley sequence is overall a better choice for generating32

the point samples over the surfaces, especially for low polygon33

models.34

Ideal Grid Resolution. As discussed in Section 4.1.2, the35

DVF grid resolution should neither be too small nor too large.36

The best results are obtained with intermediate grid resolutions,37

which need to be tuned for each scene. We found the optimal38

grid resolution as 40 × 25 × 18 for the Sponza scene and 16 ×39

16 × 16 for the Cornell box scene.40

Compute Shader Subdivision. As discussed in Sec-41

tion 3.1.3, Compute Shader 4 carries out many different op-42

erations and it can be considered as our most complex shader.43

We therefore investigated whether its performance can be im-44

proved by subdividing it into two shaders as A and B. In this45

setup, Compute Shader 4A would generate the point samples 46

on triangles and write their coordinates to an SSBO. Compute 47

Shader 4B would be dispatched per point sample with Nr (num- 48

ber of ray samples) local invocations to trace the rays and write 49

the results into DVF Masks Image Array. While we considered 50

this as a logical subdivision, experimental results produced in- 51

ferior performance with this approach. This is because all invo- 52

cations of Compute Shader 4B were trying to access the same 53

image array locations simultaneously using atomic OR opera- 54

tions, leading to congestion. 55

When this subdivision is not done, the congestion is reduced 56

because invocations first generate the point samples and then 57

trace rays before writing the result to the image array. Since 58

Compute Shader 4 is dispatched per triangle and point sample 59

generation duration is different for each triangle, the invocations 60

get jittered on the time domain reducing conflicts. 61

Pipelining Compute and Graphics Tasks. In our imple- 62

mentation, compute and graphics tasks are executed sequen- 63

tially (Figure 3). In practice, their execution can be pipelined 64

by ensuring that compute shaders always work one frame ahead 65

of graphics shaders, potentially leading to a better performance. 66

Culling. In the original DVF algorithm, precomputation has 67

to be done for the entire scene as the scene can be viewed 68

from different camera positions and orientations during run- 69

time. However, in our dynamic DVF implementation, it is pos- 70

sible to limit the precomputation to only visible objects in the 71

current frame. This can be achieved by applying frustum and 72

back-face culling inside compute shaders to reduce the num- 73

ber of processed triangles. We leave the exploration of this ap- 74

proach as future work. 75

GPU Based Animation. In this study, we animate the Cor- 76

nell box model using a simplified approach for a proof-of- 77

concept implementation: the geometry of the orbiting box is 78

updated on the CPU and the results are written to the Ver- 79

tices SSBO. Consequently, the top- and bottom-level acceler- 80

ation structures (TLAS and BLAS) are also updated since they 81

contain the scene geometry information (see Figure 4). This ap- 82

proach does not affect the performance evaluation since both the 83

ground-truth and our results are obtained in the same manner. 84

To achieve more complex animations in real-time, a compute 85

shader can be utilized to update the vertices in the GPU. 86

6. Conclusion 87

We presented a GPU-based precomputation algorithm that 88

improves upon the work presented in [18] to support render- 89

ing of dynamic scenes. The key contribution of our work was 90

to show how the relatively complex precomputation tasks can 91

be divided into different compute shader stages. We show that 92

this is not a trivial task and different parallelization schemes 93

and parameters yield different performance. We conducted ad- 94

ditional tests to evaluate the performance-quality trade-off of 95

our approach for different parameter configurations. Finally, 96

we examined the performance of real-time rendering of dy- 97

namic scenes by utilizing a proof-of-concept animation using 98

a Cornell box-like scene. We believe that the improved run- 99

time performance afforded by our algorithm can make realistic 100
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Algorithm 2: Precomputation of the DVF [18].
Input : surface meshM, Nr ray samples R1,R2, ...,RNr
Output: precomputed DVFV

1 create Np point samples s1, s2, ..., sNp onM
2 create octahedral map OV

s (s) storing Vs(s,ω) for each s
3 create octahedral map OO

s (s) storing Os(s,ω) for each s
4 set all pixels of OV

s (s) and OO
s (s) as 0

// Create masks of point samples
5 foreach point sample s = (p, n) do
6 foreach ray R = (p,ω) do
7 randomly rotate R along n
8 project ω to unit square using octahedral mapping
9 if R intersects scene geometry then

10 set the corresp. pixel in OO
s (s) as 1

11 else
12 set the corresp. pixel in OV

s (s) as 1
13 end if
14 end foreach
15 dilate OV

s (s) by one pixel
16 dilate OO

s (s) by one pixel
17 end foreach
18 construct a uniform grid G forM
19 create octahedral map OV

c (c) for each grid cell c
20 create octahedral map OO

c (c) for each grid cell c
21 set all pixels of OV

c (c) and OO
c (c) as 0

// Merge masks inside a grid cell
22 foreach point sample s = (p, n) do
23 locate the grid cell c by p
24 foreach pixel in the octahedral maps o f c do
25 Vc(c,ω)← Vc(c,ω) ∨ Vs(s,ω) Oc(c,ω)← Oc(c,ω) ∨ Os(s,ω)
26 end foreach
27 end foreach

// Compute occlusion labels
28 foreach grid cell c in G do

29 rocc(c) =
Nocc(c)

Nocc(c) + Nvis(c)
if rocc(c) > 0.5 then

30 locc(c) = 1
31 else
32 locc(c) = 0
33 end if
34 end foreach

and real-time environment lighting for complex and dynamic1

scenes a tangible possibility.2

Appendix A. Precomputation and Runtime Algorithms3

used by Yang et al. [18]4

In this section, we provide both of the algorithms used by5

Yang et al.’s work for the sake of completeness. In our work,6

we replace the precomputation algorithm with a GPU-based im-7

plementation while using the runtime algorithm as-is.8
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