Computers & Graphics 121 (2024) 103945

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect

Computers & Graphics

Computers
&Graphics
- g

Technical Section

Path guiding for wavefront path tracing: A memory efficient approach for N

GPU path tracers™
Bora Yalciner ', Ahmet Oguz Akyiiz

Middle East Technical University, Computer Engineering Department, Ankara, Turkey

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Graphics processors
Monte Carlo rendering
Path tracing

Path guiding

We propose a path-guiding algorithm to be incorporated into the wavefront style of path tracers (WFPTs). As
WEPTs are primarily implemented on graphics processing units (GPUs), the proposed method aims to leverage
the capabilities of the GPUs and reduce the hierarchical data structure and memory usage typically required for
such techniques. To achieve this, our algorithm only stores the radiant exitance on a single global sparse voxel
octree (SVO) data structure. Probability density functions required to guide the rays are generated on-the-fly

using this data structure. The proposed approach reduces the scene-related persistent memory requirements
compared to other path-guiding techniques while producing similar or better results depending on scene
characteristics. To our knowledge, our algorithm is the first one that incorporates path guiding into a WFPT.

1. Introduction

Path tracing family of techniques became one of the standard meth-
ods for generating photo-realistic imagery [1]. The primary motivation
to use these methods is their implementation simplicity and generated
image quality. Furthermore, recent advances in graphics hardware
enable interactive implementations of such techniques. These tech-
niques tackle the complex recursive light-transport integral by applying
numeric Monte Carlo integration, a process known as sampling.

Many sampling schemes are proposed throughout the literature that
either sample sub-sections of the integral (e.g., next-event estimation)
or reflectance portion of the integral [2]. Such sampling schemes are
comparatively simpler because their data is readily available in the
initial scene definition. Other parts of the integrand mostly depend on
the layout of the elements described in the scene. Extracting a proba-
bility field of light distribution over the scene is a critical component
of a robust photo-realistic image estimator. This problem is tackled by
a family of algorithms which are collectively known as path guiding
algorithms [3-5].

Most path-guiding methods utilize a hierarchical discretization of
the light field or a combination of analytically defined functions that
fit this light field. The generation of this probability field relies on the
light transport simulation itself; thus, path-guiding methods progres-
sively learn this field from path tracing either during runtime or in a
preprocessing step. This progressive nature of path guiding necessitates
the usage of highly adaptive data structures, which inherently do not
suit the GPU architecture well. Adaptive discretization, which relies

™ This article was recommended for publication by Prof. J. Jorge.
* Corresponding author.

on adaptive memory management, is not a GPU-friendly operation.
Another problem is that such a probability field has a large memory
requirement due to its being high-dimensional.

To this end, we propose a wavefront path guiding algorithm that is
GPU-friendly and designed to fully utilize the GPU’s capabilities. Our
main contributions are thus (1) on-the-fly generation of the radiant
exitance field, which resides on an SVO data structure; (2) hardware-
accelerated approximate cone tracing for an efficient query of the
radiant exitance, (3) GPU-friendly parallel product path guiding scheme
that utilizes warp-level intrinsics, and (4) a heuristic that judiciously
combines generated samples for improved final image quality.

2. Previous work

The rendering equation is defined by the following integral [1]:

L,(x,w,) = L,(x,m,)+ / fs(x,w;,w,)L;(x, ;) cos 0;dw,;, (@D)]
Q

where the outgoing radiance L, (x,w,) may contribute to another lo-
cation x;, thus, becoming L;(x;,—w;). As such, the above equation
can be recursively expanded, resulting in a series of chained integrals
with a theoretically infinite recursion depth. Because of that, it is not
analytically integrable and is usually evaluated by using the following
Monte Carlo estimator, where the emitted radiance L,(.) is typically
omitted:

(2)

N

“ 1 f(x,0;,w,)L;(x, ;) cos0;

LU(X,COG) - N N 1 0 1 1 1
;1 pa;]x. ,)

E-mail addresses: yalciner.bora@metu.edu.tr (B. Yalciner), akyuz@ceng.metu.edu.tr (A.O. Akyiiz).

https://doi.org/10.1016/j.cag.2024.103945

Received 22 November 2023; Received in revised form 14 May 2024; Accepted 14 May 2024

Available online 17 May 2024

0097-8493/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://doi.org/10.1016/j.cag.2024.103945
https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2024.103945&domain=pdf
mailto:yalciner.bora@metu.edu.tr
mailto:akyuz@ceng.metu.edu.tr
https://doi.org/10.1016/j.cag.2024.103945

B. Yalginer and A.O. Akyiiz

Computers & Graphics 121 (2024) 103945

BVH

=

Ray Trace

7,

Ray
Generation

| £ Missed
l |§ @Hlt

s

& g

I

Guiding

Spatial Batch

Partition Spatial Batch

P

Spatial Batch

Spatial Batch

BxDF Evaluation

BxDF Batch

BxDF Batch

Partition
M

BxDF Batch

BxDF Batch

Spatial Batch

Marginal/Conditional
PDF Generation

Radiant Exitance Cache

Query Surface Position on SVO,
Running-average estimates

L(pjtw,)

;1__/

Paths that reach to

Generate Radiance

Field Per-ray BxDF Field

Emitter

) Radiant Exitance
= B Estimate

s i

Fig. 1. The top-down view of the entire path-guiding algorithm. Blue rectangles of the image show the wavefront path tracing operations. Other colored parts are the additional
steps required for guiding the rays. Partition, and Partition,, sections represent partitioning the rays by position and material, respectively. Device code is executed for each spatial
batch. Each batch generates an incoming radiance field, which is incorporated into the sampling scheme. Paths that reach an emitter contribute to an approximation of the radiant

exitance, which is cached on an SVO.

The variance of such an estimator, visually noticed as noise, is
directly related to the similarity between PDF p and the integrand. As
finding a single optimal PDF is usually not practical, multiple PDFs are
typically combined using multiple importance sampling (MIS) [6].

The BSDF portion of the integrand, f,(.), is traditionally used for
importance sampling due to its fully or partially analytic nature. Ad-
ditionally, parameters required for evaluating it do not recursively
depend on other surfaces; thus, f,(.) can be directly sampled in an
efficient manner. However, fitting a density function for the incoming
radiance portion of the integrand, L,(.), is more cumbersome. Finding
a plausible density function for the incoming radiance field falls into
the domain of path-guiding algorithms.

2.1. Path guiding

Scene radiance field is a high-dimensional data requiring three
dimensions for spatial information and two for spherical direction
information. Since the directional distribution of the incoming radiance
field is not available from the outset, most path-guiding methods either
pre-generate it [4,7-9] or progressively learn it using already computed
path chains [5,10].

Path guiding was pioneered by the works of Lafortune et al. [11]
and Jensen [3]. These approaches utilize histogram-based techniques,
which suffer from memory scalability issues when dealing with high-
resolution data. Schiifler et al. proposed a 9D Gaussian mixture model
(GMM) incorporating the incident and the previous point’s information
on the path chain [12]. Combinations of analytically defined functions
for approximating the radiance field are proposed as well [4,13].
Product sampling, which is the sampling of not only the incoming
radiance but its product with BSDF, is also incorporated into these
approaches [14].

Ruppert et al. utilize a kd-tree for spatial subdivision and a series
of von Mises—Fisher distributions (vMF) for the directional portion
of the field [15]. This method tackles the variance seams that occur
when a spatial portion of the data structure is at a low-resolution state
by adjusting the vMFs to the sampler path’s point of view. Miiller
et al. proposed the practical path guiding method [5]. This algorithm
utilizes sparse data structures in the global radiance field’s spatial
and directional portions. Product extension is also proposed for this
method [16].

Learning-based methods are also proposed for path guiding. Among
these, neural network techniques are either pre-trained via generic

scenes [8,9,17] or trained on a per-scene basis [7]. Reinforcement
learning-based techniques are also used by resembling this problem
into Q-learning [18-20]. However, these approaches store the direc-
tional portion of the radiance field densely, which is not scalable in
terms of memory. For the spatial portion, point samples [19] or dense
arrays [20] are utilized. The Bayesian regression model is also applied
to efficiently sample light sources for improved next-event estimation
sampling [10].

There are real-time and GPU-focused path-guiding approaches as
well. Derevyannykh proposed a screen space parametric mixture model
for path guiding [21]. Due to the screen space nature of the method,
only the first bounce is guided. Dittebrandt et al. propose a real-time
path-guiding scheme that utilizes compressed quad-trees and a visibility
cache for light sampling [22].

Despite several techniques being available for both CPU- and GPU-
based path guiding, to our knowledge, none of these algorithms are
tailored toward a WFPT style path tracer, which has unique design
requirements, as discussed next.

2.2. Wavefront path tracing (WFPT)

WEFPT is the state-of-the-art design of the graphics device path trac-
ing algorithm [23]. Although API-backed, host-style execution methods
exist in the device [24], efficient warp execution mandates some form
of partitioning internally.

A straightforward method for parallelizing the path tracing algo-
rithm on a host (i.e., CPU) system is to assign each recursive random
walk sequence to a single logical core. However, such parallelization is
ill-suited for GPUs because each warp executes in a lock-step fashion.
Due to the random nature of the walks, neighboring threads may exe-
cute different evaluation routines (e.g., different material and shading
computations), which forces the warps to serialize the execution.

The wavefront method segregates the ray casting and material
(BSDF) evaluation/sampling routines, allowing recursion to be eval-
uated in a lock-step fashion. Specifically, for each recursion depth,
threads perform the ray-casting operation to determine the incident
location. Once the evaluating locations are found, rays are partitioned
with respect to the material evaluation parameters. By partitioning
the rays in this way, the computational routines are common among
the threads, which leads to improved performance and efficiency in
execution.

B. Yalginer and A.O. Akyiiz

The main issue with this approach is the high memory requirement.
This approach requires storing walk states after each operation, which
becomes increasingly burdensome as the number of parallel walks
increases. In practice, graphics devices often require thousands of walks
to be executed to saturate the device, leading to a significant memory
burden.

Our primary motivation to describe this proposed method comes
from this central issue. The accompanying path-guiding methods for
path tracing on graphics devices should not further hinder the available
memory or, at the very least, minimize its impact.

3. Proposed method
3.1. Wavefront path guiding

Wavefront path guiding (WFPG) introduces additional steps to the
WEPT algorithm. Before partitioning with respect to the BSDF, rays
are partitioned by position. Then, the partitioned rays collaboratively
generate an estimated radiance field, which is utilized for path guiding.
After guiding is conducted, rays continue the WFPT steps as usual. The
main overview of this algorithm is given in Algorithm 1 and visualized
in Fig. 1. In the following, we describe each part of the algorithm in
detail.

Algorithm 1 Wavefront path guiding.

Input-Output
Ry ={r;,r...}
B= {(p17R[J,])s 2. R,)) - 1
M ={(m, R,), (my, R, 5) ... }
Start
Initially Generate rays from the camera and populate R,
for i = 1 to MaxDepth do
B, = {(pl,Rpl),(pQ,sz) ... } < PaARTITION-S(R;)
N; ={(n, Rnl), (n,, an) ... } < PartITION-M(R;)
for all (p/-,RP/_) € B; do
R/, < GumrRavs((p;, R,))
end for
for all (), R,) € N; do
forall r, € R, do
EvaLuaTEBSDF(n s ry)
end for
end for
R = {Ri1+l’ Ri2+1 -l
end for
for all paths that reach an emitter do
UpDATEEXITANCE(SVO)
end for

> Set of initial rays
> Position bins
> Material bins

> Next set of rays

3.2. Radiant exitance caching using sparse voxel octree

Unlike other methods that store an incoming radiance field over
a spatially discretized volume, we approximate radiant exitance. The
main reason for this approach is to reduce memory usage, as radiant
exitance is a directionless quantity. This quantity is extracted during
Monte Carlo integration and cached in a sparse voxel octree (SVO) [25,
26].

To explain the caching scheme, we resort to the recursively ex-
panded version of the rendering equation, in which path chains are
explicitly written [27]:

0
L(p, = po) =), P(Bp), 3)
k=1
where p; = py,p;.....p; represents all points along the path of a ray,
with p, on the image plane. The radiance that reaches p, from such a

Computers & Graphics 121 (2024) 103945

y L
[2-means clustering |
Initial means |
|
J//
=
- /
L ___ __

After Clustering

|

| |

A Candidate Surfaces on a Voxel | |
| |

| /

Surface Normals

Fig. 2. The approximate normals of the voxel are calculated by conducting a k-means
clustering with k = 2. This prevents opposite normals from canceling each other out.

path is then:

P(ﬁk):/""/QLZ(Pk_)Pk—I)
—_——

k-1

k=1 4)
X (Hfs(pjﬂ = p; = Pi-1)G(Pjy —>p,-)>

j=1
X dA(py) -+ dA(py).

where f is the BSDF and G is the geometry term. The radiance from the
path vertex p, toward p,_; can be extracted from the total throughput
as follows:

L(pk - pk—l) = %Le(pn - pn—l)‘ (5)
Thus, for every path, the position p, and the throughput T(p,) are
stored for every depth on the path. When an emitter is found, its
radiance is backpropagated at every depth, and its local radiance
estimate is found. The position p, is used to query the SVO to find
the leaf voxel, and finally, these local radiance estimates are accumu-
lated to approximate the radiant exitance for that leaf. This operation
corresponds to UppaTEExITANCE(SVO) routine in Algorithm 1.

The SVO is generated using Crassin et al.’s approach [28]. The scene
is conservatively voxelized in 3D space, and voxels are generated. After
the voxelization step, the tree hierarchy is generated using the method
described by Karras et al. using Morton code sorting [29].

Since the SVO has a limited voxel resolution, scenes with thin ob-
jects would not be adequately represented due to the SVO’s volumetric
subdivision. To alleviate this, we approximate the surface orientation
via normals. Thus, each node of the SVO stores two surface normals,
and the radiant exitance corresponding to each normal direction is
separately stored. The radiant exitance that is stored on the leaf nodes
of the SVO is propagated toward the inner nodes of the tree structure.
In our experiments, we found a simple bottom-up averaging scheme to
be sufficient. This information is required to query incoming radiance
using cone tracing.

To estimate normals, the surface fragment normals are obtained
during the voxelization process and are subjected to a simple k-means
clustering procedure with k = 2. This process is demonstrated in
Fig. 2. The initial means for the algorithm is a random vector selected
from the surface elements inside the voxel and its opposite. Through
iterative refinement, these vectors are updated to represent the two
dominant directions of the surface elements better. At the end, the
first cluster’s representative vector N and its opposite —N are selected
as the representative directions for that voxel. The motivation behind
this approach is to allow a voxel to become an omnidirectional source.
If the clustering results were directly used, certain fragments whose
normals point away from the dominant directions would not make
a contribution. The clustering approach also prevents normals from
canceling each other out, which could occur if a simple average was
used.

B. Yalginer and A.O. Akyiiz

Reference

Fig. 3. Normalized radiance fields of our method (WFPG) and Miiller et al.’s method
(PPG). In this instance, our method produces a radiance field with a resolution of
1282. Both methods are trained using an equal number of samples (2048 per pixel).
The reference radiance field is generated via path tracing and has a resolution of 256
(2'¢ samples per pixel).

3.3. On-the-fly generation of local radiance field

To generate the incoming radiance over a surface, we utilize a mod-
ified cone tracing approach to reduce aliasing artifacts that would be
caused by sampling the environment using infinitesimally thin rays [30,
31].

Given a location on the scene, p,, the omnidirectional incoming ra-
diance field L(p;,w;) is stratified into equal solid angle patches, w. The
SVO is queried for each patch by tracing a cone toward that direction
to find the incident hit position, which can be found using different
approaches. The volumetric estimation proposed by Crassin et al. [31]
is efficient but is prone to light leaks. Empty space skipping cone
tracing [25] can also be used, but we found it to be slower compared to
a third alternative. In this alternative, we use the underlying device’s
hardware-accelerated ray tracing capabilities to find the intersection
point. After the hit point is found, the radiant exitance stored in the
SVO is queried using the cone aperture, hit position, and distance.

As the cone with an aperture of w travels into the scene, the area A
of the disk at the base of the cone increases. This (projected) area can
be computed by using the following formula:

A=rlo, (6)

where r is the distance between the apex and the cone base. At this
distance, the area of the disk would be equal to zR?, with R being
the disk’s radius. As we already know the leaf voxel that contains the
intersection point, we traverse up the SVO to find the voxel whose area
is closest to the disk’s area (the square of its side length approximates
the voxel’s cross-section area). The radiant exitance in this node is then
sampled by multiplying the corresponding voxel normal with the cone’s
principal direction.

To show the effectiveness of the proposed approach, Fig. 3 compares
our method’s generated radiance field and that of the practical path-

Computers & Graphics 121 (2024) 103945

Algorithm 2 PartiTioN-S Routine. Partition the paths that have hit p; to
series of bins b; using an SVO with the depth d.

Input

R={r,ry...} > Rays that are going to be partitioned
SVO = {(n)',(ny,...)% ... (ny, ..)%} > (n)! is the root
Output

B={(p,R,), (P2 R,) ... } > Pair of positions and ray sets
Buffer

I=1{b.b,...} > Bin id for each ray
Start

Clear B, I

for all -, € R do
p; < RayPosiTioN(r;)
n? — DEsceNDLEAF(p;)
ATOMICADD(nf , 1)
b; < NopeIn(nf)
end for
for all / € SVO (in bottom-up fashion, up to /,,;,,) do
for all n' € (n...)" in SVO level / do
C = {c,c,...c8) > Node children’s path count
T ¢+ +cg

> Find the leaf node

if T >c, orl=1,, then
MARKNODE(VL§) > This node has sufficient rays
end if
end for
end for

for all b, € I do
n? — ToNobE(b,)
nf « ASCENDANDFINDMARKED(n:.j)
b; < NODEID(ni)

end for

B « PartiTION(/, R)

> Find the node for each bin

guiding technique [5] together with the ground-truth reference as seen
from two different viewpoints. It can be seen from the figures that our
scheme better approximates the actual incoming radiance field.

3.4. Positional binning using SVO

Executing the aforementioned radiance field generation scheme
would be too costly if evaluated at every point. To amortize this cost,
we employ a binning scheme that generates a single radiance field for
nearby points. The primary assumption of this approach is that similar
regions of the scene would receive similar radiance.

Our positional binning scheme is described in Algorithm 2. Since
we already have the scene’s SVO hierarchy, we utilize that for the
partitioning scheme. Each path atomically increments a value on the
leaves of the SVO. Then, these values are accumulated for each level of
the SVO in a bottom-up fashion. Two user-defined parameters, referred
to as /,,;, and ¢y, are employed to control the partitioning process.
The /,;, parameter sets the minimum limit for the tree level up to
which binning can be performed. The c,,, parameter, on the other hand,
determines the threshold for the number of rays considered sufficient
for each bin. A sample output for this process is shown in Fig. 4.

Once binning is complete, the radiance field is generated for each
bin in a GPU-oriented manner. That is, a single device block is utilized
for each partition, and the threads on that block simultaneously generate
the radiance field. The resolution of this radiance field is another
parameter of our method. In our experiments, we used a maximum
resolution of 128 x 128 (corresponds to 64 KiB of memory) due to
shared memory limitations. This local radiance field is stored in the
shared memory available for each block — in other words, no persistent
GPU memory is used.

B. Yalginer and A.O. Akyiiz

Cray = 128, Lyin = 3 Cray = 256, Lyin = 3

, A o

Cray = 512, byin = 3 Cray = 1024, I, =
‘ A

Fig. 4. False color representation for the binning process for the initial rays coming
from the camera. For each colored region, a single local radiance field is generated.
Note that the region size increases with the ray count threshold parameter, c,,.

Algorithm 3 GumEeRavs routine. Given a bin with partitioned rays,
generate incident radiance field, generate PDF and CDF, and sample
either using path guiding or BSDF via MIS.

Input

;5 Rp/) > Partitioned position and rays
Output

R,y > Guided rays
Buffer

L(p;, ;) > Incoming Radiance Field on shared memory
PDF(w;),CDF(w;) > PDF and CDF on shared memory
Start

Do < SELECTORIGIN(R[]/)
for all w; € 2 do
L(p,, ;) < CoNETRACE(SV O, p,,, w;)
end for
CDF(w;), PDF(w;) < GENERATEPDF-CDF(L)
for all r, € R, do
M <« ACQUIREMATERIAL(r)
"y, < MIS(PDF(w,), CDF(w,), M)
end for
Rl = {riy)

3.5. Path guiding

The local radiance field generated after the binning process can now
be used for path guiding. To this end, we first compute the probability
and cumulative density functions (PDF) and (CDF) for sampling ac-
cording to these distributions. For the sampling process, the radiance
field is treated as a piecewise constant 2D function. Traditional inverse
sampling methods can be used in parallel [32]. Each row of the 2D field
is assigned to a single warp, which applies an inclusive scan (prefix
sum) using warp-level intrinsics to generate the CDF for each row. The
marginal portion of the CDF is calculated similarly. For non-product
path guiding (see below), the results of this approach can be used
directly. The pseudocode for this phase of our approach is shared in
Algorithm 3.

3.6. Product path guiding

In product path guiding, we multiply the BSDF at each point with
its corresponding radiance field. The main problem that needs to be

Computers & Graphics 121 (2024) 103945

Veach Door - Individual samples VeachDoor - Heuristics

o T T T
2
2 6 1 &
g =
> =
o 21 |
z 2L ! ! ! . 0 ! ! !
1 8 16 24 32 4 8 12 16
Sample Index Sample per Pixel (SPP)
——— Constant ——— Linear = —— Quadratic
——— One-Two Discard First PT First
—— Path Tracing

Fig. 5. Single sample variance of the proposed and traditional path-tracking methods.
Each sample on the graph is considered in isolation. This graph exposes our method’s
learning scheme. The general trend of the light distribution is immediately learned in
a couple of samples. In this example, the benefits stabilize after about the 20th sample.
The first sample of path guiding has higher error than pure path tracing because we
sample an omnidirectional field, whereas path tracing samples a hemispherical one.

solved is the efficient computation of this product. For this purpose, we
utilize the approach of Estevez et al. [33], which was initially proposed
for environment mapping. This method utilizes a two-layer hierarchical
system. The lower level is the original radiance field. The higher level
is the subsampled representation of this field into the resolution of
the BSDF field. Based on the constraints of the underlying GPU, we
found using an 8 x 8 resolution appropriate for the higher level. The
process then involves element-wise multiplication of the BSDF and low-
resolution radiance fields. This approach uses a different parallelization
scheme compared to the previous one. In this scheme, each warp (group
of threads) handles a single point instead of each thread. Using warp-
level intrinsics, each warp collaboratively generates a multiplied upper
layer and samples from it.

The result is then used for the first stage of sampling, which can
be done as explained in the previous section. We then find the corre-
sponding block in the lower level (i.e., higher resolution) radiance field
and perform a second stage of sampling according to the distribution
in this block. For example, if the higher and lower levels are 8 x 8 and
128 x 128 respectively, the second sampling samples from a 16 x 16
field.

3.7. Sample combination heuristic

As our approach progressively learns about the radiant exitance dis-
tribution, initial samples may not benefit sufficiently from path guiding.
With each primary ray sample, the distribution will be better learned,
and the benefits will improve. However, after a certain number of sam-
ples, the field may saturate and only undergo incremental changes. This
section describes several heuristics that experimentally combine differ-
ent sampling schemes given the described behavior. Given a set of N
full image samples and weights S = {(S}, W)), (Sy, W3), ..., (Sy. Wa)},
the resulting radiance-field of the generated image I can be computed
with the given heuristics function A(i) as follows:

_ ZL WiSihG) -
XL Wih()
Several heuristic functions are shown below:

i i<5

h(i) = . (Linear)
5 otherwise
2 i<5)

h(i) = (Quadratic)
25 otherwise

B. Yalginer and A.O. Akyiiz

K

Fig. 6. Aliasing illustration, assuming radiance field is generated over the volume
represented by the green dashed square. The radiance field is generated from a point
p,- The contribution of a small occluder (shaded red) could not be captured due to the
low-resolution radiance field. Cone rays miss the occluder, and the radiant exitance of
the surface behind is queried.

1 i=1
h(i) =) (One-Two)
2 otherwise

{o i=1
h(i) =
1 otherwise
In addition to these heuristics, we experimented with two more, namely
“Constant” and “PT First”. In the former, each sample has constant
weight, and in the latter, the first sample directly comes from the first
path-tracing sample without path guiding being applied. The remaining
samples are generated with path guiding and are equally weighted.
The results for different combinations are shown in Fig. 5. Here, the
left graph shows the mean squared error for each sample in isolation.
The pink curve corresponds to pure path tracing and the purple curve
to our approach. It can seen that for the first sample, our approach
has higher error as we sample an omnidirectional field, whereas path
tracing samples a hemispherical one. In our case, the following samples
produce lower variance than path tracing as the light distribution
is learned. The benefits stabilize after a certain point. On the right-
hand side of the same figure, we show the results of different sample
combination heuristics with respect to the HDR-FLIP metric [34]. It can
be observed that among the proposed strategies, the best combination
strategy is “PT First”, which we use for the results produced in this
paper.

(Discard First)

4. Implementation

We have implemented our algorithm using CUDA. For hardware-
accelerated ray tracing, we use the OptiX Framework [35]. Our source
code is publicly available in [36]. In the following, we discuss several
important implementation issues.

OptiX & Shared Memory: Since OptiX does not expose inline ray-
tracing capabilities, we could not utilize the shared memory and the
device’s hardware-accelerated ray-tracing capabilities in a single kernel
execution. Therefore, we use a small persistent buffer to segregate the
OptiX ray-tracing pipeline launches with the sampling kernel launches.
The allocation amount depends on the number of processors on the
device. In our experiments, 8 to 16 MiB of memory was enough to
saturate mid to high-end GPU. This segregation is unnecessary for other
APIs, such as DXR and Vulkan, since hardware-accelerated ray tracing
inside a compute shader and access to the shared memory can be done
simultaneously.

Captured radiance field’s origin and aliasing: Selecting the ref-
erence point for the radiance field generation is not simple. Directly
selecting the center point of the collaborating rays would create self-
occlusions, or directly using the center of the partitioned region would
make variance seams toward the edges of the partitioned area. Instead,
we randomly select a candidate hit location and use it as a radiance
field origin at each iteration.

Computers & Graphics 121 (2024) 103945

Jitter + Gaussian

No Jitter

Fig. 7. Demonstration of jittering and filtering. NEE is turned off for demonstration
purposes. Variance seams are visible without jittering. Positional and directional jitter
and Gaussian blur minimize variance seams.

Like in the real-time rendering paradigm, aliasing is an issue, even
with the cone tracing approach (Fig. 6). High-frequency illumination
or occlusion could not be captured due to the relatively low-resolution
radiance field. To reduce this issue, we jitter the sampling directions to
capture these high-frequency regions, at least on some iterations.

Both directional and spatial jittering minimize variance seams.
However, the radiance field we generate corresponds precisely to
the spatial location being rendered; any other rays trailing a slightly
different part of the scene would need a slightly modified field to
compensate for the difference in perspective. To make the generated
radiance field plausible for all the rays in the bin, we filter the radiance
field using Gaussian blur. The effects of these antialiasing approaches
are illustrated in Fig. 7.

PDF Domains: For an estimator to be unbiased, the sampling
domain should encapsulate the sampled radiance field, meaning that its
PDF should be non-zero where the radiance field is non-zero. Generated
radiance fields are common for groups of rays, and they are generated
from a singular location on the spatial domain; sampling for some rays
would not satisfy this unbiasedness constraint. Blurring the generated
radiance field alleviates this issue somewhat, but there can still be zero
values on the radiance field due to self-occlusion. Because of that, we
set a constant non-zero epsilon (¢ = 1072) value as the initial value of
the radiance field.

Multiple Importance Sampling (MIS): Although we explain our
algorithm as if the radiance field guiding scheme is the only sampler
for the given path, in practice, traditional next-event estimation (NEE)
and BSDF sampling schemes are combined using MIS. MIS requires
the combined PDFs to be present for calculation. To acquire the BSDF
sampler’s PDF, BSDF data needs to be accessed, which may raise
an issue of branching discrepancies between threads within a warp.
However, due to the spatial binning scheme, nearby regions usually
have the same BSDF, and branch divergence is minimal. This is not an
issue with the product path guiding scheme since the entire warp is
responsible for a single ray.

Radiance field projection on to 2D Cartesian space. To repre-
sent the radiance field on a 2D Cartesian grid, we utilize concentric
octahedral mapping [37]. This method is known to give better results
on lower resolutions than other classical projection techniques, such as
spherical projection.

5. Results & validation

In this section, we evaluate our method under various test scenarios.
For clarity, our method is named WFPG throughout this section. In all
tests, next-event estimation is enabled. All of the GPU measurements
are done using a 3070Ti Mobile GPU. Lastly, we generate radiance
fields in a decaying manner, meaning that with each path depth,
we decrease the size of the generated radiance field by two in each
dimension. This is motivated by the fact that earlier bounces make a
greater contribution to the final image due to higher throughput.

B. Yalginer and A.O. Akyiiz

Table 1

Single sample per pixel timings (ms) of the wavefront path guiding stages. Each Depth,
is the total computation time of our algorithm with (bottom) and without (top) product
path guiding for the nth bounce of a ray path. The miscellaneous portion includes
partitioning and material evaluation routines. For product path guiding, BSDF resolution
is 8 x 8. The bottom row shows the time of pure path tracing.

Computers & Graphics 121 (2024) 103945

Table 3
Memory requirements of different methods. WFPG method parameters are /,,, = 5,
¢y = 512 and SVO = 128. All other methods use their default parameters. The

iterative training SPP value of Ruppert et al.’s method is 4. For “Sponza” and “Veach
Door” scenes, the resolution is 1920 x 1080. For the Bathroom scene, the resolution
is 1280 x 1280.

1920 x 1080 1280 x 1280 Depth Ours Scene-related Memory (MiB)
SPONZA VEACHDOOR BATHROOM CornELLBOX Training Miiller et al. Ruppert et al.
WFPG Lyin =5, Crgy =512, SVO =256} 16 t 19.0 3.2
SpoNzA 4 3.96 32t 26.0 55|
48.29 35.76 33.78 74.46
Depth, (128 x 128) 449 67 180.66 143.37 134.88 64t 520 200
32t 40.3 7.4
25.36 21.23 22.54 31.24
Depth, (64 x 64) 109.46 122.96 99.04 82.79 VeacuDoor 6 126 64t 56.3 14.8
128 t 77.0 30.0
16.68 16.84 14.20 12.39
Depths (32 x 32) 76.67 107.43 79.90 56.16 128 ¢ S8 aa
BartHROOM 10 2.00 256 t 121.32 31.1
10.96 17.25 11.10 7.15 512 t 167.03 63.9
Depthy (16 x 16) 58.03 105.77 73.90 47.56
Update Exitance 4.21 4.07 6.5 4.37
Miscellaneous 75.21 70.80 102.76 48.33 A . .
metrics are used. For the top two rows, HDR-FLIP [34], which is a
180.71 165.95 190.88 177.84 .
Total 523.25 501.60 506.37 374.02 perceptual metric, is used, and for the bottom two rows, the Mean
SVO Generation VIS I R S Squ.are Error (MSE)., which is a nunllerlc metric, is used. It is worth
noting that we applied the MSE metric on tone-mapped [38] frames as
PT 74.00 80.8 92.73 54.42 . s
otherwise critical but minor errors in dark pixels would be subjugated
by relatively less important but higher magnitude errors in lighter
Table 2 pixels.

WEPG statistics for selected scenes. Parameters for our method are the same as in
Table 1. Statistics for only the first three path depths are provided.

Depth, Depth, Depth,
128 x 128 64 x 64 32 x 32
SpoNzA ® 2005/1034 2713/570 2604/444
2 262.8 88.9 21.3
VEACHDOOR @ 2218/935 2637/707 2859/602
2 290.7 86.41 23.42
BATHROOM ® 1867/829 3158/444 3022/418
2) 244.7 103.5 24.8
CornpLLBox 00 4861/337 7151/180 7048/136
2 637.1 234.3 57.7

(1) Bin count/avg. ray per bin
(2) Generated PDF and CDF memory (MiB)

5.1. Profiling

In Table 1, we share the overall timing calculations for our algo-
rithm. The WFPG portion shows the time spent at each depth of our
algorithm. The lightly shaded rows (top) are for pure path guiding,
and the darkly shaded ones (bottom) are for product path guiding.
The time for SVO generation, which is done only once, is shown at
the bottom. The PT row shows the time of pure path tracing without
using our method. It can be seen that the overall cost of our path-
guiding algorithm is approximately two times of path tracing. The
cost of product path guiding is higher due to per-ray product field
calculation, multiplication, and layered sampling.

Table 2 shows several statistics of the WFPG on different scenes.
These are the bin counts, average rays per bin, and the combined
PDF and CDF memory sizes at each bounce. Dense methods such as
Dahm and Keller [19] and Kim et al. [20] would be required to hold
these dense structures in persistent memory, whereas in our case, this
memory is transient in the sense that it is used as shared memory for
each bounce and released for the next one.

5.2. Equal sample/time comparison
In the top row of Fig. 8, we compare our algorithm’s path-guiding

and product path-guiding versions with each other and against path
tracing under an equal sample scenario for five test scenes. Two error

In these results, the “Cornell Box” scene is a reproduction of the
original scene, while the “Cornell Enclosed” is the same scene ex-
cept that a glass enclosure surrounds the light source. This effectively
disables NEE, as no shadow ray can directly reach the light source.
The comparison of these two scenes shows that our method performs
noticeably better under indirect illumination. This is expected as when
NEE connects a scene point to the light source, it dominates the shading
of the point, minimizing the impact of path guiding. As for the other
three scenes, both path guiding and product path guiding variants of
our method perform better than path tracing.

As our method requires extra computations that increase the run
time, we evaluate its performance under an equal time setting. This
is shown at the bottom row of Fig. 8. Except for the “Cornell Box”,
“Sponza”, and “Bathroom” scenes for which direct lighting is dominant,
our method outperforms the pure path tracing approach.

An interesting behavior can be seen in the “Bathroom” scene. Here,
our path-guiding methods outperform regular path tracing under the
equal sample scenario; however, in the equal-time setting, path tracing
eventually outperforms both proposed methods. One explanation for
this is that the dominant light sources (the filaments of the light
bulbs) are very small; therefore, even if the rays are guided toward the
voxels that contain the light sources, they may not reach the filaments.
This also depends on the resolution of the voxels and the radiance
field. Secondly, because the mirror is perfectly specular, path guiding
using the radiant exitance information produces sub-optimal results.
These combined constraints and the additional overhead of our guiding
schemes result in this slight underperformance of our approach in the
long run for this scene.

5.3. Memory utilization comparison

Table 3 shows the scene-related memory requirements of our
method and other state-of-the-art path-guiding methods. In our case,
the scene-related memory is the SVO memory. For Miiller et al. [5], it
is the memory consumed by sd-trees. Finally, for Ruppert et al. [15],
it is the total memory of VMF coefficients and the kd-tree. As can be
seen from the table, the scene-related memory cost of other methods
increases together with the training time due to the refinement of the
data structures. On the other hand, our method’s memory requirement
is not only smaller but also does not increase over time.

B. Yalginer and A.O. Akyiiz

Cornell Box Cornell Enclosed

Computers & Graphics 121 (2024) 103945

Veach Door Bathroom

T
0.8
0.6
A,
—
—
= Sample Per Pixel (SPP)
g 0.6 035 1
T
= 0.4 03 08
0.25 |~
Q
0.6
= 02 02|
| | L 0.4
1 10 20 30 40 1 10 20 30 40 10 90 180 270 360
Time (seconds)
AE ~ 0.015 0.012 0.018 0.023
1072 e T I T 100 £ e
F 3 0o F K T T T] E 1 T I
r i S . 10°! . B
107 8 E i A i N
g 10 E 1072 10! §¥
F N aw P = S F F 1
1074 L | [| | | | | | | L |]
4 32 64 96 128 4 32 64 96 128 4 32 64 96 128 4 32 64 96 128 8 256 512 768 1,024
~ Sample Per Pixel (SPP)
a)
1<) 107" g E| |
r 3 10t g 100 =
2 w0k E F 107! F E
s E E ok E 1
E = 1072k F
? B 102 £ 107
IR TN S E. 0 L
4 10 20 30 40 4 10 4 10 20 30 40 10 90 180 270 360
Time (seconds)
AE ~ 1073 1073 1073 1073 107
Path Tracing WFPG MIS —— WFPG Product MIS

Fig. 8. Equal sample (top row) and equal time (bottom row) comparisons between the proposed method and path tracing. The results of the proposed method are shown with
product path guiding both activated and deactivated. WFPG Parameters for “Sponza Lion”, “Veach Door”, and “Bathroom” scenes are the same as in Table 1. Due to scene

simplicity, Cornell Box parameters are /,,, = 4, ¢,,,

=512, and SVO = 256°. Overall, parameters are selected to generate around 2000 — 3000 bins per depth iteration consistently.

AE represents the mean difference of our methods from the ground-truth for each scene rendered with 150000 samples to demonstrate unbiasedness.

Camera Reference

i
" H “ . .
WFPG
64 x 64
WFPG
128 x 128
2 4 8 16

Reference PDF

Fig. 9. Convergence of Miiller et al.’s method and our method. The reference PDF is generated using path tracing over the red region. For our method, 64 X 64 and 128 x 128

radiance fields are generated. Miiller et al.’s method uses default parameters.

In addition to the scene-related memory cost, our method also
requires path memory. In complexity notation, it can be represented as
O(pxd) where p is the path count, and d is the maximum traversal depth
of the paths. Both of the other approaches are CPU-based path-guiding
algorithms. However, we can argue that their potential wavefront-style
implementation on the GPU would also require the same amount of
path memory as ours.

Given that the SVO memory is the only path guiding related data
structure that we hold in persistent memory, we analyze the effect of
different SVO resolutions on render quality. This is shown in Fig. 10
for resolutions from 163 to 128%. As can be seen from this figure, the
render quality increases up to a point but remains intact afterward. The
memory usage of the SVO also increases proportionally. In our analysis,
we found the 128> SVO resolution to work well for all of our test scenes.

B. Yalginer and A.O. Akyiiz

163 323 643 1283

(1) 0.179 0.154 0.144 0.144
2 3.19-107 2.23-107 1.91-1073 1.92-1073
3) 0.02 0.07 0.31 1.26

Fig. 10. Performance change with respect to SVO resolution. The row values are as
follows: (1) Mean FLIP. (2) Mean Square Error. (3) SVO Memory MiB.

5.4. Radiance field validation

We compare the reference and generated radiance fields over spe-
cific regions in different scenes to validate the generated radiance field.
Reference radiance fields are generated via path tracing. Two such
comparisons can be seen in Figs. 3 and 9. The latter figure exposes
the advantage of our method compared to Miiller et al.’s method. Our
method does not require adapting its directional data structure. The
directional data is dense and more or less immediately captures the
radiance field; further refinement reduces residual noise.

5.5. Product path guiding

In our experiments, low-resolution (8 x 8) product path guid-
ing mostly eliminates sidedness problems that occur when rays are
partitioned around a thin reflective surface with dramatic radiance
differences between their sides. Due to omnidirectional generation, rays
may probabilistically select the other side of the thin object. The “Veach
Door” scene is an excellent example, as the illumination in this scene
comes from a bright light source in the back room. As such, regular
path guiding may steer more rays toward this direction. With product
path guiding, however, if this direction cannot illuminate a surface due
to its normal facing away from it, rays will not be guided toward it. In
Fig. 8, the scene that most benefits from product path guiding is “Veach
Door” due to this characteristic of the scene. Despite this, in equal time
comparison, the regular path guiding appears to be still better due to
the extra computations involved in product path guiding.

However, if we slightly modify this scene by placing the room
in an omnidirectional environment map where the majority of the
illumination comes from a window on the wall, product path guiding
may outperform regular path guiding even under an equal-time setting.
This is illustrated in Fig. 11. It can be seen that despite fewer rays being
traced for product path guiding, each ray “counts” more, yielding a
final image with reduced noise. Product path guiding can be helpful
in these scenarios where thin walls separate an intense illumination
between two regions.

5.6. Comparison with the literature

We conducted an equal sample comparison between Miiller et al.’s
[5], Ruppert et al.’s [15], and our methods. We refrain from conducting
equal-time comparisons due to underlying architectural differences.
Moreover, to prevent renderer-based differences from altering the re-
sults, each technique is compared against the reference image of that
renderer.

Results can be seen in Table 4. Comparisons provide HDR-FLIP heat
maps and mean HDR-FLIP values [34]. On the left of the FLIP heat
maps is the reference image of the Mitsuba Renderer. The images’ mean
square error (MSE) is also given as a separate row. Both compared
method parameters are run with their default parameters. As both
methods require training and rendering samples, we set the sample
count of our process to the sum of these values.

Computers & Graphics 121 (2024) 103945

(a) Non-product (b) Product
(a) (b)
Runtime (60s) 404 spp 126 spp
Mean FLIP 0.467 0.310
MSE 0.027 0.009

Fig. 11. An equal-time comparison between the non-product (a) and product (b)
version of the proposed method showcasing a scenario where product path guiding
outperforms regular path guiding in equal time.

We opted for a 2563 resolution for the SVO, although Fig. 10
suggests that 128> resolution is adequate for capturing the radiant
exitance field. This is true for the “VeachDoor” scene, but the smaller
resolution may not be sufficient on larger scenes such as the “Sponza”.
Because the memory overhead of increasing the resolution to 2567 is
insignificant, we opted for this higher resolution for the comparisons.

For the “Bathroom” scene, Miiller et al.’s and Ruppert et al.’s
methods yield very similar error scores, which are both lower than
our error score (lower is better in this case). This scene represents
a worst-case scenario for our algorithm due to the ideal specular
reflection of the mirror. As we represent the illumination using radiant
exitance, we guide more rays toward the mirror, despite the fact that
the light reflected off the mirror only illuminates the perfect reflection
directions.

For the “Veach Door” scene, our error score for product path
guiding lies in between the other two methods. In this scene, our prod-
uct path-guiding version outperforms the regular path-guiding version
due to the reason explained in the previous section. Finally, for the
“Sponza” scene, WFPG product path guiding yields the lowest error
score with a small margin.

Given that the compared methods use different renderers (an earlier
version of the Mitsuba renderer) and architectures (GPU vs. CPU),
the high degree of similarity between the algorithms suggests that
our approach demonstrates competitive performance despite having a
smaller memory impact.

6. Limitations & future work

There are several limitations of the proposed method, some of
which are shared by the other path-guiding methods as well. Here,
we highlight the most important ones that can be addressed by future
work.

Densely generated radiance fields: Generated radiance fields may
not capture high-frequency features. These would require a higher res-
olution capture, which asymptotically requires ((n*) amount of work.
As a future work, asymmetric cones could be used to query the incident
location. A minimal data structure could orchestrate this approach.
“Compressed Directional Quadtree” (CDQ), proposed by Dittebrandt
et al. can be a candidate for this [22].

Radiant exitance and highly specular objects: To minimize mem-
ory footprint, we deemed it necessary to hold only the radiant exitance
in the SVO data structure. However, in scenarios such as the “Bath-
room” scene, this approach proves insufficient, as discussed earlier.
To address this issue, cones can be bounced from specular surfaces to

B. Yalginer and A.O. Akyiiz

Table 4

Computers & Graphics 121 (2024) 103945

The comparison between the two state-of-the-art and our path-guiding algorithms is shown. We used the default parameters of the literature
methods except for the sample counts. We set our sample count (1536) to the sum of the training and rendering sample counts used for each

method. Our parameters were /,,, =5, ¢,,,

“Bathroom”, 4 for “Sponza”, and 6 for “Veach Door”.
PT

=512, and the SVO resolution equal to 128. The maximum path depth of the scenes were 10 for

Reference WFPG WEFPG Product Ruppert et al. Miiller et al.
1536spp 512t + 1024spp
[T e - ’ [1i2e 1S
<z B
=l
o
=
S,
g
=
<
m
2
=)
&
=
FLIP Mean 0.272 0.270
MSE 0.113 0.098
32t + 64spp
2S
£
o <
55
> E
=
FLIP Mean . . 0.142 0.177
MSE 0.089 0.069 0.015 0.023
4
S
8
< 2
NE&
£= ‘
n FLIP Mean 0.226 0.170 0.165 0.168 0.176
S MSE 0.001 0.001 0.001 0.001 0.001

continue to query the next hit location. Alternatively, the aforemen-
tioned CDQ can be used to segment the radiant exitance on regions
with high specularity. Determination of these regions could be done at
initialization time during SVO generation since it does not rely on light
interaction. The refinement of the CDQ, however, would be performed
during the runtime phase.

Volumetric subdivision of the scene: In the context of most path-
guiding methods, spatial subdivision schemes are often volumetric.
Similarly, in our case, the spatial binning scheme is also volumetric.
This creates problems when an infinitely thin and two-sided surface
occupies this volume. As discussed in this paper, product path guid-
ing could mitigate this issue. Arguably, most scenes involve mostly
reflective materials; a surface-based subdivision approach would be
beneficial.

Selective path guiding: Since our method generates radiance fields
on the fly, it would reduce computational cost to avoid these calcula-
tions in regions that would minimally benefit from path guiding, such

10

as those that receive strong direct lighting. This optimization would
dramatically improve the computation time of scenes containing mixed
regions dominated by direct and indirect illumination.

7. Conclusion

In this paper, we proposed the first GPU-oriented wavefront style
path guiding method that does not rely on dynamic memory manage-
ment — an operation that does not suit the GPU architecture. The
proposed method pre-generates an SVO data structure by voxelizing
surfaces and refines the radiant exitance field during rendering. This
structure is then utilized to generate PDFs to guide rays on the fly.
This leads to a smaller memory requirement than the existing methods
without hampering image quality. We also showed how to perform
product sampling under this setting. By sharing our source code, we
hope to stimulate future research for GPU path guiding, which could
be vital for real-time path tracing.

B. Yalginer and A.O. Akyiiz

Table A.5

Comparison between different GPU-based path tracer implementations and ours using
the “Kitchen” scene in 1920 x 1080 resolution. As can be seen from the per-sample
timings, wavefront path tracers have an inherent implementation overhead compared
to MegaKernel-based ones. However, our timings are on par with well-known ray tracer
architectures. The image shown is generated by our renderer.

Renderer - Framework Type Time per sample (ms)
NVIDIA-PT-SDK (DXR) MegaKernel 40.2 (NEE On)
26.0 (NEE Off)
PBRT-v4 (CUDA) Wavefront 71.2
Mitsuba3 (CUDA) MegaKernel 48.8
Ours (CUDA) Wavefront 67.2

CRediT authorship contribution statement

Bora Yalcginer: Visualization, Validation, Software, Conceptualiza-
tion. Ahmet Oguz Akyiiz: Writing — review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The reference images reported in this paper were partially per-
formed at TUBITAK ULAKBIM, High Performance and Grid Computing
Center (TRUBA resources).

Appendix A. Validation

We share the results of an evaluation to compare the run-time
performance of our ray tracing architecture with well-known archi-
tectures in the literature [39-42]. As seen in Table A.5, the run-time
performance of our GPU-based WFPT implementation is similar to
PBRT-v4’s WFPT implementation. Both ours and PBRT-v4’s WFPT re-
sults are somewhat slower than Megakernel-based architectures due to
the implementation overhead of manually managing path states.

Appendix B. Occupancy analysis

We have conducted GPU resource usage of our product sampling
version of radiance field generation kernels. Results can be seen in
Table B.6. Shared memory utilization is at its limit for 128 x 128
field generation kernel (68.3 KiB). Each multiprocessor has 128 KiB of
shared memory, of which 102 KiB is available for the user on a 3070Ti
mobile GPU. Doubling the radiance field resolution will quadruple the
memory requirement, which will not fit into the shared memory. To
achieve maximum utilization of a multiprocessor, we select a block size
of 512, which results in 33% occupancy. Achieving a higher occupancy
would have required simplifying the kernels, but this is not feasible due
to the complexity of the sampling routines.

11

Computers & Graphics 121 (2024) 103945

Table B.6
GPU resource usage statistics of the radiance field generation kernels. All kernels are
launched via 512 threads per block.

Field resolution Shared Mem. (KiB) Registers Occupancy

128 x 128 68.3 128 33%

64 x 64 19.01 128 33%

32 x 32 6.72 128 33%
References

[1] Kajiya JT. The rendering equation. SIGGRAPH Comput Graph 1986;20(4):143-

50.

Heitz E, d’Eon E. Importance sampling microfacet-based BSDFs using the distri-
bution of visible normals. In: Proceedings of the 25th eurographics symposium
on rendering. EGSR 14, Goslar, DEU: Eurographics Association; 2014, p. 103-12.
Jensen HW. Importance driven path tracing using the photon map. In: Rendering
techniques. 1995.

Vorba J, Karlik O, Sik M, Ritschel T, Kfivanek J. On-line learning of parametric
mixture models for light transport simulation. ACM Trans Graph 2014;33(4).
Miiller T, Gross M, Novédk J. Practical path guiding for efficient light-transport
simulation. Comput Graph Forum 2017;36(4):91-100.

Veach E, Guibas LJ. Optimally combining sampling techniques for Monte Carlo
rendering. In: Proceedings of the 22nd annual conference on computer graphics
and interactive techniques. SIGGRAPH ’95, New York, NY, USA: Association for
Computing Machinery; 1995, p. 419-28.

Miiller T, Mcwilliams B, Rousselle F, Gross M, Novak J. Neural importance
sampling. ACM Trans Graph 2019;38(5).

Huo Y, Wang R, Zheng R, Xu H, Bao H, Yoon S-E. Adaptive incident radiance
field sampling and reconstruction using deep reinforcement learning. ACM Trans
Graph 2020;39(1).

Bako S, Meyer M, DeRose T, Sen P. Offline deep importance sampling for Monte
Carlo path tracing. Comput Graph Forum 2019.

Vévoda P, Kondapaneni I, Kiivinek J. Bayesian online regression for adaptive
direct illumination sampling. ACM Trans Graph 2018;37(4).

Lafortune EP, Willems YD. A 5D tree to reduce the variance of Monte Carlo
ray tracing. In: Rendering techniques ’95 (proceedings of the 6th eurographics
workshop on rendering). 1995, p. 11-20.

SchiiBler V, Hanika J, Jung A, Dachsbacher C. Path guiding with vertex triplet
distributions. Comput Graph Forum 2022;41(4):1-15.

Dodik A, Papas M, Oztireli C, Miiller T. Path guiding using spatio-directional
mixture models. Comput Graph Forum 2022;41(1):172-89.

Herholz S, Elek O, Vorba J, Lensch H, Kfivanek J. Product importance sampling
for light transport path guiding. Comput Graph Forum 2016;35(4):67-77.
Ruppert L, Herholz S, Lensch HPA. Robust fitting of parallax-aware mixtures for
path guiding. ACM Trans Graph 2020;39(4).

Diolatzis S, Gruson A, Jakob W, Nowrouzezahrai D, Drettakis G. Practical product
path guiding using linearly transformed cosines. In: Computer graphics forum
(proceedings of eurographics symposium on rendering). Vol. 39, 2020, (4).
Zhu S, Xu Z, Sun T, Kuznetsov A, Meyer M, Jensen HW, Su H, Ramamoor-
thi R. Photon-driven neural reconstruction for path guiding. ACM Trans Graph
2021;41(1).

Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA,
USA: A Bradford Book; 2018.

Dahm K, Keller A. Learning light transport the reinforced way. In: ACM
SIGGRAPH 2017 talks. SIGGRAPH ’17, New York, NY, USA: Association for
Computing Machinery; 2017.

Kim J, Kim YM. Fast and lightweight path guiding algorithm on GPU. In: Lee S-H,
Zollmann S, Okabe M, Wiinsche B, editors. Pacific graphics short papers, posters,
and work-in-progress papers. The Eurographics Association; 2021.
Derevyannykh M. Real-time path-guiding based on parametric mixture models.
In: Pelechano N, Vanderhaeghe D, editors. Eurographics 2022 - short papers.
The Eurographics Association; 2022.

Dittebrandt A, Hanika J, Dachsbacher C. Temporal sample reuse for next event
estimation and path guiding for real-time path tracing. In: Dachsbacher C,
Pharr M, editors. Eurographics symposium on rendering - DL-only track. The
Eurographics Association; 2020.

Laine S, Karras T, Aila T. Megakernels considered harmful: Wavefront path trac-
ing on GPUs. In: Proceedings of the 5th high-performance graphics conference.
HPG ’13, New York, NY, USA: Association for Computing Machinery; 2013, p.
137-43.

Zheng S, Zhou Z, Chen X, Yan D, Zhang C, Geng Y, Gu Y, Xu K. LuisaRender:
A high-performance rendering framework with layered and unified interfaces on
stream architectures. ACM Trans Graph 2022;41(6).

Laine S, Karras T. Efficient sparse voxel octrees — analysis, extensions, and
implementation. NVIDIA technical report NVR-2010-001, NVIDIA Corporation;
2010.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

http://refhub.elsevier.com/S0097-8493(24)00080-3/sb1
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb1
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb1
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb2
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb2
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb2
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb2
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb2
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb3
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb3
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb3
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb4
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb4
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb4
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb5
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb5
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb5
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb6
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb7
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb7
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb7
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb8
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb8
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb8
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb8
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb8
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb9
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb9
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb9
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb10
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb10
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb10
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb11
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb11
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb11
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb11
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb11
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb12
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb12
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb12
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb13
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb13
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb13
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb14
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb14
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb14
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb15
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb15
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb15
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb16
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb16
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb16
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb16
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb16
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb17
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb17
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb17
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb17
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb17
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb18
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb18
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb18
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb19
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb19
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb19
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb19
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb19
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb20
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb20
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb20
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb20
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb20
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb21
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb21
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb21
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb21
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb21
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb22
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb23
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb24
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb24
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb24
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb24
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb24
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb25
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb25
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb25
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb25
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb25

B. Yalginer and A.O. Akyiiz

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Crassin C, Neyret F, Lefebvre S, Eisemann E. GigaVoxels: Ray-guided streaming
for efficient and detailed voxel rendering. In: Proceedings of the 2009 symposium
on interactive 3D graphics and games. 13D 09, New York, NY, USA: Association
for Computing Machinery; 2009, p. 15-22.

Pharr M, Jakob W, Humphreys G. Physically based rendering: from theory to
implementation. 3rd ed.. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.; 2016.

Crassin C, Green S. Octree-based sparse voxelization using the GPU hardware
rasterizer. Patrick Cozzi and Christophe Riccio: CRC Press; 2012, chap. 22.
Karras T. Maximizing parallelism in the construction of BVHs, octrees, and k-d
trees. In: Proceedings of the fourth ACM SIGGRAPH / eurographics confer-
ence on high-performance graphics. EGGH-HPG’12, Goslar, DEU: Eurographics
Association; 2012, p. 33-7.

Amanatides J. Ray tracing with cones. ACM SIGGRAPH Comput Graph
1984;18(3):129-35.

Crassin C, Neyret F, Sainz M, Green S, Eisemann E. Interactive indirect illumi-
nation using voxel cone tracing: A preview. In: Symposium on interactive 3D
graphics and games. I3D 11, New York, NY, USA: Association for Computing
Machinery; 2011, p. 207.

Shirley P, Laine S, Hart D, Pharr M, Clarberg P, Haines E, Raab M, Cline D.
Sampling transformations zoo. Berkeley, CA: A Press; 2019, p. 223-46, chap.
Sampling.

12

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Computers & Graphics 121 (2024) 103945

Conty Estevez A, Lecocq P. Fast product importance sampling of environment
maps. In: ACM SIGGRAPH 2018 talks. SIGGRAPH ’18, New York, NY, USA:
Association for Computing Machinery; 2018.

Andersson P, Nilsson J, Shirley P, Akenine-Moller T. Visualizing errors in
rendered high dynamic range images. In: Theisel H, Wimmer M, editors.
Eurographics 2021 - short papers. The Eurographics Association; 2021.

Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D, McAllister D,
McGuire M, Morley K, Robison A, Stich M. Optix: A general purpose ray tracing
engine. ACM Trans Graph 2010;29(4).

Yalciner B. METU ray - GPU-based renderer/framework.. 2024, URL: https:
//github.com/yalcinerbora/meturay. [Accessed 20 February 2024].

Clarberg P. Fast equal-area mapping of the (hemi)sphere using SIMD. J Graph
Tools 2008;13(3):53-68.

Reinhard E, Stark M, Shirley P, Ferwerda J. Photographic tone reproduction for
digital images. In: Seminal graphics papers: pushing the boundaries, volume 2.
2023, p. 661-70.

Bitterli B. Rendering resources. 2016, URL: https://benedikt-bitterli.me/
resources/. [Accessed 20 February 2024].

Pharr M, Jakob W, Humphreys G. Physically based rendering: from theory to
implementation. 4th ed.. Cambridge, MA, USA: The MIT Press; 2023.

Jakob W, Speierer S, Roussel N, Vicini D. Dr.Jit: A just-in-time compiler for
differentiable rendering. Trans Graph (Proc SIGGRAPH) 2022;41(4). http://dx.
doi.org/10.1145/3528223.3530099.

NVIDIA. NVIDIA® RTX Path Tracing. 2023, URL: https://github.com/
NVIDIAGameWorks/RTX-Path-Tracing. [Accessed 20 February 2024].

http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb26
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb27
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb27
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb27
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb27
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb27
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb28
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb28
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb28
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb29
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb30
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb30
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb30
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb31
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb32
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb32
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb32
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb32
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb32
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb33
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb33
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb33
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb33
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb33
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb34
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb34
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb34
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb34
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb34
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb35
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb35
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb35
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb35
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb35
https://github.com/yalcinerbora/meturay
https://github.com/yalcinerbora/meturay
https://github.com/yalcinerbora/meturay
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb37
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb37
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb37
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb38
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb38
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb38
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb38
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb38
https://benedikt-bitterli.me/resources/
https://benedikt-bitterli.me/resources/
https://benedikt-bitterli.me/resources/
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb40
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb40
http://refhub.elsevier.com/S0097-8493(24)00080-3/sb40
http://dx.doi.org/10.1145/3528223.3530099
http://dx.doi.org/10.1145/3528223.3530099
http://dx.doi.org/10.1145/3528223.3530099
https://github.com/NVIDIAGameWorks/RTX-Path-Tracing
https://github.com/NVIDIAGameWorks/RTX-Path-Tracing
https://github.com/NVIDIAGameWorks/RTX-Path-Tracing

	Path guiding for wavefront path tracing: A memory efficient approach for GPU path tracers
	Introduction
	Previous Work
	Path Guiding
	Wavefront Path Tracing (WFPT)

	Proposed Method
	Wavefront Path Guiding
	Radiant Exitance Caching using Sparse Voxel Octree
	On-the-fly Generation of Local Radiance Field
	Positional Binning using SVO
	Path Guiding
	Product Path Guiding
	Sample Combination Heuristic

	Implementation
	Results & Validation
	Profiling
	Equal Sample/Time Comparison
	Memory Utilization Comparison
	Radiance Field Validation
	Product path guiding
	Comparison with the Literature

	Limitations & Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Validation
	Appendix B. Occupancy Analysis
	References

