
Rendering

Erik Reinhard1,2 Erum Arif Khan2 Ahmet Ŏguz Akyüz2

1 Introduction

In the real world, light sources emit photons which normally travel
in straight lines until they interact with a surface or a volume. When
a photon encounters a surface, it may either be absorbed, reflected
or transmitted. Some of these photons may hit the retina of an ob-
server where they are converted into a signal which is then pro-
cessed by the brain, thus forming an image. Similarly, photons may
be caught by the sensor of a camera. In either case, the image is a
2D representation of the environment.

The formation of an image as a result of photons interacting with
a 3D environment may be simulated on the computer. The environ-
ment is then replaced by a 3D geometric model and the interaction
of light with this model is simulated with one of a large number
of algorithms. The process of image synthesis by simulating light
behavior is calledrendering.

As long as the environment is not altered, the interaction of light
and surfaces gives rise to a distribution of light in a scene which is
in equilibrium, i.e. the environment does not get lighter or darker.

Since all rendering algorithms model the same process, it is pos-
sible to summarize most rendering algorithms by a single equation,
which is known as therendering equation. The underlying princi-
ple is that each pointx on a surface receives light from the envi-
ronment. Some of this light is absorbed and some is reflected. The
light that falls on a point on a surface may be coming directly from
a light source, or may have been reflected one or more times by
other surfaces.

Considering a pointx on some surface that receives light from
all directions, the material of the surface determines how much of
this light is reflected, and in which directions. The reflective prop-
erties of a surface are also dependent on wavelength, which gives
each surface its distinctive color. A material may therefore be mod-
eled using a function which describes how much light incident on
a point on a surface is reflected for each incoming and each outgo-
ing direction. Such functions are generally known asbi-directional
reflectance distribution functions(BRDFs), and are denoted here as
fr(x, Θi, Θo). This function is dependent on the position on the
surfacex, as well as the angle of incidenceΘi and the outgoing
directionΘo.

To determine how much light a surface reflects into a particular
direction, we can multiply the BRDF for each angle of incidence
with the amount of incident lightLi(x, Θi) and integrate these pair-
wise multiplications. This yields a quantity for one specific outgo-
ing direction.

A point on a surface may also emit light, which is denoted with
a non-zero termLe(x, Θo). This term is dependent on position on
the surface (e.g. a television screen emits light which is spatially
varying in intensity), and may also be directionally varying (e.g.
spot lights emit more light in some directions than in others).

Thus, the amount of light that leaves a pointx on a surface in a

1University of Bristol, reinhard@cs.bris.ac.uk
2University of Central Florida

particular directionΘo may be modeled as follows:

Lo(x, Θo) = Le(x, Θo) +

Z

Ωi

g(x, Θi, Θo) d ωi (1)

g(x, Θi, Θo) = fr(x, Θi, Θo) Li(x, Θi) cosΘi (2)

This equation is known as therendering equation. To compute how
much light is reflected into a particular direction, we need to in-
tegrate over all incident directions (a hemisphere of directionsΩi

if we assume that the surface is not transparent). Thus, the above
equation will have to be recursively evaluated for each point in the
environment that is visible fromx.

To compute an image by simulating light in the above manner,
we would have to evaluate the rendering equation for each pixel
separately (multiple times if we were to applyanti-aliasing in the
process). It should be clear that the number of computations re-
quired to evaluate this equation even once is astronomical. For
practical problems, the computational cost of evaluating the render-
ing equation directly is too high. However, there are many ways to
simplify this equation, for example by removing parts of the com-
putation that do not contribute significantly to the final solution.

It is for instance possible to only account for the direct contri-
bution of light sources, and ignore all reflected light. Such algo-
rithms fall in the class oflocal illuminationalgorithms. If indirect
illumination, i.e. illumination after one or more reflections or trans-
missions, is accounted for, then we speak ofglobal illumination
algorithms.

Finally, the rendering equation is known as a Fredholm equation
of the second kind, which implies that no analytical solutions are
known. We therefore have to resort to numerical approximations to
evaluate the rendering equation. In particular, this equation is rou-
tinely discretized, turning its evaluation into a sampling problem.

In summary, rendering involves the creation of images by sim-
ulating the behavior of light in artificial scenes. Such scenes con-
sist of descriptions of surfaces and light sources (thegeometry). In
addition to having a position in space and a particular shape, sur-
faces are characterized by the manner in which they interact with
light (material properties). In the following sections, geometry and
materials are discussed in greater detail, followed by a brief expla-
nation of the more prominent local and global illumination algo-
rithms.

2 Geometry

The shape an object can be modeled with a collection of simple
primitives, including polygon and triangle meshes, spline surfaces,
and point based representations. Geometric representations can ei-
ther be modeled by hand using modeling software such as Alias
Wavefront, or objects can be scanned with a laser scanner.

A frequently used representation is a mesh (Figure 1). A mesh is
made up of one or more simple polygonal shapes, for example tri-
angles. Some polygons share boundaries with other polygons in the
mesh and together produce the structure of the object. Of course,
polygons will only approximate the shape of the actual object. The
larger the number of polygons used, the closer the approximation
will be to the actual shape of the object. The number of polygons



Figure 1:Mesh representation of a head.

also determines the time it takes to render the object, thereby af-
fording a trade-off between quality and computation time.

For efficiency purposes, large meshes may be reduced in size.
One technique to reduce the number of polygons representing an
object’s surface isdisplacement mapping. In this technique, the
surface of the object is represented by fewer, larger polygons, and
the small scale features are captured in a depth map. Points on
the surface, which is represented by polygons are then displaced
according to the displacement map. In this way, the object shape
retains fine features, but the number of polygons used to represent
the object is smaller.

Another way of reducing rendering time is to uselevel of detail
algorithms. These algorithms ensure that the object is represented
by as many primitives as necessary, dependent on distance to the
viewer. If the object is far from the viewpoint, most of the fine
details will not be visible and thus the object’s shape may be repre-
sented by fewer polygons. If the viewpoint approaches the object,
the object needs to be represented by a larger number of polygons
so that the fine scale features, which are now visible, are adequately
visualized.

The shape of an object may also be described by parametric
equations such as Bézier curves and B-splines. The parametric sur-
face has certain advantages over the simpler polygonal model. First,
the representation is much more concise. If an object has fine fea-
tures, the mesh will require many polygons to represent the object.
However, patches of the same surface, when represented paramet-
rically, will be fewer. This is due to the fact that each patch can
represent a curved surface segment, whereas triangles and polygons
are flat.

Scanners can be used to determine the shape of existing objects.
The output from a scanner is a dense set of points. Typically these
points define the vertices of a triangle mesh. Relatively recently,
algorithms have been developed to render point clouds directly, ob-
viating the need for triangulation. This approach also lends itself
to simpler level of detail algorithms since altering the number of
points is more straightforward than altering the number, size and
shape of polygons or patches representing the object shape.

Figure 2:An example of an object rendered with a translucent ma-
terial.

3 Materials

The micro-structure of the object determines the way light interacts
with it, and hence it determines the appearance of the object. This
micro-structure is represented by a material description, such as the
BRDFfr introduced in Section 1.

If a surface scatters light equally in all directions, we call the ma-
terialdiffuseor Lambertian, leading to a BRDF which is a constant
function, i.e.fr = ρ/π, whereρ is a measure of how much light is
reflected. Other materials may reflect light preferentially as func-
tion of the direction of incidence. For instance, a mirror reflects
almost all light in the reflected direction. Inbetween lie glossy ma-
terials which scatter light into a cone centered around the direction
of mirror reflection.

The anglesΘi andΘo can each be decomposed into an angleφ
in the plane of the surface, and an azimuthal angleθ, for instance
Θi = (θi, φi). If the material’s reflective properties depend only on
θi, θo andφi − φo then reflections are invariant to rotation around
the surface normal, and the material is called isotropic. On the
other hand, iffr depends onθi, θo, φi, andφo, rotation around the
surface normal will alter the reflection, and the material is called
anisotropic (brushed aluminium is an example).

Real materials can be measured, or BRDFs may be modeled em-
pirically. In the latter case, reciprocity and conservation of energy
are considered important features of any plausible BRDF. Reci-
procity refers to the fact thatfr should return the same result if
Θi andΘo are reversed. Conservation of energy means that light is
either reflected or absorbed, but not lost in any other way.

Extensions to basic BRDFs include models for transparency (e.g.
glass), translucency, and spatial variance. Translucency stems from
light scatter inside a surface, as shown in Figure 2. Wax, skin, fruit
and milk, all display some degree of translucency. An example of a
spatially varying material is woodgrain. Normally,texture mapping
is used to account for this. A texture map can be created by taking a
photograph of the desired material, and then this texture is mapped
onto the surface of the object. Texture maps and BRDFs may be
combined to yield spatially variant BRDFs, orBidirectional Texture
Functions(BTFs).

4 Local Illumination

Images may be rendered by projecting all the geometry onto a plane
that represents the screen in 3D space, thus implementing a local il-
lumination model. For each pixel, the nearest object may be tracked
using az-buffer. This buffer stores for each pixel the distance be-
tween the view point and the currently nearest object. When a new



object is projected, its distance is tested against the distances stored
in the z-buffer. If the new object is closer, it is drawn and the z-
buffer is updated. The color assigned to the pixel is then derived
from the object’s color using a simple shading algorithm.

The simplicity of projective algorithms makes them amenable
to hardware implementation. As a result most graphics cards im-
plement a graphics pipeline based on z-buffering. To maximize
performance, geometry is typically limited to simple shapes such
as triangle and polygonal meshes. Only simple materials are sup-
ported.

However, modern graphics cards incorporate two programmable
stages which allow vertices and pixels to be manipulated respec-
tively. This provides flexibility in an otherwise rigid hardware envi-
ronment. Programming these two stages is achieved through APIs
such asOpenGLor DirectX. The (limited) ability to program graph-
ics cards has given rise to many extensions to the basic z-buffer
algorithm, such asshadow mapswhich compute shadows.

5 Ray Tracing and Ray Casting

One of the basic operations in rendering is to compute which (part
of an) object is visible from a given point in space and a given di-
rection. Such sampling of the scene is often accomplished with a
technique calledray casting. A ray is a half-line starting at a spec-
ified point in space (itsorigin) and aimed at a particulardirection.
There may be many objects located along the line of sight of such
a ray, and to compute which object is closest to the ray origin, the
ray is intersected with each object. The point on the surface of the
nearest object where the ray intersects, is called theintersection
point. Functions for ray intersection calculations are available for
a wide variety of geometric primitives, including triangles, poly-
gons, implicit surfaces, and splines — a distinct advantage of any
ray-casting based algorithm.

An image may be created of a scene by specifying a camera po-
sition, and casting (primary) rays starting at this position into dif-
ferent directions associated with the pixels that make up the image.
This process computes for each pixel the nearest object. The color
of the nearest object is then assigned to its corresponding pixel.
Such a ray caster may be extended to a full ray tracer by also shoot-
ing secondary rays. These rays start at the intersection points of the
primary rays and are aimed into specific directions based on which
type of lighting effect is desired.

For instance, rays may be traced from an intersection point to-
wards the light sources. Such shadow rays are useful for computing
shadows, since the shading of the intersection point can be adjusted
based on whether it was in shadow or not.

If an intersection point belongs to an object with a specular ma-
terial, an additional ray may be shot into the reflected direction.
This direction is computed by mirroring the incident ray into the
surface normal, a vector which specifies the surface orientation at
the intersection point. The reflected ray is then recursively traced
and its returned color is assigned to the intersection point, which is
in turn used to color a pixel. The same procedure is followed for
transmitted rays in the case of transparent objects. A typical ray
tracing example is shown in Figure 3.

Thus, ray tracing is a recursive algorithm based on casting rays.
Starting from the view point, it is calledeye ray tracing. It is a
relatively straightforward way to evaluate a simplified version of

Figure 3:A typical ray traced image, consisting of reflective spheres
and sharp shadows.

the rendering equation (1), known as the ray tracing equation:

Lo(x, Θo) = Le(x, Θo)+
X

L

Z

xl∈L

v(x,xl) fr,d(x) Le(xl, Θ
′

o) cos Θl dωl+

Z

Θs∈Ωs

fr,s(x, Θs, Θo) L(xs, Θs) cos Θs dωs+

ρd(x) La(x)

The four terms on the right hand side are the emission term, fol-
lowed by a summation of samples shot toward the light sources.
The visibility termv(x,xl) is 1 if position xl on the light source
is visible from pointx and0 otherwise. The integration in the sec-
ond term is over all possible positions on each light source. The
third term accounts for specular reflections and the fourth term is
the ambient termwhich is added to account for everything that is
not sampled directly.

Thus, in ray tracing only the most important directions are sam-
pled, namely the contributions of the light sources and mirror reflec-
tions. This represents a vast reduction in computational complexity
over a full evaluation of the rendering equation, albeit at the cost of
a modest loss of visual quality. Finally, ray tracing algorithms can
now run at interactive rates, and under limited circumstances even
in real-time.

6 Radiosity

Both ray tracing and the local illumination models discussed ear-
lier are view-point dependent techniques. Thus, for each frame all
illumination will be recomputed. This is desirable for view-point
dependent effects, such as specular reflection. However, diffusere-
flection does not visibly alter if a different viewpoint is chosen. It
is therefore possible to preprocess the environment to compute the
light interaction between diffuse surfaces. This may be achieved
by employing a radiosity algorithm (Figure 4). The result can then
be used to create an image, for instance by ray tracing or with a
projective algorithm.



Figure 4:An early example of a scene preprocessed by a radiosity
algorithm.

The surfaces in the environment are first subdivided into small
patches. For computational efficiency it is normally assumed that
the light distribution over each patch is constant. For small enough
patches this is a fair assumption. Each patch can receive light from
other patches, and then diffusely reflect it. A common way to im-
plement radiosity is to select the patch with the most energy and
distribute this energy over all other patches, which then gain some
energy. This process is repeated until convergence is reached. Since
all patches are assumed to be diffuse reflectors, the rendering equa-
tion (1) can be simplified to not include the dependence on outgoing
directionΘo:

L(x) = Le(x) + ρd(x)

Z

x

L(x′)
cos Θi cos Θ′

o

π ‖x′ − x‖2
v(x,x′) dA′

wherev(x,x′) is the visibility term, as before. This equation mod-
els light interaction between pairs of points in the environment.
Since radiosity operates on uniform patches rather than points, this
equation can be rewritten to include aform factorF ij , which ap-
proximates the fraction of energy leaving one patch and reaching
another patch:

Li = Li
e + ρi

d

X

j

LjF ij

F ij =
1

Ai

Z

Ai

Z

Aj

cos Θi cos Θj

π r2
δij dAj dAi

where the visibility termv between points is replaced withδij ,
which denotes the visibility between patchesi and j. The form
factor depends on the distance between the two patches, as well as
their spatial orientation with respect to one another (Figure 5). In
practice the computation of form factors is achieved by ray casting.

The radiosity algorithm can be used to model diffuse inter-
reflection, which accounts for visual effects such ascolor bleeding
(the colored glow that a surface takes on when near a bright surface
of a different color, as shown in Figure 6).

7 Monte Carlo Sampling

The integral in the rendering equation (1) may be evaluated directly.
However, since both the domainΩi and the integrand (2) are com-
plex functions, a very large number of samples would be required
to obtain an accurate estimate. To make this sampling process more

dAj
Surface j

dAi
Surface i

ni

nj

Θi

Θj

Figure 5:Geometric relationship between two patches.

Figure 6:Example of color bleeding. In particular the gray object
on the right has a tinge of yellow and blue, caused by light that was
first reflected off the yellow and blue surfaces.

efficient, a stochastic process called Monte Carlo sampling may be
employed. The environment is then sampled randomly according
to aprobability density function(pdf) p(ωi):

Z

Ωi

g(ωi, Θi, Θo) dωi ≈
1

N

N
X

i=1

g(ωi, Θi, Θo)

p(ωi)

The number of sample pointsN can be set to trade speed for accu-
racy. Typically, to evaluate eachg(ωi, Θi, Θo), a ray is traced into
the environment. For efficiency, the pdf should be chosen to follow
the general shape of the integrandg(ωi, Θi, Θo). There are many
ways to choose the pdf, a process known asimportance sampling.

In addition it is possible to split the integral into disjunct parts
for which a simpler pdf may be known. This process is calledstrat-
ified sampling. One could view ray tracing as a form of stratified
sampling, since instead of sampling a full hemisphere around each
intersection point, rays are only directed at the light sources and
the reflected and transmitted directions. Both importance sampling
and stratified sampling will help reduce the number of samplesN
required for an accurate evaluation of the rendering equation (1).

8 Photon Mapping

Certain complex types of illumination such as the caustic patterns
created by light refracted through transparent objects are not effi-



Figure 7: Light refracted through the transparent glass creates a
caustic on the table.

ciently sampled by Monte Carlo sampling alone. Rendering algo-
rithms such as ray tracing, radiosity as well as local illumination
models expressly omit the sampling that would be required to cap-
ture caustics.

To enable the rendering of caustics, shown in Figure 7, as well
as make rendering of other light interactions such as diffuse inter-
reflection more efficient, photons may be tracked starting at the
light source (known asphoton ray tracing), rather than tracing pho-
tons backwards starting at the viewpoint (as in eye ray tracing).
They can then be deposited on diffuse surfaces after having under-
gone one or more refractions through dielectric (transparent) ob-
jects. Thus, photons are stored in a data structure called aphoton
map, which represents the distribution of light over the surfaces in
an environment.

An image may then be created using conventional ray tracing.
Whenever an intersection with a diffuse surface is detected, the
photon map is used to determine how much light is present at the
intersection point. The photon map may therefore be seen as a data-
structure to connect the initial light pass with the subsequent ren-
dering pass.

Regarding efficiency, photon maps need to be created only once
as long as the scene is static. The rendering pass can be repeated
for any desired view point.

9 Image-Based Rendering

To avoid the expense of modeling a complicated scene, it is some-
times more convenient to photograph a scene from different view-
points. To create images for novel viewpoints that were not pho-
tographed, an interpolation scheme may be applied. Rendering us-
ing images as a modeling primitive is calledimage based rendering.
Such techniques attempt to compute a continuous representation of
theplenopticfunction, given some discrete representation of it. The
plenoptic function is defined as the intensity of light rays passing
through the camera center at every camera location (Vx, Vy, Vz),
orientation (θ, φ), and for every wavelength (λ) and time (t), that
is:

P7 = P (Vx, Vy, Vz, θ, φ, λ, t) (3)

Thus, the plenoptic function may be considered a representation
of the scene, such that, when input parameters like camera location
and orientation are altered, the scene represented by the function
changes accordingly. Simplified versions of the plenoptic function
exist. For instance, if we assume that the environment is constant,
we may remove the parameter t. The simplest plenoptic function is

Figure 8:Two images are used to produce a third using Image based
rendering.

a 2D panoramic view of the scene with a fixed viewpoint.θ andφ
are the only two input parameters in this case.

If instead of a panoramic view, we captured several images that
are a part of this panoramic view, then these images would be
a discrete representation of the plenoptic function. Image based
rendering techniques take these discrete representations as input,
and provide a continuous representation, for example the complete
panoramic view in the above case. A technique might take two im-
ages with different viewpoints as input and produce a set of images
that have viewpoints that lie in between the two original viewpoints.

There are many image based rendering techniques, and they may
be broadly classified into three groups. The first group requires
complete information of scene geometry, for example in the form
of a depth map of the scene. This information along with one or
more images is sufficient to render scenes from a viewpoint close to
the viewpoint of the given image(s). 3D warping techniques belong
to this category.

The second group of image based rendering techniques uses only
input images of the scene to render another image of the same scene
from a different view point. There is no reliance on any given in-
formation of the scene geometry. Examples includelight field ren-
deringandlumigraphsystems.

The third group lies somewhere in between the previous groups.
This group requires several input images as well as further geomet-
ric information in the form of correspondence features in the two
images (for example points). Given this correspondence, the scene
may be rendered from all viewpoints between the two viewpoints
of the original input images.View morphing(Figure 8) andinter-
polationtechniques fall under this category.

Images may also be used to represent the lighting of the scene
alone, while geometry and materials represented directly. This pro-
cess is calledImage based lighting(IBL, see Figure 9. Here, the
first step is to create the image that will represent the lighting of
the scene. An image of a mirrored ball placed in the scene may
be used to represent this lighting. Images typically have a limited
range of pixel values (0 to 255), which cannot represent the lighting
of an arbitrary scene.High dynamic range(HDR) images are used
instead as their pixel values are not limited to 256 values and are
proportional to the actual illumination of the scene. The captured
image is then mapped to a sphere and the object is placed within it
before rendering.



Figure 9:Scene rendering without image based lighting (top), and
with image based lighting (bottom).

10 Further Reading

Rendering is an important part of the field of computer graphics.
There are many excellent books, as well as a vast number of pa-
pers. General graphics books are [Shirley et al. 2005; Pharr and
Humphreys 2004; Glassner 1995; Foley et al. 1990; Watt and Watt
1992]. Books specifically for ray tracing are [Glassner 1989; Ward
Larson and Shakespeare 1998; Shirley and Morley 2003; Suffern
2007]. Global illumination is covered in [Dutré et al. 2003]. Ra-
diosity is explained in detail in [Cohen and Wallace 1993; Sillion
and Puech 1994; Ashdown 1994]. Photon mapping is described
in [Jensen 2001]. For local illumination models as well as using the
OpenGL API, see [Hearn and Baker 2004]. Image-based lighting is
a relatively new rendering technique, described in [Reinhard et al.
2005]. For real-time rendering, see [Akenine-Möller and Haines
2002]. Parallel rendering is covered in [Chalmers et al. 2002]. The
notation used for the equations in this article are based on Arjan
Kok’s thesis [Kok 1994].

The latest research on rendering is published in a variety of fo-
rums. The most relevant conferences are ACM SIGGRAPH, the
Eurographics Symposium on Rendering and the Eurographics main
conference. In addition, several journals publish rendering papers,
such as ACM Transactions on Graphics, IEEE Transactions on Vi-
sualization and Computer Graphics, Eurographics Forum and the
Journal of Graphics Tools.

Acknowledgments

We thank Matt Pharr, Henrik Wann Jensen, Steve Seitz, Paul De-
bevec, and Andrei Khodakovsky for kindly allowing us to repro-
duce some of their images.

References

AKENINE-M ÖLLER, T., AND HAINES, E. 2002. Real-time Ren-
dering, 2nd ed. AK Peters, Natick, MA.

ASHDOWN, I. 1994.Radiosity: A Programmer’s Perspective. John
Wiley & Sons, Oct.

CHALMERS, A., DAVIS , T., AND REINHARD, E., Eds. 2002.
Practical Parallel Rendering. AK Peters, Natick, MA.

COHEN, M. F., AND WALLACE , J. R. 1993.Radiosity and Real-
istic Image Synthesis. Academic Press, Inc., Cambridge, MA.

DUTRÉ, P., BEKAERT, P.,AND BALA , K. 2003.Advanced global
illumination. A K Peters, Natick, MA.

FOLEY, J., VAN DAM , A., FEINER, S., AND HUGHES, J.
1990. Computer graphics, principles and practice, 2nd ed. ed.
Addison-Wesley.

GLASSNER, A. S., Ed. 1989. An Introduction to Ray Tracing.
Academic Press, San Diego.

GLASSNER, A. S. 1995. Principles of digital image synthesis.
Morgan Kaufmann, San Fransisco, CA.

HEARN, D., AND BAKER, M. P. 2004. Computer graphics with
OpenGL, 3rd ed. Pearson Prentice Hall, Upper Sadle River, NJ.

JENSEN, H. W. 2001. Realistic Image Synthesis using Photon
Mapping. A K Peters, Natick, MA.

KOK, A. J. F. 1994. Ray Tracing and Radiosity Algorithms for
Photorealistic Image Synthesis. PhD thesis, Delft University of
Technology, The Netherlands. Delft University Press, ISBN 90-
6275-981-5.

PHARR, M., AND HUMPHREYS, G. 2004.Physically Based Ren-
dering. Morgan Kaufmann Publishers, San Fransisco.

REINHARD, E., WARD, G., PATTANAIK , S., AND DEBEVEC, P.
2005. High Dynamic Range Imaging: Acquisition, Display and
Image-Based Lighting. Morgan Kaufmann Publishers, San Fran-
cisco.

SHIRLEY, P., AND MORLEY, R. K. 2003. Realistic Ray Tracing,
2nd ed. A K Peters, Natick, Massachusetts.

SHIRLEY, P., ASHIKHMIN , M., MARSCHNER, S. R., REINHARD,
E., SUNG, K., THOMPSON, W. B., AND WILLEMSEN, P. 2005.
Fundamentals of Computer Graphics, 2nd ed. A K Peters, Nat-
ick, Massachusetts.

SILLION , F. X., AND PUECH, C. 1994. Radiosity and Global
Illumination. Morgan Kaufmann Publishers, Inc., San Francisco,
California.

SUFFERN, K. 2007.Ray Tracing from the Ground Up. A K Peters,
Natick, MA.

WARD LARSON, G.,AND SHAKESPEARE, R. A. 1998.Rendering
with Radiance. Morgan Kaufmann Publishers.

WATT, A., AND WATT, M. 1992. Advanced Animation and Ren-
dering Techniques, Theory and Practice. Addison-Wesley, Wok-
ingham, UK.


