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ABSTRACT

Irony, which is a way of expression through the use of the opposite, commonly occurs in daily social 
media posts. Hence, automatic detection of irony is essential to understand the semantics of informal 
texts more accurately. The literature has several sentiment analysis studies on Turkish texts, but 
those focusing on irony detection are very few. This paper investigates the effectiveness of a rich set 
of supervised learning methods varying from traditional to deep neural solutions on Turkish texts. 
Traditional irony detection methods such as support vector machine (SVM) and tree-based binary 
classifiers are analyzed on Turkish informal texts. Furthermore, such methods are extended by polarity-
based information and graph-based similarity scores as features. Additionally, neural architecture-based 
solutions including BERT and various LSTM network models are adapted for the problem. Irony 
detection performance of all the methods are comparatively analyzed on a data set collected within 
this study, which is larger than the previously used irony detection data sets in Turkish.
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INTRoDUCTIoN

Together with the rapid growth of online services, there occurred an increasing amount of textual 
data produced by users every day. There is a need to analyze this huge textual data to understand 
users’ demands, and make deductions for a wide set of applications such as product improvements 
for e-commerce. In order to meet these needs, sentiment analysis methods, which are useful to extract 
emotions from textual data, are used (Chakraborty et al., 2020; Yadav et al., 2020).

There is a rich variety of methods to extract emotional information from texts, however these 
methods lack the ability to analyze irony, especially in Turkish texts. Oxford Dictionary defines irony 
as the expression of one’s meaning by using language that normally signifies the opposite, typically 
for humorous or emphatic effect (“Irony”, 2020). From the definition, one can understand why irony 
is particularly hard to detect: opposition of the meaning is mostly implicit, and automated emotion 
detection methods lack the understanding of common sense that we humans share.
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Irony can be in various forms, which further makes it a complex task to model and detect irony. 
On this issue, Van Hee and others focus on two irony types: situational irony and irony by means 
of a polar clash. Any ironic text that does not fit in to these two categories are referred to as other 
textual irony. They define situational irony as the type of irony where the text is a written description 
of an ironic situation, and claim that this type of irony is harder to detect and model since it needs an 
understanding of the context (Van Hee et al., 2016a). On the other hand, Carvalho and others focus 
on this type of irony in their study conducted in Portuguese (Carvalho et al., 2020). Following is a 
good example of situational irony:

COVID-19 toplantısı, COVID-19 önlemleri kapsamında iptal edildi.
COVID-19 meeting is cancelled due to COVID-19 precautions. (transl.)

As the second type, Van Hee and others define irony by means of a polar clash as the type of 
irony where two opposite sentiments can be extracted from the same text (Van Hee et al., 2016a). 
Since this type of irony can be modeled by sentiment scoring of the tokens, several studies conducted 
on English use sentiment scores of words to improve the performance of their models (Ahmed et al., 
2018; Van Hee et al., 2016b; Xu et al., 2015). Following sentence clearly illustrates irony by means 
of a polar clash:

Sabrımı denemeni çok seviyorum!
I just love when you test my patience! (transl.)

Irony detection on text can be of practical use in a variety of applications that involve text 
analysis. On its own, irony detection facilitates revealing the language use and language style of the 
author. Such analysis provides useful input for psychological studies on personality or mental health 
(Bruntsch & Ruch, 2017). One of the most prominent domains that can get help from irony detection 
is marketing and customer relations management (CRM). Sentiment analysis is widely used in social 
media analysis for CRM in order to understand the customer opinions. However social network postings 
on the products including ironic expressions distort the correctness of automated sentiment analysis. 
Applying irony detection together with sentiment analysis can improve such analysis to capture user’s 
opinion accurately (Ravi et al., 2017; Alt & Reinhold, 2020). Another direction for employing irony 
detection in CRM is through personality analysis. Understanding the personality traits of customers 
has an important role in marketing to determine personalized offerings (Ramadhanti et al., 2020). 
There are recent studies to perform personality traits analysis on texts and social media messages 
written by users in an automated manner (Tutaysalgir et al., 2019). Irony detection can augment such 
studies to improve personality traits detection.

In the literature, there are several different approaches devised for the problem of irony detection. 
Most of the studies approach the problem as a binary classification task, and extract different features 
from the text to improve the detection model. For the binary classification problem, both traditional 
supervised learning methods and neural network based solutions are used. Most of such studies are 
conducted on English texts (Ahmed et al., 2018; Baloglu et al., 2019; Barbieri et al., 2014; Buschmeier 
et al., 2014; Pamungkas & Patti, 2018; Van Hee et al., 2016b; Wu et al., 2018; Zhang et al., 2019), 
whereas there are a few recent studies conducted on other languages (Carvalho et al., 2020; Frenda & 
Patti, 2019; Ghanem et al., 2020; Xiang et al., 2020). When it comes to Turkish, there exists only a few 
works conducted on limited data sets with limited features (Dulger, 2018; Taslioglu & Karagoz, 2017).

The aim of this study is to investigate the irony detection of a variety of supervised learning 
models that have not yet been applied on Turkish texts in the earlier studies. Furthermore, we conduct 
the analysis on a recently collected data set in Turkish, which is larger than those used previously. 
For this goal, both neural network based models and traditional supervised learning methods are 
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utilized, and a wide set of features aiming to exploit different types of irony are used. Since we focus 
on identifying written expressions of any type of irony, considering that polar clash is a commonly 
used irony type, we exploit polarity scores to detect occurrences of polar clash and to improve the 
constructed irony detection models. Also, similar to the approach by (Ahmed et al., 2018), graph 
representations are used to extract graph similarity based features. In our work, the feature set is 
divided into subsets and they are used incrementally to detect the effect of different features on the 
irony detection performance.

As a summary, the goal of this study is to analyze and elaborate on the irony detection performance 
on Turkish texts for those methods that have been applied on English and other languages in the 
literature. Furthermore, we use a comprehensive irony data set in Turkish. The contributions of this 
work can be listed as follows:

• We investigate the detection performance of the traditional supervised learning methods for our 
problem. In addition to conventional features extracted from the text, we exploit graph-based 
and polarity-based features in order to improve irony detection performance. We analyze the 
performance of different pipelines through a genetic-algorithm based optimization solution.

• In addition to traditional methods, we adapt neural models for our problem. For BERT, in addition 
to the fully pretrained model, we analyze the performance of training level variations. For LSTM, 
bi-LSTM and CNN-LSTM, in addition to training with text content, we extend the models with 
additional features extracted from the text.

• The experiments are conducted on an irony data set in Turkish, which is larger than the earlier 
collections used in the literature. It is collected and annotated within the scope of this study. 
This data set is open for research purposes and can be accessed from our Github page (https://
github.com/teghub/IronyTR).

The rest of the paper is organized as follows. Firstly, we present the background in irony 
detection in terms of methods used in the literature. Then the methods and data processing and model 
construction pipeline used in the study are presented. It is followed by description of the experiments 
and discussion of the results. The paper is concluded with an overview on the conducted study and 
obtained results, as well as future research directions.

BACKGRoUND

In the literature, irony detection is considered as a text classification problem, and is basically 
modeled as a binary classification including the classes of irony and non-irony. The previous studies 
conducted on English texts use supervised learning methods for binary classification (Baloglu et al., 
2019; Barbieri et al., 2014; Buschmeier et al., 2014; Pamungkas & Patti, 2018; Van Hee et al., 2016b).

In their study, Buschmeier and others compare the performance of different feature set and 
classification method combinations. Using supervised classification methods such as Support Vector 
Machine (SVM), Random Forest (RF), Logistic Regression, Decision Tree (DT) and Naive Bayes 
(NB) with several syntactic and lexical features, they work on a product review data set. The authors 
also utilize product star rating included in the data set, and claim that using the star-rating meta-data 
results in a competitive performance. However, such meta-data is not generally available in most of 
the text-based data (Buschmeier et al., 2014). Barbieri and others consider six classes in their study, 
namely Sarcasm, Education, Humour, Irony, Politics and Newspaper. Using a tree-based classifier, 
they aim to eliminate the use of patterns of words as features and they propose seven sets of lexical 
features such as Frequency (gap between rare and common words), Intensity (intensity of adverbs and 
adjectives), Synonyms (common vs. rare synonyms use) that will help to detect sarcasm by the inner 
structure of the expressions (Barbieri et al., 2014). In their study, Van Hee and others use an SVM 
based model to first classify tweets into two categories as ironic and non-ironic, then they further 
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classify ironic tweets into three subcategories as situational irony, irony by means of polar clash and 
other verbal irony. A comprehensive feature set with basic lexical, syntactic, semantic and sentimental 
features are used to train the model (Van Hee et al., 2016b). Pamungkas and Patti use a similar system 
with a limited feature set, additionally they exploit the sentiment analysis of emojis to capture more 
information about the text (Pamungkas & Patti, 2018). Baloglu and others study several supervised 
machine learning algorithms including K-Nearest Neighbours (k-NN), and Decision Tree Learning 
on a similar set of features to analyze their detection performance (Baloglu et al., 2019). Ahmed and 
others utilize graph representations of sentences to extract new features from textual data and use 
supervised learning to train their model on these features (Ahmed et al., 2018).

Previously mentioned studies all discuss and report about the difficulty of detecting situational 
irony. On this issue, Carvalho and others use a Portuguese data set of farcical news headlines to explore 
different rhetorical devices that are used to construct irony. They model these rhetorical devices 
by using general lexical and syntactic features, as well as a measure for degree of predictability of 
a situation. Using this measure, the authors model out-of-domain contrast, which is important for 
understanding situational irony. They conclude that sentiment features are not enough to capture 
situational irony and using a measure for out-of-domain contrast improves the performance (Carvalho 
et al., 2020).

Another approach to binary classification problem of irony is by neural-based methods. Wu 
and others propose a system based on a densely connected Long-Short Term Memory (LSTM) 
with multi-task learning strategy. They also use additional features such as Part of Speech (PoS) 
tags, which indicate the role of a word in a sentence, sentiment features and sentence embeddings 
(Wu et al., 2018). Zhang and others brought a different perspective to the existing solutions and 
they integrated the sentiment information obtained from external sources to supervised learning on 
irony labeled text using transfer learning. By this, they aim to increase the ability of attention-based 
model on detecting context incongruity. Their results show that transferred sentiment increases the 
models’ ability to detect implicit and explicit context incongruity and their three proposed sentiment 
attention mechanisms outperform the baselines including several popular neural network models for 
irony detection on Twitter (Zhang et al., 2019).

Although there exist several studies conducted on languages other than English (Carvalho et al., 
2020; Frenda & Patti, 2019; Ghanem et al., 2020; Xiang et al., 2020) there are very few studies on 
irony detection in Turkish. Dulger studies binary classification of irony using SVM, k-NN, NB, RF as 
well as Logistic Regression and Multilayer Perceptron on a balanced Turkish data set of 144 instances 
with a limited set of features (Dulger, 2018). Taslioglu and Karagoz study the binary classification 
of irony on a larger and balanced Turkish data set of 194 instances, using a limited set of features 
with SVM, k-NN, NB and RF classifiers. Similar to Van Hee and others (Van Hee et al., 2016b), 
they also include polarity score based sentimental features in their data set (Taslioglu & Karagoz, 
2017). Another study conducted on Turkish, which is a preliminary version of this study, compares 
the performances of SVM, NB and LSTM based classifiers and a language model (Devlin et al., 2018) 
BERT (Bidirectional Encoder Representations from Transformers) on a balanced Turkish data set of 
220 instances, which is larger than the previously used data sets (Cemek et al., 2020).

MeTHoDS

Our work focuses on the binary classification problem of textual data to two categories, ironic and 
non-ironic. It is a subset of sentiment analysis problem, and is considered to be more difficult than 
sentiment analysis. One reason is that, in some cases, detecting the existence of irony in a sentence 
can be challenging even for us humans. It is a complex concept that cannot be grasped solely by 
comparing the sentiment scores of words in a sentence. Hence, we investigate the irony detection 
performance of supervised learning methods taking multiple aspects of irony into consideration.
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Due to limitations on the data sets used in the previous studies, we collected an irony detection 
data set in Turkish within the scope of this study. The performance of neural approaches as well as 
polarity score and graph-based features are investigated for the irony detection problem in Turkish. 
Also, known methods that have been used for the problem of irony detection in English are applied to 
Turkish to investigate their performance on Turkish language. For comparison, Bag of Words (BoW) 
representation is used as the only feature in the baseline classifier.

For different methods, different preprocessing and feature selection pipelines are used. In 
Figure 1, we summarize the methods used in this work. In the rest of this section, we describe the 
data collection, preprocessing and feature extraction, pipeline optimization used for the traditional 
methods and the neural models used for the problem.

Data Collection and Data Set
The data set used in this study is collected from Twitter and other microblogs/social media platforms. 
When collecting data, hashtags and other signifiers of the topical events are used to search for possible 
instances via the API’s of such platforms. Annotation of the collected data is performed by a group 
of 7 native Turkish speakers, and the ground truth is set through qualified majority voting. Hence, 
instances that are labeled with a close-vote (4/7 in favor for a label) are excluded from the dataset 
to prevent any ambiguity. Final data set contains 600 instances, with 300 ironic and 300 non-ironic 
samples. The basic statistics on the data set are given in Table 1.

Figure 1. Methods and approaches

Table 1. Data set statistics

Class Labels Number of 
instances

Average 
token length 
per instance

Maximum 
token length 
per instance

Minimum 
token length 
per instance

Number of 
instances 
including 
emoticons

Number of 
instances 
including 

!, ?, (!), (?), 
…, “”

Ironic 300 10 25 3 26 94
Non-ironic 300 9 28 3 7 53
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Preprocessing and Feature extraction
Due to the nature of the methods employed, we applied various feature extraction pipelines for different 
methods. Feature extraction phase starts with preprocessing of the text. The feature extraction and 
preprocessing pipeline is summarized in Figure 2. For preprocessing, each sentence is tokenized by 
words, punctuation marks and emojis/emoticons. All letters are converted to lowercase. An example 
preprocessing is as follows.

“Sınava geç kaldım, aferin bana!” is transformed into the following tokens: “sınav geç kalmak, 
aferin ben !” where tokens are “sınav”, “geç”, “kalmak”, “,”, “aferin”, “ben”, “!”.

After preprocessing, the following basic syntactic and lexical features, which are also used in 
several previous studies (Dulger, 2018; Frenda & Patti, 2019; Taslioglu & Karagoz, 2017; Van Hee 
et al., 2016b), are extracted:

• Word Count: A floating point value indicating the ratio of words to all tokens.
• Interjections: A binary value indicating if there is any interjection words (“bravo”, “oley (transl. 

hurray)” etc.) in the text.
• Boosters: A binary value indicating if any booster words (“asla (transl. never)”, “mutlaka (transl. 

of course”) etc.) exist.
• Repetition: A binary value indicating if there is any repeated tokens in the sentence.
• Capitalization: A binary value indicating if there is any capitalized words in the sentence. (This 

feature is extracted before converting every letter to lowercase.)
• Emoji/Emoticons and Punctuation Marks (Exclamation, Question, Ellipsis, Quotation, 

Bracketed Exclamation, Bracketed Question Marks): For each of these tokens, two features 
are extracted. One of them is a binary value indicating if the token exists in the text. The other 
one is a floating point value indicating the ratio of the count of token to the count of all tokens. 
Therefore, on the total, 14 features are extracted for these tokens.

• All Punctuation Marks: A floating point value indicating the ratio of punctuation mark count 
to all token count.

• Bag of Words: A vector of the size of the whole corpus, where count of each token in the sentence 
is shown with a normalized floating point value.

Figure 2. Preprocessing and feature extraction pipeline
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As seen in the above feature list, for some tokens such as several punctuation marks and emoji/
emoticons, two features are extracted. This is due to that they capture different semantics (one of 
them is about existence of the token and the other is about the quantity), and hence may have different 
impact on the irony detection performance of a model.

In the previous irony detection studies, polarity scores of words are known to be used in order to 
detect positive or negative orientation in sentiment (Ahmed et al., 2018; Dulger, 2018; Taslioglu & 
Karagoz, 2017; Van Hee et al., 2016b; Xu et al., 2015). Since there is no publicly available polarity 
score look-up library for Turkish, in the studies conducted on Turkish, generally, the English libraries 
are translated manually (Vural et al., 2013). In this work, we manually translated the words in our 
data set and created our own look-up table by using SenticNet (Cambria et al., 2020). This look-up 
table includes scores between -1.0 and 1.0 for the words in our collection. A sample polarity scoring 
for the sentence “Sınava geç kaldım, aferin bana!” is shown in Figure 3.

After constructing the polarity scores look-up table, we extracted the following features:

• Average Polarity: For average polarity, we have three features of floating point value. The first 
one keeps the positive average polarity, the second one has the negative average polarity and 
the third one is total average polarity. Each of these average values are calculated by using the 
number of sentimental tokens in the text.

• Minimum Polarity: A floating point value indicating the minimum polarity score in the sentence.
• Maximum Polarity: A floating point value indicating the maximum polarity score in the sentence.
• Maximum Polarity Difference: A floating point value indicating the difference of minimum 

and maximum polarities, scaled in [0,1].
• Positive and Negative Sum Difference: A floating point value indicating the difference of 

positive sum and negative sum, scaled in [0, 1].
• Polarity Contrast: A binary value indicating the existence of both positive and negative polarity 

scores in the sentence.

One of the enhancements we use in our study is exploiting graphs to discover new features that 
may contain hidden relationships within the text. The basic idea here is to create class graphs for 
ironic and non-ironic data in order to extract several graph similarity scores as features.

Creating Sentence Graph
Using the method described in the study by Ahmed and others, a vicinity window of 3 is used for 
creating a graph for each sentence in the data set, where each token has a directed edge to next two 
tokens following itself. Only word and emoji/emoticon tokens are used to create graphs (Ahmed et 
al., 2018). As an example, the graph constructed for the sentence “Sınava geç kaldım, aferin bana!” 
is shown in Figure 4.

Creating Class Graphs
A class graph is created by taking the union of the sentence graphs of the sentences in that class. 
Hence, we have two class graphs, one for irony and the other for non-irony class. Using the graphs, 
the following features are extracted:

Figure 3. Polarity scores of the words in a sentence
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• Containment Similarity Score: For containment similarities, we keep two floating point values 
each one representing the containment similarity score of a sentence graph to ironic and non-
ironic class graphs. Containment similarity is calculated as given in Equation 1, where S is the 
sentence graph and C is the class graph. Here, the size of a graph and the size of the intersection 
of two graphs are calculated with respect to the number of edges:

S C

S C

∩

( )min ,
 (1)

Additionally, in order to use in the neural pipelines, word embeddings are extracted from the 
lemmatized data:

• Word Embeddings: Word embeddings of the tokens are obtained by using the pre-trained 
embedding model of fastText (Bojanowski et al., 2017) trained on Turkish Wikipedia texts.

Note that not all features are used in all of the methods. The use of the features in the learning 
pipelines are summarized in Table 2.

optimizing the Pipeline for Traditional Supervised Learning Methods
Irony detection, as a supervised learning task, involves a pipeline using traditional 
classification methods such as SVM, NB and DT classifiers. Selecting the best fitting method 
and optimizing the parameters for the best performing setting requires a considerable effort. 
To facilitate this phase, we used an automated machine learning tool, TPOT (Olson et al., 
2016). Given your training data as a feature vector, TPOT uses genetic programming to 
optimize the machine learning pipeline for the given task, according to the metric defined. In 
this study, TPOT is used with SVM, Multinomial NB and DT classifiers for the optimization 
of traditional supervised learning methods. It should be noted that, in our study, TPOT is only 
used for tuning parameters of the classification methods. We exclude the other optimization 
functionalities, especially for feature selection since we aim to analyze the effect of the 
features explicitly. The details of the pipelines and methods used in the analysis are given 
in the Experiments & Results section.

Figure 4. Sample sentence graph constructed for the sentence “Sınava geç kaldım, aferin bana!” with vicinity window of 2
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Neural Network Based Methods
As the neural network based solutions, we used BERT and several variations of LSTM neural model 
with a pre-trained word embeddings by fastText on Turkish Wikipedia texts. Using the corresponding 
embedding vectors for each word in our data set, an embedding matrix is created and used to form 
the embedding layer of the neural models. For each method explained below, the same embedding 
layer is used and trained further with the rest of the network. Also, for LSTM based models, we 
experimented with additional features to create new models, which are explained in detail in the 
Experiments & Results section:

• LSTM: LSTM is a well-known recurrent neural network (RNN) architecture. Different from the 
standard artificial neural network architectures, it contains feedback connections which provides 
long-term memory to recurrent neural networks. With this feature, it is ideal for working on time 
series and textual data.

• Bi-LSTM: Bidirectional Long-Short Term Memory networks (Bi-LSTM) run the given inputs 
twice, from past to future and from future to past. In this way, unlike the regular LSTM networks, 
it not only uses the information from the past, but also combines it with the information from 
the future and makes it possible to access this at any time. By adding an embedding layer to 
the established architecture, vector representations of the texts can be obtained and used in the 
model training process.

Table 2. Features used in pipelines

Features Baseline Basic Polarity Graph Pol-Gra LSTM Bi-
LSTM

CNN-
LSTM LSTM+ Bi-

LSTM+
CNN-

LSTM+

BoW x x x x x

Word Cnt. x x x x x x x

Emo. x x x x x x x

Intjct. x x x x x x x

Boost. x x x x x x x

Repet. x x x x x x x

Caps x x x x x x x

Excl. x x x x x x x

Q. x x x x x x x

Ellp. x x x x x x x

Quote. x x x x x x x

Brckt. Excl. x x x x x x x

Brckt. Q. x x x x x x x

All Punct. x x x x x x x

Avg Pol. x x

Min Pol. x x

Max Pol. x x

Max Dif. x x

Pos-Neg D. x x

Pol. Cont. x x

Cont. Sim. x x

Word Emb. x x x x x x
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• CNN-LSTM: It is an LSTM architecture specifically designed for sequence prediction problems 
with spatial inputs, like images or videos. It contains convolutional layers, used in Convolutional 
Neural Networks (CNN), for feature extraction on input data combined with LSTMs for text 
classification.

• BERT: BERT is a masked language model (Devlin et al., 2018) developed by Google Research. 
Its main difference from the existing language models is that it is pre-trained in a bidirectional 
manner, allowing the model to capture the relations of a token with both its previous and 
subsequent tokens. In this study, BERT Base Multilingual Cased pre-trained model, which is 
trained on cased text in the top 104 languages with the largest Wikipedia content, is fine-tuned 
for binary classification of textual data.

eXPeRIMeNTS AND ReSULTS

Within the scope of our study, we investigate and compare several methods (as shown in Figure 1). 
Features used in each pipeline are presented in Table 2. All experiments are performed by using the 
same data set under 10-fold cross validation.

Traditional Supervised Learning Methods
We analyzed the performance of 5 main pipelines utilizing traditional supervised learning methods, 
where each pipeline mainly differs by the set of features used in classification. The pipelines are 
described in detail below. For each pipeline, Multinomial NB, SVM and DT classifiers are optimized 
and their results are compared in Table 3:

• Baseline Pipeline: Bag of Words vectors contain the minimal information we can get from a 
sentence. Hence, to have a baseline method where the performances of the other methods can 
be compared against, Baseline pipeline is created by only using BoW vectors. It should be noted 
that neural pipelines are also compared against this Baseline pipeline.

• Basic Pipeline: As seen in Table 2, for the basic features pipeline, only the lexical and syntactic 
features are included for the feature set, on top of the BoW vectors.

• Polarity Pipeline: Polarity scores can contain information to facilitate irony detection, hence 
polarity based features are added to the features used in the Basic pipeline (as shown in Table 
2) to create the feature set for the Polarity pipeline.

• Graph Pipeline: Graph similarities can also contain important or hidden information. To utilize 
graph similarities, containment similarity score features are added to the features used in the 
Basic pipeline (as shown in Table 2) to create the feature set for the Graph pipeline.

• Pol-Gra Pipeline: Finally, both graph and polarity based features are added on top of the features 
used in the Basic pipeline to create the Pol-Gra pipeline.

Neural Network Based Pipeline
In the pipelines, LSTM, Bi-LSTM and CNN-LSTM, word embeddings are used as the input. 
On the other hand, for the pipelines of pipelines, LSTM+, Bi-LSTM+ and CNN-LSTM+, 
in addition to the word embeddings, basic features are added before the dense layers. The 
architectures of these two groups of networks are the same and can be seen in Figure 5. The 
detection performance of the neural pipelines are compared in Table 5. In the BERT pipeline, 
none of the extracted features are used, tokenized data is fed directly to the BERT model. 
Hence, BERT pipeline is not shown in Table 2:

• LSTM: For the LSTM model, the experiments are conducted with different combinations of 
settings. The tested settings are as follows: epoch numbers 3 and 5, the number of LSTM nodes 
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64, 128, 256 and the number of dense layers 2 and 3. Different activation functions for the dense 
layers are also tested, such as sigmoid and ReLU. The best performance is obtained under the 
configuration including 5 epochs, with 128 LSTM nodes, 3 dense layers with 100, 10 and 1 
outputs respectively and ReLU activation function.

• Bi-LSTM: The Bi-LSTM model is also tested with different combinations of settings. The 
following configurations have been tested: epoch numbers 3 and 5, the number of Bi-LSTM nodes 
64, 128, 256 and the number of dense layers 2 and 3. Sigmoid and ReLU activation functions 
are compared to see the effect of the activation function. The best performance is obtained with 

Figure 5. LSTM based architectures

Table 3. Comparison of traditional methods

Pipeline/Method Accuracy Precision Recall F1-score

Baseline
SVM 48.17% 29.64% 56.33% 38.84%
Multinomial NB 48.17% 39.54% 56.32% 46.46%
Decision Tree 52.17% 52.19% 35.17% 42.02%

Basic
SVM 53.50% 60.01% 66.34% 63.02%
Multinomial NB 55.33% 58.83% 68.44% 63.27%
Decision Tree 56.67% 64.58% 39.74% 49.20%

Polarity
SVM 63.33% 64.57% 58.22% 61.23%
Multinomial NB 55.83% 58.23% 74.35% 65.31%
Decision Tree 53.50% 58.64% 56.56% 57.58%

Graph
SVM 53.50% 60.01% 66.34% 63.02%
Multinomial NB 58.17% 61.40% 67.90% 64.49%
Decision Tree 54.83% 58.86% 62.43% 60.59%

Pol-Gra
SVM 63.33% 65.53% 57.10% 61.03%
Multinomial NB 55.67% 58.11% 76.12% 65.91%
Decision Tree 55.50% 56.00% 50.40% 53.50%
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3 epochs, with 128 Bi-LSTM nodes, 2 dense layers with 100 and 1 outputs respectively and 
ReLU activation function.

• CNN-LSTM: The configurations used for the experiments of the CNN-LSTM network are, epoch 
numbers 3 and 5, the number of kernels 64, 128, and 256, the kernel sizes 4, 6 and 8 and the 
number of dense layers 2 and 3. The number of nodes in the LSTM layer is adjusted according 
to the selected kernel size and number of kernels. Sigmoid and ReLU activation functions are 
tested. The best result is obtained under the following configuration: with 5 epochs, using 128 
kernels with size 6, 2 dense layers having 100 and 1 outputs with ReLU activation function.

• LSTM+: The experiment settings used for LSTM+ model is the same with the LSTM model. 
The best performance for this pipeline is obtained with 3 epochs, with 128 LSTM nodes, 2 dense 
layers having 100 and 1 outputs, respectively, with ReLU activation function.

• Bi-LSTM+: The Bi-LSTM+ model is experimented with the same settings as the Bi-LSTM 
model. The best performance for this pipeline is obtained with 5 epochs, with 64 Bi-LSTM 
nodes, 3 dense layers with 100, 10 and 1 outputs, respectively, and ReLU activation function.

• CNN-LSTM+: The CNN-LSTM+ model is also experimented with the same settings as the 
CNN-LSTM model. The best performance is obtained with 5 epochs, using 64 kernels with size 
6, 2 dense layers having 100 and 1 outputs, with ReLU activation function.

• BERT: Using an open-source implementation (Rajapakse, n.d.) with limited changes for weight 
freeze implementation, we constructed a 12-layered BERT model. Hyperparameter settings of 
epoch numbers 5, learning rate 0.00004, batch size 16 are kept the same while analyzing different 
weight freeze settings. All results are evaluated by 10-fold cross validation and are shown in 
Table 4, where Layers indicate the last number of layers that are not frozen, in other words, layers 
where the parameters are trained.

evaluation Metrics
The experiments are conducted under 10-fold cross validation using the following 4 metrics: accuracy, 
precision, recall and F1-score. These metrics are calculated by using their conventional equations 
involving the number of true positive, true negative, false positive and false negative instances. For 
cases where there is no prediction generated for a given class or there is no instance for a class in the 
test set, precision and recall calculations may result in division by zero. To handle this situation, a 
method proposed in GERBIL project is used (Roeder, 2015). According to their solution, when true 
positives, false positives and false negatives are 0, the precision, recall and F1-measure values are 
given as 1. When true positives are 0 and one of the other measures is larger than 0, the precision, 
recall and F1-measure are considered to be 0.

Traditional Pipeline Results
To select the best classifier for each pipeline, three classifiers are optimized with the help of 
TPOT. For each pipeline, the highest score by column is written in bold, the best performing 

Table 4. Comparison of BERT with different trained layers

Layers Accuracy Precision Recall F1-score
11 68.06% 68.92% 63.67% 66.19%
7 64.83% 66.46% 60.17% 63.16%
6 69.00% 71.34% 65.75% 68.43%
5 66.50% 67.23% 61.64% 64.31%
1 63.50% 65.21% 59.76% 62.37%
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pipeline is selected by the highest F1-score, and the selected pipelines are also written in bold 
in Table 3. In the table, it is seen that incrementally adding more features results in a trend of 
increasing performance for each classification method. For the comparison of polarity-based 
and graph-based features separately, we can see that polarity scores improves the performance 
of systems more. We can see an accuracy boost in SVM when polarity scores are included. But 
since the best performing classifiers for each pipeline are selected by F1-scores, for all pipelines, 
Multinomial Naïve Bayes classifier is preferable.

Neural Pipeline Results
For the analysis of neural models, initially the BERT settings with different training layers are 
evaluated. In the pre-trained model of the BERT, only the dense layer is trained. The irony detection 
performance for various settings are given in Table 4. As seen in the results, the best performance is 
obtained when the last 6 layers are trained. Hence this pipeline is used for comparison with the other 
models as given in Table 6. For LSTM based methods, as it can be seen in Table 5, the addition of 
basic features did not change the accuracy scores significantly. For some of the models they improved 
the performance in terms of F1-score, whereas for the others, the performance decreased. On the 
overall, CNN-LSTM and CNN-LSTM+ have lower performance than the others. The highest score 
in terms of F1-score is obtained by LSTM+.

Discussion
For each of the pipelines, the best performing setting in terms of F1-score is included in Table 6. For 
each metric (column), top-3 performances are written in bold. We can summarize the most prominent 
result as follows:

• Since BoW vectors contain limited information about each sentence, BoW pipeline is used as the 
Baseline pipeline for comparison, and it has a lower performance. The other traditional pipelines 
are built on top of the BoW features, by incrementally adding extra features. As expected, 
incremental addition of features in traditional supervised learning method based pipelines 
enhanced the performance of the classification task. However, the performance of neural models 
are not affected significantly by inclusion of basic features to the word embeddings. We believe 
that this is due to the nature of neural-network based learning process, which actually improves 
with the quantity of data.

• For LSTM based models, the performance fall below the traditional models. Data set used in 
this study is relatively small for neural methods to perform at their fullest. But when it comes 
to BERT pipeline, due to its usage of a multilingual pretrained model for transfer learning, it 
provides the best performance in terms of accuracy, precision and F1-score.

Table 5. Comparison of LSTM based methods

Pipeline Accuracy Precision Recall F1-score
LSTM 51.33% 55.09% 52.73% 53.88%
LSTM+ 50.50% 49.88% 64.57% 56.28%
Bi-LSTM 50.16% 51.44% 62.07% 56.26%
Bi-LSTM+ 51.66% 52.61% 56.74% 54.60%
CNN-LSTM 50.33% 50.33% 45.73% 47.92%
CNN-LSTM+ 50.33% 46.73% 45.59% 46.15%
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• Among the pipelines of traditional classifiers, Pol-Gra pipeline, in which all the extracted features 
(except word embeddings) are included, perform the best. This pipeline provides the highest recall 
score and immediately follows the BERT in terms of F1-score. In general, traditional pipelines 
provide higher recall results in comparison to the BERT.

• The results obtained in our analysis are mostly comparable with those obtained in irony detection 
studies in English. In their study, Ahmed et al. reported irony detection performance of 59.55% 
F-measure on SemEval-2018 data set by extreme gradient boosting classifier (Ahmed et al., 
2018). On the same data set, the performance is further improved to 63% with SVM. Wu et al. 
used deep neural architectures and obtained 70.5% F1-score by using a LSTM based model (Wu 
et al., 2018). In our analysis, we obtained the highest detection performance with a deep neural 
architecture, however LSTM based models’ performance remained limited. This is an expected 
result due to the difference in size of our data set and SemEval-2018 data set (see Table 7).

• Irony detection accuracy results reported for other languages vary. This is possibly due to the 
differences in data set characteristics as well as the nature of the languages. Carvalho et al. 
reported about 72% F1-score with SVM on a data set in Portugese (Carvalho et al., 2020). 
On a collection of tweets and news comments in Spanish, about 62% F1-score is reported 
by using SVM (Frenda & Patti, 2019). Ghanem et al. reported 68% F1-score on their Arabic 
data set with RF and 80% with CNN (Ghanem et al., 2020). In the same study, F1-score 
results obtained on for French data set are 61% by using RF, and 73.5% by using CNN. In 
another study (Zhang et al., 2019), by using a BERT model, 57% F1-score is reported for 
irony detection on a Chinese data set.

• Irony detection accuracy results reported in the previous studies on Turkish texts are higher 
than ours. Dulger reported to obtain reported 88% F1-score with Multi Layer Perceptron (MLP) 
(Dulger, 2018), and Taslioglu & Karagoz reported 95% with k-NN (Taslioglu & Karagoz, 2017). 
However data set sizes used in these two studies are smaller than the data set used in our study 
(see Table 8). Since these data sets are not publicly available, comparative analysis on them 
was not possible. Since the techniques used in both of these previous studies are traditional 
supervised learning methods and the features extracted are similar to those in our Basic pipeline, 
the difference in the detection accuracy possibly due to data sets.

Table 6. Comparison of methods

Pipeline Accuracy Precision Recall F1-score
Baseline 48.17% 39.54% 56.32% 46.46%
Basic 55.33% 58.83% 68.44% 63.27%
Polarity 55.83% 58.23% 74.35% 65.31%
Graph 58.17% 61.40% 67.90% 64.49%
Pol-Gra 55.67% 58.11% 76.12% 65.91%
LSTM 51.33% 55.09% 52.73% 53.88%
LSTM+ 50.50% 49.88% 64.57% 56.28%
Bi-LSTM 50.16% 51.44% 62.07% 56.26%
Bi-LSTM+ 51.66% 52.61% 56.74% 54.60%
CNN-LSTM 50.33% 50.33% 45.73% 47.92%
CNN-LSTM+ 50.33% 46.73% 45.59% 46.15%
BERT 69.00% 71.34% 65.75% 68.43%
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CoNCLUSIoN

In this paper, we investigate the performance of traditional supervised learning based methods and 
neural network-based solutions for irony detection on Turkish informal texts. The analysis is conducted 
on a data set of 600 instances, which is larger than the data used in the earlier studies. We also analyze 
the effects of polarity score and graph-based features on recognizing irony. The experiments show 
that traditional methods generally perform better for this data set and the neural models fall behind 
since the size of the data set is relatively small. It is also observed that polarity score and graph based 
features improve the performance of traditional classifiers. Only BERT, an up-and-coming transfer 
learning language model bypasses all pipelines and gives promising results even with a relatively 
small data set for neural methods.

One limitation of our study is about the size of the data set used in the analysis. The 
data set includes 600 sentences on the total with balanced number of instances. Due to the 
difficulties stemming from the nature of the problem, annotation constitutes an important 
barrier for generating ground truth data sets. Hence irony detection data sets are on the 
overall limited in size compared to other text analysis tasks such as sentiment analysis. In 
Table 7, the characteristics of English irony detection data sets used in the previous studies 
are summarized. Among these data sets, Barbieri 2014 and Ptáček 2014 are considerably 
larger in size. However, these data sets are automatically annotated by using hash tags, and no 
further manual annotation is reported. In Table 8, irony detection data sets in other languages, 
including Turkish, in the literature are given. Compared to Dulger 2018 and Taslioglu 2017, 
the size of the data set used in our study is considerably extended, especially for the irony 
class. For the data sets in Portugese (Carvalho 2020), and in Spanish (IroSvA-Spain, IroSvA-
Mexico, IroSvA-Cuba), the sizes of the collections are smaller than SemEval 2018. For the 
data collection in Chinese (Ciron), the size of ironic samples is limited compared to non-irony 
class. In the data collection and annotation phase, we put our best effort to generate the data 
set, and we aim to extend it gradually. Yet with the current size, we believe it was effective to 
present the trend and potential of the methods for the challenged task.

For the future work, more advanced neural architectures and different classifiers such as k-NN or 
RF classifier may be utilized. As another research direction, the effect of further graph-based features 
such as maximum common (induced/edge) sub-graph similarity or token and character N-grams can 
be investigated for performance improvement. As additional features, PoS taggings of the tokens in 
sentences can be utilized as well.

Table 7. Summary of irony detection data sets in English

Data set Size of Ironic 
Samples

Size of Non-
ironic Samples

Total 
Size Studies used in Collection 

Mechanism

SemEval 2018 2.396 2.396 4.792
(Ahmed et al., 2018), 
(Pamungkas & Patti, 
2018), (Wu et al., 2018)

Twitter, Manual 
Annotation

Barbieri 2014 10.000 10.000 20.000 (Barbieri et al., 2014)
Twitter & news, 
Automated 
Annotation

Filatova 2012 437 817 1.254 (Buschmeier et al., 
2014)

Amazon reviews, 
Manual Annotation

Ptáček 2014 5.602 5.623 11.225 (Ghanem et al., 2020) Twitter, Automated 
Annotation
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Table 8. Summary of irony detection data sets in Turkish and other languages (* Data set annotation procedure is not given in 
full detail in (Frenda & Patti, 2019) however since the data set is constructed for a text analysis challenge, manual annotation 
looks probable.)

Data set
Size of 
Ironic 

Samples

Size of 
Non-ironic 

Sample
Total 
Size Studies used in Collection Mechanism

Dulger 2018 72 72 144 (Dulger, 2018) Turkish, Twitter & other 
microblogs, Manual Annotation

Taslioglu 2017 69 431 500 (Taslioglu & 
Karagoz, 2017)

Turkish, Twitter & other 
microblogs, Manual Annotation

Carvalho 2020 1.134 1.134 2.268 (Carvalho et al., 
2020)

Portuguese, Farcical news, 
Manual Annotation

IroSvA-Spain 1.000 2.000 3.000 (Frenda & Patti, 
2019)

Spanish, Twitter, Manual 
Annotation (?) *

IroSvA-Mexico 1.000 2.000 3.000 (Frenda & Patti, 
2019)

Spanish, Twitter, Manual 
Annotation (?)

IroSvA-Cuba 1.000 2.000 3.000 (Frenda & Patti, 
2019)

Spanish, News comments, 
Manual Annotation (?)

DEFT 2017 in 
Ghanem et al., 
2020

2.425 4.882 7.307 (Ghanem et al., 
2020)

French, Twitter, Manual 
Annotation

Ghanem 2020 6.005 5.220 11.225 (Ghanem et al., 
2020)

Arabic, Twitter, Manual 
Annotation

Ciron 968 7.734 8.702 (Xiang et al., 2020) Chinese, Twitter, Manual 
Annotation with multiple classes
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